目前关于通过 AI 学习易经来占卦的相关内容较为复杂和多样。
一方面,有案例如“问事屋--一个摇签算卦 Bot”,其创建者原本打算做基于六爻周易解卦的 bot,但因 AI 对结果的分析和推理存在不足,后转换思路,以庙里摇签抽签的经历为灵感,收集整理相关签文并搭建工作流。
另一方面,从理论角度来看,AI 模型具有一定的灵活性和学习能力,但如同简单神经网络在预测未来时可能失败一样,AI 在学习易经占卦这类复杂且具有深厚文化内涵和哲学思考的领域,仍面临诸多挑战和限制。
需要注意的是,易经占卦更多是一种文化和哲学的表达方式,其结果并非具有科学可验证性的准确预测。
[title]沃尔夫勒姆:人工智能能解决科学问题吗?[heading2]人工智能可以预测会发生什么吗?Yes,there can be a lot of flexibility in this model.But one can’t have a truly “model-less model”.Perhaps the AI is based on a huge neural network,with billions of numerical parameters that can get tweaked.Perhaps even the architecture of the network can change.But the whole neural net setup inevitably defines an ultimate underlying model.是的,这个模型可以有很大的灵活性。但不可能有一个真正的“无模型模型”。也许人工智能是基于一个巨大的神经网络,有数十亿个可以调整的数值参数。也许甚至网络的架构也可以改变。但整个神经网络设置不可避免地定义了一个最终的底层模型。Let’s look at a very simple case.Let’s imagine our “data” is the blue curve here—perhaps representing the motion of a weight suspended on a spring—and that the “physics” tells us it continues with the red curve:让我们看一个非常简单的案例。让我们想象我们的“数据”是这里的蓝色曲线——也许代表悬挂在弹簧上的重物的运动——并且“物理学”告诉我们它继续是红色曲线:Now let’s take a very simple neural net现在让我们来看一个非常简单的神经网络and let’s train it using the “blue curve” data above to get a network with a certain collection of weights:让我们使用上面的“蓝色曲线”数据来训练它,以获得具有特定权重集合的网络:Now let’s apply this trained network to reproduce our original data and extend it:现在让我们应用这个经过训练的网络来重现我们的原始数据并扩展它:And what we see is that the network does a decent job of reproducing the data it was trained on,but when it comes to “predicting the future” it basically fails.我们看到的是,网络在复制其训练数据方面做得不错,但当涉及到“预测未来”时,它基本上失败了。
前几日,找朋友用算卦解惑;突发灵感,想捏算卦bot;正好赶上通往AGI一月一次的摆摊大会,借此行动起来,在扣子上捏了一个叫问事屋的bot;[heading2]如何做:[content]本来先打算捏一个关于六爻周易解卦的bot,先用kimi测试了一下,拿着结果问了一下会解卦的朋友,朋友说,六爻是要根据方位以及卦象进行推理演算的,尤其是存在暗卦的可能;而AI生成描述对阴阳爻解释是对的;但对于结果分析和推理就是在胡言乱语;只要是稍微懂一点来看,就会有很多的质疑;于是,我转换了思路,想起来在庙里摇签抽签的经历;想到解释签词需要用到推理能力较弱,大模型应该能胜任;于是我改变了思路,并在网上收集了相关签文并进行整理;找到一个含有叫吕祖灵签(看事)100个签文、一个叫观音灵签(算运势)100个签文;以这两百个签文为框架,分问事解签和整体运势;并整理成对应的知识库,开始搭建自己的工作流
[title]黄仁勋在AI界超级碗GTC2024的主旨演讲:精华及全文(附视频)十年后,我们真的认识了文本,我们认识了图像,我们认识了视频和声音,我们不仅认识了它们,而且还理解了它们的含义。我们理解文本的含义,这就是我可以和你聊天的原因。它可以为你总结,它理解文本。它理解的不仅仅是识别英语,它理解英语,它不只是识别像素,它理解像素,你甚至可以在两种模式之间调节它,你可以拥有语言条件图像,并生成各种有趣的东西。好吧,如果你能理解这些事情,你还能理解什么?你已经数字化了。我们从文本开始的原因,你知道图像是因为我们将这些数字化了,但是我们还数字化了其他什么东西?事实证明我们数字化了很多东西,比如蛋白质、基因和脑电波。任何可以数字化的东西,只要它们的结构,我们就可以从中学习一些模式,如果我们可以从中学习模式,我们就可以理解它的含义,如果我们可以理解它的含义。我们也许有能力生成它。因此,生成式人工智能革命就在眼前。那么,我们还能生成什么?我们还能学到什么?学习是我们的一项愿望。我们是否对气候有所了解?我们愿意了解极端天气,我们愿意学习。那么,我们如何预测未来的天气?如何在区域范围内以足够高的分辨率预测天气,以便我们可以在伤害到来之前让人们远离伤害?极端天气给世界造成了1500亿美元的损失,这个数字肯定还要更高。这些损失并不均匀分布,1500亿美元主要集中在世界的某些地区。对于世界上的某些人来说,我们需要适应,我们需要知道即将发生什么。因此,我们正在创造地球2,这是地球的数字孪生,用于预测天气。我们已经做出了一项非凡的发明,名为CoreDiv,它能够使用生成式人工智能以极高的分辨率预测天气。随着地球气候变化,人工智能天气预报使我们能够更准确地预测和跟踪2021年超级台风“灿图”等严重风暴,该风暴对台湾及周边地区造成广泛破坏。当前的人工智能预测模型可以准确预测风暴的轨迹,但它们的分辨率仅限于25公里,这可能会错过重要细节。