Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

向量数据库高效存储与内存的关系

Answer

向量数据库的高效存储与内存有着密切的关系。

在生成式人工智能领域,通过扩展上下文窗口,模型能够处理更大量的文本并更好地保持上下文,但仅扩展上下文窗口并不能充分改善内存,因为推理的成本和时间与提示的长度呈准线性甚至二次方关系。此时,检索机制就显得尤为重要,它通过与提示相关的上下文数据增强和完善 LLM 的原始训练语料库。向量数据库(例如 Pinecone)已成为高效检索相关信息的事实标准,并作为 LLM 的内存层,使模型更容易快速准确地搜索和引用海量信息中的正确数据。

向量数据库专门用于存储高维向量,以实现快速准确的相似性搜索。由于人工智能模型,尤其是自然语言处理和计算机视觉领域的模型会生成并处理这些向量,所以对高效存储和检索系统的需求变得至关重要。像 GPT-3 这样的大型语言模型,因其处理的数据量和复杂性,产生了大量向量化数据,传统数据库难以有效处理,所以基于 GPT-3 和类似模型构建的应用在很大程度上依赖于向量数据库来有效地管理和查询这些向量。

例如,Marqo 向量数据库具有嵌入式存储在内存中的 HNSW 索引,实现了最先进的搜索速度,还能利用横向索引分片将规模扩大到亿级文档索引,支持异步和非阻塞数据上传和搜索,使用来自 PyTorch、Huggingface、OpenAI 等公司的最新机器学习模型,可从预先配置的模型开始或自带模型,内置 ONNX 支持和转换功能,可实现更快的推理和更高的吞吐量,并支持 CPU 和 GPU。

Content generated by AI large model, please carefully verify (powered by aily)

References

生成式人工智能领域的 4 个突破点

特别是通过扩展上下文窗口,模型将能够处理更大量的文本并更好地保持上下文,包括在对话中保持连贯性。这将进一步显著提高模型在需要更深入理解较长输入的任务中的能力,例如总结长篇文章或在长时间对话中生成连贯且上下文准确的回应。在上下文窗口方面,我们已经看到了显著的改进——GPT-4具有8k和32k标记的上下文窗口,相比之下,GPT-3.5和ChatGPT的上下文窗口分别为4k和16k标记,而Claude最近将其上下文窗口扩展到惊人的100k标记。仅扩展上下文窗口并不能充分改善内存,因为推理的成本和时间与提示的长度呈准线性甚至二次方关系。检索机制通过与提示相关的上下文数据增强和完善LLM的原始训练语料库。由于LLMs是在一个信息体上进行训练的,并且通常难以更新,检索的两个主要好处是根据Shoham的说法:“首先,它允许您访问在训练时没有的信息源。其次,它使您可以将语言模型聚焦在您认为与任务相关的信息上。”向量数据库(例如Pinecone)已成为高效检索相关信息的事实标准,并且作为LLMs的内存层,使模型更容易快速准确地搜索和引用海量信息中的正确数据。

大雨:简单易懂的向量数据库解析:你需要了解的一切

Features特点嵌入式存储在内存中的HNSW索引中,实现了最先进的搜索速度利用横向索引分片,将规模扩大到亿级文档索引异步和非阻塞数据上传和搜索使用来自PyTorch、Huggingface、OpenAI等公司的最新机器学习模型从预先配置的模型开始,或自带模型内置ONNX支持和转换功能,可实现更快的推理和更高的吞吐量CPU and GPU support支持CPU和GPU

大雨:简单易懂的向量数据库解析:你需要了解的一切

向量数据库专门用于存储高维向量,从而实现快速准确的相似性搜索。由于人工智能模型,尤其是自然语言处理和计算机视觉领域的人工智能模型,会生成并处理这些向量,因此对高效存储和检索系统的需求变得至关重要。这就是向量数据库发挥作用的地方,它为这些人工智能驱动的应用提供了高度优化的环境。像GPT-3这样的大型语言模型(LLMs)的出现就是人工智能与向量数据库之间关系的一个典型例子。这些模型旨在通过处理海量数据,将其转化为高维向量,从而理解并生成类似人类的文本。A基于GPT-3和类似模型构建的应用在很大程度上依赖于向量数据库来有效地管理和查询这些向量。这种依赖的原因在于这些模型所处理的数据量和复杂性。例如,GPT-3有1750亿个参数,产生了大量向量化数据,传统数据库很难有效处理这些数据。

Others are asking
comfyui的本地部署安装,GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G*2
以下是关于 ComfyUI 本地部署安装的相关信息: ComfyUI 相比 WebUI,配置更低,系统资源占用更少,出图速度更快,最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。运行内存最低 32GB,越高越好,最低配会经常爆显存。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,最好把软件和模型部署在 SSD 上。如果电脑能顺畅清晰地玩 3A 游戏,那玩 webui 和 ComfyUI 也没问题。配置上不封顶,根据自己的需求和预算来即可。 安装地址:https://github.com/comfyanonymous/ComfyUI 。可以下载安装包也可以直接 Git clone https://github.com/comfyanonymous/ComfyUI.git ,或者下载安装包 file:ComfyUI.zip ,下载安装包或者点击链接下载并解压至本地除 C 盘外的任意盘。然后找到文件名称为 run_nvidia_gpu 的文件双击并启动。启动完成即进入基础界面。 节点存放目录:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\custom_nodes 。 模型存放目录: 大模型:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\checkpoints 。 Lora:D:\\COMFYUI\\ComfyUI_windows_portable\\ComfyUI\\models\\loras 。 Vae:D:\\COMFYUI\\ComFYUI_windows_portable\\ComfyUI\\models\\vae 。 已经安装了 SDWebUI 的同学可以通过修改文件路径和 WebUI 共用一套模型即可,这样就不用重复下载模型了。找到已安装好的 ComfyUI 目录文件下的 extra_model_paths.yaml.example 文件,将后缀.example 删除,然后右键用记事本打开。 您的电脑配置为 GPU:RX6600 8G,CPU:R5 5600,内存:DDR4 8G2,可能需要注意内存方面可能不太满足推荐配置,可能会影响运行效果。
2025-02-13
联想异能者配置i5-12450八核,32GB内存,1TB固态硬盘,用于本地部署开源大模型可以部署哪些开源大模型
以下是一些您的联想异能者配置(i512450 八核,32GB 内存,1TB 固态硬盘)可部署的开源大模型及相关信息: ComfyUI 相比 WebUI 配置更低,系统资源占用更少,出图速度更快。ComfyUI 最低可在小于 3G 的 GPU 上运行,甚至没有 GPU 光用 CPU 也可以运行,但速度极慢。SDXL 出来后提高了运行配置,最低需要 8GB 显存+32GB 运行内存,12GB 流畅运行,推荐 16GB 以上。玩 SDwebui 和 ComfyUI 建议使用 6GB 以上的显存的 NVIDIA 显卡(N 卡),内存在 16G 以上。硬盘会影响加载模型的速度,所以最好把软件和模型部署在 SSD(固态硬盘)上。 截止 2024 年 5 月,主流的 AI 笔记本电脑主要是一些专门为人工智能和深度学习设计的高性能移动工作站。一些知名品牌包括微软第 11 代 Surface Pro、微星 Creator/Workstation 系列、技嘉 Aero/Aorus 系列、戴尔 Precision 移动工作站、惠普 ZBook 移动工作站、联想 ThinkPad P 系列。这些笔记本通常配备强大的 GPU(如 NVIDIA RTX 系列)、大容量内存(32GB 以上)和高速固态硬盘,还通常预装了 NVIDIA CUDA、cuDNN 等深度学习框架,以及各种 AI 开发工具。但这类高端 AI 笔记本价格相对较高,通常在 2000 美元以上。用户可根据自身需求和预算选择合适型号,并关注散热、续航等实际使用体验。 请注意,配置上不封顶,您可根据自己的需求和预算来选择。
2024-11-04
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
大语言模型、多模态、数据、算力、算法、预训练、微调、RAG、自注意力机制、transformer、token、神经网络、向量、scaling law这些内容的含义
以下是对您所提到的这些内容含义的解释: 大语言模型:是一种基于大量文本数据进行训练的语言处理模型,其工作原理包括训练数据、算力、模型参数等。在训练数据一致的情况下,模型参数越大能力越强。 多模态:指能够处理多种不同类型的数据模态,如文本、图像、音频等,并将它们融合进行理解和生成。 数据:是大语言模型训练和应用的基础,包括各种文本、图像、音频等信息。 算力:指用于支持大语言模型训练和运行的计算能力。 算法:是大语言模型实现各种功能的数学和逻辑方法。 预训练:在大语言模型中,先在大规模数据上进行无特定任务的初步训练。 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG:检索增强生成,通过引用外部数据源为模型做数据补充,适用于动态知识更新需求高的任务。其工作流程包括检索、数据库索引、数据索引、分块、嵌入和创建索引、增强、生成等步骤。 自注意力机制:是 Transformer 架构中的重要部分,能理解上下文和文本关联,通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率。 Transformer:是大语言模型训练架构,用于翻译等任务,具备自注意力机制。 Token:在自然语言处理中,是文本的基本单位。 神经网络:是大语言模型的基础架构,模拟人脑神经元的连接和信息处理方式。 向量:在大语言模型中,用于表示文本等数据的数学形式。 Scaling Law:关于大语言模型规模和性能之间关系的规律。
2025-02-18
如何将自有的材料做向量化处理
很抱歉,目前没有关于如何将自有的材料做向量化处理的相关内容。但一般来说,将自有材料进行向量化处理可以考虑以下步骤: 1. 数据清洗和预处理:清理和整理材料中的噪声、错误和不一致的数据。 2. 特征提取:根据材料的特点选择合适的特征,例如文本材料可以提取词袋模型、TFIDF 等特征。 3. 选择向量化方法:常见的有词向量(如 Word2Vec、GloVe 等)、文档向量(如 Doc2Vec)等。 4. 训练模型:使用选择的向量化方法和预处理后的数据进行训练。 由于缺乏具体的材料类型和应用场景等详细信息,以上步骤仅为一般性的指导,实际操作可能会有所不同。
2025-02-06
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
向量数据库和矢量数据库的区别
向量数据库和传统数据库(可视为您所提到的“矢量数据库”)主要有以下区别: 1. 查找方式: 传统数据库需要精确的关键词或类别进行查找,如同在普通图书馆中需知道书的具体位置或分类。 向量数据库可以通过自然语言描述所需内容,系统能理解意图并找到最相关的内容。 2. 组织方式: 传统数据库中信息被严格分类和组织,类似图书馆里的书架和编号系统。 向量数据库中信息根据内在特征和相似性自然聚集,如同魔法图书馆里书籍自动根据内容相似性浮动聚集。 3. 灵活性: 传统数据库若要更换组织方式,可能需重新安排整个架构。 向量数据库中,新加入的数据会自动找到合适位置,无需重新组织整个系统。 4. 发现新内容: 传统数据库较难偶然发现相关但之前未知的内容。 向量数据库在搜索时可能发现许多相关但之前不知道的内容,因其理解内容本质而非仅依赖标签。 此外,向量数据库以多维向量形式保存信息,代表某些特征或质量,能根据数据的向量接近度或相似度快速、精确地定位和检索数据,从而实现根据语义或上下文相关性进行搜索。而传统数据库通常以表格形式存储简单数据,搜索依赖精确匹配或设定标准。 为了在人工智能和机器学习应用中利用非结构化数据(如文本、图像和音频等),需要使用嵌入技术将其转换为数字表示,嵌入过程通常通过特殊神经网络实现,使计算机能更有效地辨别数据中的模式和关系。
2025-01-10
Embedding 嵌入向量生成模型
Embedding(嵌入)是一个浮点数的向量(列表),两个向量之间的距离度量它们的相关性,小距离表示高相关性,大距离表示低相关性。 Embedding 是一种在机器学习和深度学习中广泛应用的技术,特别是在自然语言处理(NLP)和其他涉及高维离散数据的领域。它指将原本高维且通常离散的输入数据(如单词、短语、用户 ID、商品 ID 等)映射到一个低维连续向量空间中的过程,这些低维向量称为嵌入向量。 例如,“国王”和“王后”在嵌入向量的空间里位置挨得很近,而“苹果”与前两者差别较大,其嵌入向量位置较远。Embedding 不仅限于单词,还可扩展到句子、文档、实体或其他类型的对象。通过训练诸如 Word2Vec、GloVe 或 BERT 等模型,可从大规模文本数据中学习出这样的嵌入向量,这些嵌入向量可看作是输入数据在潜在语义空间中的表示,能改善下游任务(如文本分类、情感分析、问答系统、机器翻译等)的表现。 除文本数据外,嵌入技术还应用于社交网络分析、推荐系统、图像识别(如位置嵌入)、图神经网络(如节点嵌入)等多种场景,实现将复杂对象的有效编码和降维表示。 Embeddings 有多种分类及对应模型: 句子和文档嵌入:Doc2Vec 能为整个文档生成统一的向量表示;Average Word Embeddings 是将一段文本中所有单词的嵌入取平均作为整体的文本表示;Transformers Sentence Embeddings 如 BERT 的标记对应的向量,或者专门针对句子级别的模型如 SentenceBERT。 实体/概念嵌入:Knowledge Graph Embeddings 如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。 其他类型:图像 Embeddings 使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入;音频 Embeddings 在语音识别和声纹识别中,将声音信号转化为有意义的向量表示;用户/物品 Embeddings 在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐;还有图 Embeddings 用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中,通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现,在图分析、社交网络分析、推荐系统等领域广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。 在将大型文档转换为可检索内容的过程中,嵌入向量生成这一步将文本块转换为实值向量并存储在数据库中。但检索 PDF 文档的过程充满挑战,可能出现文本提取不准确和 PDF 文档内表格行列关系混乱等问题。在检索增强生成(RAG)框架中,回答一个问题需要用户提出问询,系统从私有知识库中检索相关内容,将相关内容与用户查询合并为上下文,最后请求大语言模型生成答案,准确检索相关信息对 RAG 模型的效力至关重要。
2024-12-11
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的? 结合以上需求,我需要在飞书上构建一个企业每日利润表分析与汇报助手,该选定哪种prompt框架
很抱歉,目前飞书知识库中没有关于您所描述的这种特定需求下应选定哪种 prompt 框架的相关内容。但一般来说,构建这样的企业每日利润表分析与汇报助手的 prompt 框架可以考虑以下几个方面: 1. 明确数据来源和格式:清晰描述数据来自 Excel 或 MySQL 数据库,以及包含的具体字段。 2. 定义分析维度和指标:如按板块、国家等维度汇总数据,关注利润相关的指标。 3. 设定时间范围:明确分析近一周的数据变化。 4. 描述图表要求:指定以柱状图展示数据。 5. 解释变化原因:阐明导致数据变化或波动的关键因素。 您可以根据实际情况进一步细化和完善这个框架。
2025-02-15
目前我有个数据源头,可能是excle或mysql数据库。他们都含义以下字段: 发货日期 物料编号 物料描述 板块 实际已交货量 销售单位 金额(RMB) 金额(不含税RMB) 国家 品牌; 我需要创建一个智能体助手,用于分析这些数据,这个智能通助手需要能按用户需要,分析各个维度的数据,并按板块等维度汇总,并转为柱状图图表表现出现,并表现用户所有日期的近一周的变化,并阐明变化或波动是由哪些数据导致的?
要创建这样一个智能体助手来分析您提供的数据,以下是一些建议的步骤: 1. 数据获取与预处理: 从 Excel 或 MySQL 数据库中读取数据。 对数据进行清洗和预处理,例如处理缺失值、异常值等。 2. 数据分析与计算: 按照用户需求的维度(如板块、国家、品牌等)对数据进行分组和汇总计算。 计算近一周的数据变化情况。 3. 图表生成: 使用合适的图表库(如 matplotlib、Seaborn 等)将汇总后的数据以柱状图的形式展示。 4. 变化原因分析: 通过比较不同维度的数据,找出导致变化或波动的关键因素。 在技术实现方面,您可以使用 Python 编程语言来完成上述任务。例如,使用 Pandas 库进行数据处理和分析,使用 Matplotlib 库生成图表。希望这些建议对您有所帮助,如果您在实现过程中遇到具体的技术问题,欢迎随时向我咨询。
2025-02-15
如何基于你的模型对一台工业设备(钢板划线印字装备)进行故障诊断和预测性维护,从以下几个方面进行分析 1.技术栈:数据采集与通讯,数据库,算法,前端,微服务、应用等,并进行软件选型 2.硬件选型:工业设备、边缘计算设备,软件部署硬件,分别列出性能最优和国产化替代方案 3.算法创新性:要求可发表高水平论文和申请发明专利 4.算法通用性:考虑如何通过一个通用模型经过简单配置适应不同船舶建造工业设备的故障诊断和预测性维护 5.考虑前后合理性,若以此进行招标,如何描述招标内容
以下是为您整合的相关内容: Transformer 模型和 BERT 模型: 模型训练与评估:定义模型后,传递训练数据集和验证数据集及训练时期数,训练完成后评估性能,如达到 85%准确率。 模型性能可视化:绘制准确性和随时间的损失图。 保存与加载模型:使用 model.save 方法导出并保存模型到本地路径,保存后可加载进行预测。 预测示例:对不同情感的评论句子进行预测。 部署模型到 Vertex AI:检查模型签名,上传本地保存的模型到 Google Cloud 存储桶,在 Vertex 上部署模型并获得在线预测。 提示工程: 策略:将复杂任务分解为更简单的子任务。 技巧:使用意图分类识别用户查询中最相关的指令。例如在故障排除场景中,根据客户查询分类提供具体指令,如检查路由器连接线、询问路由器型号、根据型号提供重启建议等。模型会在对话状态变化时输出特定字符串,使系统成为状态机,更好控制用户体验。 OpenAI 官方指南: 战术:将复杂任务拆分为更简单的子任务。 策略:使用意图分类来识别与用户查询最相关的指令。例如在故障排除场景中,基于客户查询分类向 GPT 模型提供具体指令。已指示模型在对话状态变化时输出特殊字符串,将系统变成状态机,通过跟踪状态等为用户体验设置护栏。
2025-02-12
coze工作流中数据库如何应用?主要是返回数据
在 Coze 工作流中,数据库的应用如下: 工作流由多个节点构成,节点是基本单元。Coze 平台支持的节点类型包括数据库节点。 数据库节点的输入:用户可以定义多个输入参数。 数据库节点的输出:如果数据库是查询作用,则输出会包含查询出来的内容。通过 SQL 语句告诉数据库要执行的动作,这里的 SQL 语句可以让 AI 自动生成并进行适当改动。 注意事项:Coze 平台的逻辑是数据库与 bot 绑定,使用数据库功能时,需要在 bot 中设置相同名称和数据结构的数据库进行绑定。 测试工作流:编辑完成的工作流无法直接提交,需要进行测试。点击右上角的“test run”,设定测试参数,查看测试结果,完成后发布。 相关参考文档和示例: 海外参考文档:https://www.coze.com/docs/zh_cn/use_workflow.html 国内参考文档:https://www.coze.cn/docs/guides/use_workflow 国内版本示例: 搜索新闻:https://www.coze.cn/docs/guides/workflow_search_news 使用 LLM 处理问题:https://www.coze.cn/docs/guides/workflow_use_llm 生成随机数:https://www.coze.cn/docs/guides/workflow_use_code 搜索并获取第一个链接的内容:https://www.coze.cn/docs/guides/workflow_get_content 识别用户意图:https://www.coze.cn/docs/guides/workflow_user_intent 在【拔刀刘】自动总结公众号内容,定时推送到微信的案例中,循环体内部的数据库节点用来在数据库中查询是否已经推送过该篇文章,输入项为上一步中的 url 和开始节点的 key(重命名为 suid)。查询数据库需要文章 url 和用户的 suid 两个值来判断这名用户的这篇文章是否推送过。记得设置输出项“combined_output”。同时,Coze 平台中使用数据库功能需要在 bot 中设置相同名称和数据结构的数据库进行绑定,具体设置方法参见“相关资源”。
2025-01-08
AI智能数据库查询助手
以下是关于您提出的“AI 智能数据库查询助手”的相关信息: 能联网检索的 AI: 存在能联网检索的 AI,它们通过连接互联网实时搜索、筛选并整合所需数据,为用户提供更精准和个性化的信息。例如: ChatGPT Plus 用户现在可以开启 web browsing 功能,实现联网功能。 Perplexity 结合了 ChatGPT 式的问答和普通搜索引擎的功能,允许用户指定希望聊天机器人在制定响应时搜索的源类型。 Bing Copilot 作为 AI 助手,旨在简化您的在线查询和浏览活动。 还有如 You.com 和 Neeva AI 等搜索引擎,提供基于人工智能的定制搜索体验,并保持用户数据的私密性。 AI 新产品|网站精选推荐: AIHelperBot 自动生成 SQL Queries,支持数据库一键链接或导入。当前收费$5 每月,可免费试用 7 天。链接:https://skybox.blockadelabs.com/ ChartGPT by CadLabs 由 CadLabs 开发工具,基于 GPT3.5,可以根据数据生成图表并回答问题。链接:https://chartgpt.cadlabs.org/ Embedding Store 功能如其名,是一站式 Embedding Marketplace,支持公开、私有及第三方数据,用于发现、评估和访问相关的嵌入(embeddings),产品还未上线。链接:https://www.embedding.store/ AI 在医疗药品零售领域的应用: AI 在医疗药品零售领域有着多方面的应用前景: 药品推荐系统:利用机器学习算法分析用户购买记录、症状描述等数据,为用户推荐合适的非处方药品和保健品,提升销售转化率。 药品库存管理:通过分析历史销售数据、天气、疫情等因素,AI 系统可以预测未来某段时间内的药品需求量,优化药店的库存管理策略,降低成本。 药品识别与查询:借助计算机视觉技术,用户可以用手机拍摄药品图像,AI 系统自动识别药名并提供说明、用法、禁忌等信息查询服务。 客户服务智能助手:基于自然语言处理技术,AI 虚拟助手可以回答顾客关于购药、用药、保健等常见问题,减轻人工客服的工作压力。 药店运营分析:AI 可以分析药店的销售、顾客流量、库存等大数据,发现潜在的运营问题和优化空间,为决策提供参考。 药品质量监控:通过机器视觉、图像识别等技术,AI 能够自动检测药品的包装、标签、颜色等是否合格,及时发现问题。 药品防伪追溯:利用区块链等技术,AI 可以实现全流程的药品溯源,确保药品供应链的安全性和真实可信度。 总之,AI 技术在药品零售领域可以提升购药体验、优化库存管理、降低运营成本、保障药品质量安全,是一个值得重视的发展方向。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-01-07
怎么让AI识别对话,并生成结构化数据存储到我的软件系统里
要让 AI 识别对话并生成结构化数据存储到软件系统里,可以参考以下方法: 1. 基于结构化数据来 RAG:如果原始数据本身就是结构化、标签化的,不必将这部分数据做向量化。结构化数据的特点是特征和属性明确,可用有限标签集描述,能用标准查询语言检索。以餐饮生活助手为例,流程包括用户提问、LLM 提取核心信息并形成标准查询、查询结构化数据、LLM 整合回复。 2. 利用 Coze 平台设计 AI 机器人:创建好 Bot 后,从“个人空间”入口找到机器人,进行“编排”设计。Coze 平台常用的概念和功能包括提示词(设定 Bot 身份和目标)、插件(通过 API 连接集成服务)、工作流(设计多步骤任务)、触发器(创建定时任务)、记忆库(保留对话细节,支持外部知识库)、变量(保存用户个人信息)、数据库(存储和管理结构化数据)、长期记忆(总结聊天对话内容)。设计 Bot 时要先确定目的,比如“AI 前线”Bot 的目的是作为 AI 学习助手,帮助职场专业人士提升在人工智能领域的知识和技能,并提供高效站内信息检索服务。 注:Coze 官方使用指南见链接:https://www.coze.cn/docs/guides/welcome ,遇到疑问也可查阅该指南。
2025-02-18
使用飞书机器人(如Coze智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)
以下是使用飞书机器人(如 Coze 智能体)自动抓取外部链接(如网页、公众号文章),通过多维表格存储为“稍后读”清单,并自动提取关键信息(标题、摘要、标签)的相关内容: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口输入更符合用户习惯。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用步骤: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,然后复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。 目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发任何插件、APP,就能实现跨平台的稍后读收集与智能阅读计划的推荐。部署完成后,您可以在电脑、手机端通过飞书机器人与稍后读助手进行对话,也可以直接在 Coze 商店中与 bot 进行对话,如果部署到微信服务号、订阅号,还可以通过这些渠道调用 bot。
2025-02-16
Coze + 飞书 + 飞书多维表格:通过飞书机器人与 Coze 搭建的智能体进行对话,在聊天窗口中完成链接输入和阅读计划输出。由 Coze 调用大模型、插件完成内容的整理、推荐,利用飞书多维表格存储和管理稍后读数据,无需开发任何插件、APP,能实现跨平台的稍后读收集与智能阅读计划的推荐。其设计思路包括简化“收集”,实现跨平台收集和通过输入 URL 完成收集;自动化“整理入库”,自动整理关键信息并支持跨平台查看;智能“选择”推荐,根据收藏记录和用户兴趣生成阅读计划——这个方法具体如何操作?
以下是关于通过飞书机器人与 Coze 搭建的智能体进行对话,并利用飞书多维表格存储和管理稍后读数据,实现跨平台的稍后读收集与智能阅读计划推荐的具体操作方法: 前期准备: 1. 简化“收集”: 实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作。 输入一个 URL 即可完成收集,借鉴微信文件传输助手的方式,通过聊天窗口完成收集输入。 2. 自动化“整理入库”: 系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态。 阅读清单支持跨平台查看。 3. 智能“选择”推荐: 根据当前收藏记录和用户阅读兴趣进行相关性匹配,生成阅读计划。 使用飞书·稍后读助手: 1. 设置稍后读存储地址: 首次使用,访问。 点击「更多创建副本」,复制新表格的分享链接。 将新链接发送到智能体对话中。 还可以发送“查询存储位置”、“修改存储位置”来更换飞书多维表格链接,调整稍后读存储位置。 2. 收藏待阅读的页面链接: 在对话中输入需要收藏的页面链接,第一次使用会要求授权共享数据,授权通过后再次输入即可完成收藏。但目前部分页面链接可能小概率保存失败。 3. 智能推荐想看的内容: 在对话中发送“我想看 xx”、“xx 内容”,即可按个人兴趣推荐阅读计划。 至此,专属 AI 稍后读智能体大功告成,您可以尽情享受相关服务。
2025-01-27
如何用coze的智能体自动存储在飞书智能表格里
要将 Coze 的智能体自动存储在飞书智能表格里,可参考以下步骤: 1. 前期准备: 设计 AI 稍后读助手的方案思路,包括简化“收集”,实现跨平台收集功能,支持电脑(web 端)、安卓、iOS 多端操作,输入 URL 完成收集,借鉴微信文件传输助手通过聊天窗口输入;自动化“整理入库”,系统在入库时自动整理每条内容的关键信息,包括标题、摘要、作者、发布平台、发布日期、收集时间和阅读状态,且支持跨平台查看;智能“选择”推荐,根据收藏记录和用户阅读兴趣生成阅读计划。 发现同在字节生态中的 Coze、飞书、飞书多维表格可构建完整的 AI 工作流,通过飞书机器人与 Coze 搭建的智能体对话,在聊天窗口完成链接输入和阅读计划输出,由 Coze 调用大模型、插件完成内容整理、推荐,利用飞书多维表格存储和管理稍后读数据,理论上无需开发插件、APP 就能实现跨平台的稍后读收集与智能阅读计划推荐。 2. 逐步搭建 AI 智能体: 搭建整理入库工作流,设置大模型节点提取稍后读元数据,使用 MiniMax 6.5s 245k,设置最大回复长度至 50000 以解析长内容网页。 进行日期转时间戳,使用「日期转时间戳time_stamp_13」插件进行格式转化,因后续的飞书多维表格插件节点入库日期字段只支持 13 位时间戳。 把稍后读元数据转换为飞书多维表格插件可用的格式,飞书多维表格插件目前只支持带有转义符的 string,以 Array<Object>格式输入,需将元数据数组进行格式转换。 添加「飞书多维表格add_records」插件,设置{{app_token}}与{{records}}参数。 结束节点返回入库结果,「飞书多维表格add_records」插件返回入库结果,用于通知外层 bot 工作流的入库是否成功,别忘了对整个工作流进行测试。
2024-12-17
用邻接矩阵法存储图,占用的存储空间数只与图中结点个数有关,而与边数无关。
这种说法是不准确的。用邻接矩阵法存储图时,占用的存储空间数不仅与图中结点个数有关,也与边数有关。在邻接矩阵中,如果图有 n 个结点,那么矩阵的大小就是 n×n。如果边数较多,矩阵中表示边存在的元素就会较多,从而占用更多的存储空间;反之,如果边数较少,占用的存储空间相对较少。
2024-11-21
有一个小朋友的私人教练微信群,个人手机中存储的微信聊天历史,如何提取成ai可以使用的知识库包含时间线,语音,图片视频。
目前要将个人手机中存储的包含时间线、语音、图片、视频的小朋友私人教练微信群聊天历史提取成 AI 可以使用的知识库,存在一定的技术难度。 对于文字聊天记录,可通过手动整理或使用一些第三方工具进行导出和整理。但对于语音、图片和视频,AI 直接处理和理解这些内容的能力有限。 语音需要先进行语音转文字的处理,这可能需要借助专门的语音转文字软件,且转换的准确性可能受到语音质量、口音等因素的影响。 图片和视频的内容提取则更为复杂,需要使用图像识别和视频分析技术,将其中的关键信息提取出来并转化为文字描述,但这种转化的准确性和完整性难以保证。 总的来说,要实现您的需求,需要综合运用多种技术和工具,并且可能无法达到完美的效果。
2024-08-08