Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI医疗

Answer

AI 在医疗领域有广泛的应用:

  1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。
  2. 药物研发:能加速药物研发过程,如识别潜在药物候选物和设计新治疗方法。
  3. 个性化医疗:通过分析患者数据,为每个患者提供个性化治疗方案。
  4. 机器人辅助手术:用于控制手术机器人,提高手术精度和安全性。

在医疗健康生物制药的研究方面,AI 也发挥着重要作用,取得了一些最新进展:

  1. 提前三年诊断胰腺癌。
  2. 两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因。
  3. 帮助筛选抗衰老的高效药物候选物。
  4. 用于寻找阿尔兹海默症的治疗方法。
  5. 帮助早期诊断帕金森。

为了在医疗保健中产生真正的改变,AI 应像人类一样学习。成为医疗领域顶尖人才通常需要多年密集信息输入和实践学习,AI 也应投资创建模型生态系统,如“专家”AI,通过分层训练模型,而非仅依靠大量数据和生成模型解决所有问题。就像医学生从基础课程开始,科学家需要多年化学和生物学学习及实践指导,这种学习方式有助于培养处理细微差别决策的直觉。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

医疗:健康生物制药的研究

chatgpt,google bard在日常工作生活中很有用,这些技术也极大加速了医疗健康生物制药的研究,ai已经在抗癌,抗衰老,早期疾病防治等的研究应用中起着重要作用。以下是一些最新的进展:1、ai提前三年诊断胰腺癌,如果当年有这个,也许乔布斯还在世:https://hms.harvard.edu/news/ai-predicts-future-pancreatic-cancerImage:Rasi Bhadramani/iStock/Getty Images Plus2、两名高中生与医疗技术公司Insilico Medicine及其人工智能平台PandaOmics合作,发现了与胶质母细胞瘤相关的三个新靶基因,这些基因对于有效对抗这种癌症至关重要:https://finance.yahoo.com/news/teenage-geniuses-ai-uncover-cancer-163541619.html3、ai帮助抗衰老;由Integrated Biosciences领导的一项最新研究通过使用人工智能筛查了超过800,000种化合物,专家们发现了三种高效的药物候选物,其药理学性质优于目前已知的抗衰老物质:https://www.earth.com/news/artificial-intelligence-identifies-new-anti-aging-compounds/4、使用ai寻找阿尔兹海默症的治疗方法;亚利桑那大学与哈佛大学共同利用人工智能对健康神经元在疾病进展过程中的分子变化研究,以识别阿尔茨海默病的原因和潜在药物靶点。https://medicalxpress.com/news/2023-05-scientists-ai-drug-alzheimer.html5 ai帮助早期诊断帕金森;悉尼新南威尔士大学的科学家与波士顿大学研究人员使用神经网络分析患者体液中的生物标志物,在帕金森病的第一个症状出现前几年就可以发现该疾病。

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家”AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。例如,雌激素和睾酮只有细微的差别,但它们对人类健康的影响截然不同。

Others are asking
你用的是什么ai模型
以下是关于所使用的 AI 模型的相关信息: 我使用的是 GPT4,其他模型的效果不太好。如果您使用 GPT4 总结的内容质量不行,可以点击“重试”按钮让其重新总结。 默认情况下,Cursor Chat 将 OpenAI 的 GPT4(具体为 GPT4Turbo 实例)用于其 AI 模型,您可以通过选择喜欢的 AI 模型,且为 Chat 选择的模型会保存供未来使用。 有实例中使用的是阿里千问模型。
2025-02-20
如何学习ai
以下是新手学习 AI 的方法: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-02-20
我想学习关于ai生成装修方案的内容
以下是关于学习 AI 生成装修方案的一些建议和资源: 1. 学术方面: 搜索相关学术论文,了解 AI 在装修设计领域的应用和研究成果。可通过 Google Scholar、IEEE Xplore、ScienceDirect 等学术数据库进行搜索。 2. 书籍方面: 查找与 AI 在装修设计领域相关的专业书籍,了解其应用和案例。 3. 在线课程和教程: 参加 Coursera、edX、Udacity 等平台上的 AI 和装修设计相关课程。 在 YouTube 等视频平台上查找教程和演示视频,了解 AI 在装修设计中的应用。 4. 技术论坛和社区: 加入相关的技术论坛和社区,如 Stack Overflow、Reddit 的相关板块,与其他专业人士交流和学习。 关注 AI 和装修设计相关的博客和新闻网站,了解最新的技术动态和应用案例。 5. 开源项目和代码库: 探索 GitHub 等开源平台上的 AI 和装修设计相关项目,了解其应用和实现。 6. 企业案例研究: 研究 AI 在装修设计领域应用的企业案例,了解 AI 技术在实际项目中的应用和效果。 7. 具体案例: 整个装修方案流程可由 GPT4 生成,包括图纸、预算、设计装修风格、施工、风水布局,最后出 3D 效果图,全屋显示。 此外,谷歌还有生成式 AI 课程,学习路径将引导您完成有关生成式 AI 产品和技术的精选内容集合,从大型语言模型的基础知识,到如何在 Google Cloud 上创建和部署生成式 AI 解决方案。链接为:https://www.cloudskillsboost.google/journeys/118 ,其中包含 10 个独立课程。
2025-02-20
怎么用AI搭建工作流
搭建 AI 工作流可以参考以下步骤: 1. 搭建 AI 工作流的三种能力: 熟悉各种 AI 工具:了解多个不同 AI 工具的特点和用途,根据具体细分任务选择合适的工具。例如,写标题可用 ChatGPT,写文章可用 Claude,检查文本中的错别字和病句可用秘塔写作猫的 AI 纠错功能。 编写提示词:搭建起人与 AI 之间的“沟通桥梁”,用 AI 能听懂的语言清晰说明需求、任务内容和步骤。 搭建 AI 智能体。 2. 搭建 AI 工作流的工作流: 找到一个工作场景:选择熟悉的工作场景,如写文章、做 PPT 等。 拆解工作流程:将工作拆解成几个小步骤,如写文章可拆分为选题、写稿、改稿、写标题等。 给每一个步骤嵌入工具:针对每个小步骤,思考有无 AI 工具可帮忙,若想不到可参考他人做法,注意灵活选择最优解,目的是提高工作效率而非增加工作的含 AI 量。 此外,在搭建工作流时还需注意: 打开 Comfyui 界面后,右键点击界面,可找到 Comfyui LLM party 的目录,学习手动连接节点实现最简单的 AI 女友工作流,或直接将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 从 ollama 的 github 仓库找到对应版本并下载,启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。 若 ollama 连接不上,可能是代理服务器的问题,需将 127.0.0.1:11434 添加到不使用代理服务器的列表中。
2025-02-20
规划设计涉及的AI软件
以下是一些涉及规划设计的 AI 软件: 1. 对于建筑设计师审核规划平面图,有以下工具: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值在线。 Maket.ai:主要面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,能根据输入自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束生成结果,保证合规性。 Fast AI 人工智能审图平台:形成全自动智能审图流程,能将建筑全寿命周期内信息集成。 2. 绘制逻辑视图、功能视图、部署视图的工具包括: Lucidchart:流行的在线绘图工具,支持多种图表创建,可通过拖放界面轻松创建架构图。 Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 ArchiMate:开源建模语言,与 Archi 工具配合使用可创建逻辑视图。 Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 draw.io(diagrams.net):免费在线图表软件,支持多种图表创建。 PlantUML:文本到 UML 转换工具,可通过描述文本生成相关视图。 Gliffy:基于云的绘图工具,提供创建架构图功能。 Archi:免费开源工具,支持逻辑视图创建。 Rational Rose:IBM 的 UML 工具,支持多种视图创建。 3. 辅助或自动生成 CAD 图的工具: CADtools 12:Adobe Illustrator 插件,添加 92 个绘图和编辑工具。 Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件,能创建复杂几何形状和优化设计。 nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据输入自动生成 3D 模型。 一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等提供的基于 AI 的生成设计工具。 但每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。同时,使用这些工具通常需要一定的 CAD 知识和技能,初学者可先学习基本建模技巧再尝试使用。
2025-02-20
AI研报
以下是为您提供的一些 AI 研报: 2024 年 6 月 18 日: 《》:讨论了生成式人工智能的潜力和银行业的积极探索,预测 AI 将在提高支付处理效率和创造新收入流方面发挥关键作用。 华西证券:AIGC 行业深度报告(14)《》:英伟达新一代 GPU 架构将带来零部件升级,华为的昇腾 910C 芯片和 Atlas 900 SuperCluster 展示了国产算力集群的潜力。 《》:通过访谈 30 余位专家,分析了端到端技术的发展、主要参与者、驱动力和挑战。预计到 2025 年,模块化端到端系统将开始商业化应用,推动技术、市场和产业格局的变革。 《》:来自微软,英国拥有先进科技行业和数字优势,但与其他国家相比领先优势有限,面临基础设施、数字技能和数字技术采用的瓶颈。 2023 年 11 月 15 日: 《》:基于对 235 家企业数字化负责人的调研,其中 63.5%的企业已把 AIGC 列入企业发展战略之中。 《》:结合华为行业智能化实践及面向智能世界 2030 的展望,与业界专家学者进行万场以上座谈研讨,凝聚各方智慧与经验。 《》:从零开始介绍越狱、提示攻击、与传统安全的关系以及大语言模型的安全问题。 《AI50 年度关键词——腾讯研究院.pdf》: 基于全年研究积累的三十余万字 AI 进展数据库,对当前 AI 发展进行阶段性总结。精选 50 个年度关键词,覆盖大模型技术的八大领域,通过“快思考”与“慢思考”两种维度进行分析,形成 50 张 AI 技术图景卡片。 介绍了 DiT 架构,这是结合扩散模型和 Transformer 的架构,用于高质量图像生成的深度学习模型,并给出了核心观察。
2025-02-20
临床医疗deepseek使用手册
以下是关于 DeepSeek 在临床医疗方面的使用手册: 使用案例: 借助 AI 分析好的文章: 找出最喜欢的文章,投喂给 deepseek R1(适合大多数有推理模型的 AI)。 第一次询问:请从写作角度分析这篇文章。 第二次询问:请再从读者角度分析这篇文章。 第三次询问:这篇文章还存在什么缺点和不足,有什么改善和提升的空间。 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。 让 AI 对自己写的文章点评:“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。” 根据文章内容对作者心理侧写:“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。” 提升 DeepSeek 能力的方法: 用 Coze 做效果对比测试。 使用步骤: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不太稳定)。 特别鸣谢: 李继刚:【思考的七把武器】在前期为我提供了很多思考方向。 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源。 Claude 3.5 Sonnet:最得力的助手。
2025-02-13
目前最好的用于医疗的AI
目前在医疗领域,有以下一些出色的 AI 应用: 1. 蛋白质结构预测和合成方面: AlphaFold 是由 DeepMind 开发的 AI 系统,在蛋白质结构预测方面准确度超过其他系统,为科学家和药物开发提供巨大帮助。 Meta 的蛋白质结构预测 AI 模型 ESMFold 截至目前已经进行了 7 亿次预测。 多伦多大学研究人员开发了利用类似 Stable Diffusion、Midjourney 的生成扩散技术创造出自然界中不存在的蛋白质的新 AI 系统。 华盛顿大学的 David Baker 教授的团队开发了基于 DALLE 的人工智能系统 RF Diffusion,用于根据科学家的需求生成合适的蛋白质结构。 洛桑联邦理工学院的科学家们开发了基于神经网络的新工具 PeSTo,可以预测蛋白质如何与其他物质相互作用,速度快且通用性强。 在 Surrey 大学开发了一种人工智能系统,用于识别个体细胞中的蛋白质模式,这一进展可用于理解肿瘤的差异并开发药物。 肯特大学的研究团队使用名为 talin 的蛋白质制成凝胶,该凝胶具有吸收冲击的能力,目标是将其制成防弹材料。 2. 疾病诊断与预测、药物研发以及个性化医疗方面: 麻省理工学院利用 AI 发现了新型广谱抗生素 Halicin,它能有效杀灭对现有抗生素产生耐药性的细菌,且不会使细菌产生新的耐药性。研究者通过训练集让 AI 学习分子特点,总结规律,从大量分子中识别出符合要求的分子,之后实验证明其有效性,很快将用于临床。 为了在医疗保健中产生真正的改变,AI 应像人类一样学习,投资创建模型生态系统,例如“专家”AI,通过学校教育和经验获得有助于在复杂情况下确定最佳答案的直觉。不应仅仅依靠大量数据和生成模型解决所有问题,而应通过堆叠模型进行训练,如先训练生物学、化学模型,再添加特定于医疗保健或药物设计的数据点。
2025-02-10
在医疗场景,现在有哪些应用
在医疗场景中,AI 有以下应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能够加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术的精度和安全性。 5. 疾病的诊断与预测:例如利用大模型进行疾病的早期诊断和病情发展预测。 6. 新药物发现:如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin。 7. 中医应用:将人工智能与中医结合,辅助看诊,提高诊疗效率,未来有望实现 24 小时独立问诊开药。 8. 医学问答:像 DoctorGPT 这样的模型,能够准确回答各种医学问题。
2025-01-20
关于医疗辅助诊断的AI有哪些
以下是一些关于医疗辅助诊断的 AI 应用: 1. 医学影像分析:AI 可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:用于加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。 5. 平安好医生 APP 中的 AI 医疗诊断辅助系统:辅助医生进行疾病诊断,提高诊断准确性。用户上传症状描述和检查报告后,系统能给出初步的诊断建议和治疗方案,为医生提供参考。
2025-01-02
举例说明,医疗人工智能应用的风险及其法理防范
医疗人工智能应用存在以下风险: 1. 可能对受欧盟法律保护的公共利益和基本权利造成损害,包括身体、心理、社会或经济方面的损害。 2. 在决定是否给予、拒绝、减少、取消或收回医疗保健服务等福利时,可能对人们的生计产生重大影响,并侵犯基本权利,如社会保护权、不受歧视权、人的尊严权或有效补救权。 3. 用于评估自然人信用分数或信用度的人工智能系统可能导致对个人或群体的歧视,并延续历史上的歧视模式或造成新形式的歧视性影响。 法理防范措施包括: 1. 为所有高风险人工智能系统制定统一的规则,这些规则应与《宪章》保持一致,是非歧视性的,并符合欧盟的国际贸易承诺,同时考虑相关的伦理准则。 2. 明确价值链上相关经营者的作用和具体义务,促进对法规的遵从,确保法律的确定性。 3. 在特定条件下,明确高风险人工智能系统提供者的责任和义务。 需要注意的是,欧盟法律规定的用于检测提供金融服务过程中的欺诈行为以及用于计算信贷机构和保险企业资本要求的尽职审慎目的的人工智能系统,以及用于自然人健康和人寿保险风险评估和定价的人工智能系统,在符合一定条件时不视为高风险系统。
2025-01-02
谈谈医疗人工智能的风险及其法律防范,举一个具体例子,如影响肿瘤外科内科
医疗人工智能在带来诸多益处的同时,也存在新的风险。以下为您举例说明其风险及法律防范: 以自动化医疗分诊系统为例,其具有适应性和自主性。适应性方面,它能基于对医疗数据集、患者记录和实时健康数据的分析来预测患者病情;自主性方面,它能为医疗专业人员或直接为患者生成有关症状可能原因的信息,并推荐潜在的干预和治疗措施。 然而,这也带来了一些风险和监管问题。比如,若该系统提供了错误的医疗建议,导致患者出现负面健康结果,责任归属不明确,影响患者获得赔偿。 在法律防范方面,需要明确此类系统的责任界定,制定相关法律法规,确保患者在因错误建议受到损害时能够获得有效的救济。同时,应加强对医疗人工智能系统的监管和评估,确保其准确性和可靠性。
2025-01-02