Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

智能体引用知识库效果不好,可以从哪些方面来着手调整

Answer

智能体引用知识库效果不好,可以从以下方面着手调整:

  1. 整理知识库文档阶段:
    • 确定包含的文档类型,如政策原文文档、业务积累的 QA、操作指引、产品说明等,并进行预处理。
    • 注重知识库本身质量,因为这是大模型生成回答的原始语料。
    • 优化文档格式,实践中根据场景测试 PDF 或.docx 等格式,一般 PDF 文档效果较好,因其格式信息简洁,对大模型干扰少。
    • 规范文档命名,尽量控制在 10 字左右,涵义简洁明了,避免无意义的数字、符号或缩写。
    • 统一文档语言,避免中英文、繁简体混杂。
    • 优化文档内容,设置清晰的一二级标题,对难以处理的图片、表格、公式、超链接、附件、架构图、代码等进行特殊处理。
  2. 调优实践:
    • 更换大模型,如从 ChatGLM2-6B 替换成 baichuan2-13b,针对特定场景可能提升性能。
    • 更换 embedding 模型,如将 LangChain Chatchat 默认的 m3e-base 替换为 bge-large-zh。
    • 测试不同 Top k 的值,如比较 Top 5、Top 10、Top 15 的结果,可能发现 Top 10 时效果最优。
    • 处理文档名称,人工重命名文件,上传相同文件构建知识库,同时在构建时勾选【开启中文标题加强】选项,虽重命名文件效果不明显,但勾选该选项后回答的无关信息减少,效果有所提升。
Content generated by AI large model, please carefully verify (powered by aily)

References

开发:产品视角的大模型 RAG 应用

在最开始,我们需要确定知识库包含哪些文档,比如政策原文文档、业务积累的QA、操作指引、产品说明等,并对这些文档进行预处理。知识库本身质量对最终效果的影响至关重要,这是大模型最终生成回答的原始语料。在此阶段,可以考虑以下优化方向:文档的格式:pdf、docx()等不同格式的文档,识别难度不一样。从目前公开的资料来看,一般PDF文档的效果会更好一些,因为pdf文档的格式信息相对来说较为简洁,对大模型干扰少。但也有说.docx的效果更优的,因此实践中还是要根据场景去测试。文档命名:尽量控制在10字左右,涵义简洁明了,避免标题中出现无意义的数字、符号或缩写。文档语言:尽量统一为同一种。因为embedding模型对于中英文、繁简体的支持可能不一样,如果文档不做处理,引擎会把中英文切到一个chunk里面,向量化之后有一半可能是乱码,有一半是没有用的数据。文档内容:设置可清晰识别的一二级标题,对难以处理的图片、表格、公式、超链接、附件、架构图、代码等进行特殊处理。

【智能体】让Coze智能体机器人连上微信和微信群详细配置文档

本地word文件,这里要注意了~~~如何拆分内容,提高训练数据准确度,将海报的内容训练的知识库里面画小二这个课程80节课程,分为了11个章节,那训练数据能不能一股脑全部放进去训练呢。答案是~~不能滴~~~正确的方法,首先将11章的大的章节名称内容放进来,如下图所示。章节内详细内容格式如下如所示,如果你再分节的内容,依次类推细化下去。每个章节都按照这种固定的方式进行人工标注和处理然后选择创建知识库自定义清洗数据,这里不再赘述。

开发:产品视角的大模型 RAG 应用

基于以上的分析,我们先选取了实现成本最小的方式进行调优,结果如下:1、更换大模型:从ChatGLM2-6B替换成baichuan2-13b,发现针对我们的场景,后者的性能可以提升一倍左右。2、更换embedding模型:将embedding模型从LangChain Chatchat默认的m3e-base替换为bge-large-zh,发现后者优于前者3、测试不同Top k的值:比较Top 5、Top 10、Top 15的结果,发现Top 10时效果最优。4、对文档名称进行处理:由于原来的政策文件,在导出时文件名会进行简化,如too_long_发展行动方案。因此,人工对文件进行重命名,上传相同文件构建知识库,同时在构建知识库时勾选【开启中文标题加强】选项,发现重命名文件对结果的提升效果不明显,但勾选【开启中文标题加强】选项后,回答的无关信息减少,效果有所提升。目前来看,尽管效果有所提升,但仍未达到可用水平,后续我们也将尝试其他的调优策略。

Others are asking
DeepSeek搭建 个人知识库
以下是关于 DeepSeek 搭建的相关知识: 对于个人知识库的搭建,您可以参考以下内容: 章节“三.使用 DeepSeek R1 给老外起中文名”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareDyEMdmCPOo98S6xbPfNcsuEOnuh 知识点“Node.JS 安装”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcsharePVnndBSV5oWOukx38tKcw2CPnub 申请“DeepSeek R1 API”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareTrXednqLAoH3VLxrUiYc1Pb9nhf 网页接入“DeepSeek API”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareUK5xdzhiaoo9RkxHR5bcs30pnV8 章节“一.Trae 的介绍/安装/疑难杂症”:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareR4GvdgOzeoC9mOxd1hScuql6nVY Python 安装:https://waytoagi.feishu.cn/wiki/O5V5wLC5Jiilpjk9j9RcAuACnZcshareKcojdhid9oWJPjxAvEOczRt0nkg 一个提示词让 DeepSeek 的能力更上一层楼的相关内容: 效果对比:用 Coze 做了个小测试,大家可以对比看看,视频链接: 如何使用: 搜索 www.deepseek.com,点击“开始对话” 将装有提示词的代码发给 Deepseek 认真阅读开场白之后,正式开始对话 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 完整提示词:v 1.3 特别鸣谢:李继刚的【思考的七把武器】在前期为提供了很多思考方向;Thinking Claude 是现在最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手 五津:DeepSeek+扣子:1 分钟生成小红书爆款单词视频: 先观察此类视频规律,如先问这是什么→再揭晓结果,反复多次。 拆解视频模板的制作流程,逐个轨道分析,注意各轨道上的元素时间对应关系。 涉及的知识点可用于用扣子工作流来搭建。
2025-02-20
现在有哪些个人知识库软件可以用,请推荐。
以下是为您推荐的个人知识库软件: 1. Coze:如果您想使用专门搭建个人知识库的软件,可以参考文章,忽略本地部署大模型环节,直接看其中推荐的软件。但使用该软件可能需要对接一些额外的 API,建议先了解 RAG 的原理再使用。 2. AnythingLLM:包含所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型和向量数据库。安装地址:https://useanything.com/download 。安装完成后,配置页面主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。在 AnythingLLM 中有 Workspace 的概念,可以创建自己独有的 Workspace 跟其他项目数据进行隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式和 Query 模式),配置完成后即可进行对话测试。 此外,还有通过 GPT 打造个人知识库的方法,比如将文本转换成向量节省空间,拆分成小文本块并通过 embeddings API 转换成 embeddings 向量,在向量储存库中保存这些向量和文本块作为问答的知识库。当用户提问时,将问题转换成向量与库中向量比对,提取关联度高的文本块与问题组合成新的 prompt 发送给 GPT API 。
2025-02-19
waytoagi的知识库基于哪个LLM创建的
目前没有明确的信息表明 waytoagi 的知识库基于哪个 LLM 创建。但以下信息可能对您有所帮助: AnythingLLM 包含了所有 Open WebUI 的能力,并且额外支持选择文本嵌入模型、选择向量数据库等。安装地址为:https://useanything.com/download 。安装完成后配置主要分为三步,包括选择大模型、选择文本嵌入模型、选择向量数据库。AnythingLLM 中有 Workspace 的概念,可创建自己独有的 Workspace 跟其他项目数据进行隔离,包括创建工作空间、上传文档并进行文本嵌入、选择对话模式(Chat 模式和 Query 模式)等。 GitHubDaily 开源项目列表中提到了 AnythingLLM,它是一个可打造成企业内部知识库的私人专属 GPT,可以将任何文档、资源或内容转换为大语言模型(LLM)知识库。
2025-02-19
用飞书搭建知识库并进行AI问答
以下是关于用飞书搭建知识库并进行 AI 问答的相关内容: 知识库问答是机器人的基础功能,可根据用户问题从知识库中找到最佳答案,这利用了大模型的 RAG 机制。RAG 机制全称为“检索增强生成”(RetrievalAugmented Generation),是一种用于自然语言处理的技术,结合了检索和生成两种主要的人工智能技术,以提高机器对话和信息处理的能力。 简单来说,RAG 机制先从大型数据集中检索与问题相关的信息,然后利用这些信息生成更准确、相关的回答。可以想象成当问复杂问题时,RAG 机制先在巨大图书馆里找相关书籍,再基于这些书籍信息给出详细回答。这种方法结合大量背景信息和先进语言模型能力,使生成内容更精确,提升对话 AI 的理解力和回答质量。 基于 RAG 机制实现知识库问答功能,首先要创建包含大量社区 AI 相关文章和资料的知识库,比如创建有关 AI 启蒙和信息来源的知识库,通过手工录入方式上传栏目所有文章内容,陆续将社区其他板块文章和资料导入。在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以更好地利用知识库返回内容结合回答。 另外,全程白嫖拥有一个 AI 大模型的微信助手的搭建步骤如下: 1. 搭建,用于汇聚整合多种大模型接口,方便后续更换使用各种大模型,并获取白嫖大模型接口的方法。 2. 搭建,这是个知识库问答系统,放入知识文件,接入上面的大模型作为分析知识库的大脑来回答问题。若不想接入微信,搭建到此即可使用,它有问答界面。 3. 搭建,其中的 cow 插件能进行文件总结、MJ 绘画。
2025-02-19
有哪些比较好的AI知识库学习网站
以下是一些比较好的 AI 知识库学习网站及相关学习建议: 通往 AGI 之路知识库: 提供了全面系统的 AI 学习路径,帮助您了解从 AI 常见名词到 AI 应用等各方面知识。 包含关于 AI 知识库使用及 AIPO 活动的介绍、AIPO 线下活动及 AI 相关探讨、way to AGI 社区活动与知识库介绍等内容。 信息来源有赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等,推荐大家订阅获取最新信息并投稿。 有社区共创项目,如 AIPU、CONFIUI 生态大会,每月有切磋大会等活动,还发起了新活动 AIPO。 学习路径方面,有李弘毅老师的生成式 AI 导论等高质量学习内容,可系统化学习或通过社区共创活动反推学习,鼓励整理学习笔记并分享交流。 有经典必读文章,如介绍 GPT 运作原理、Transformer 模型、扩散模型等的文章,还包括软件 2.0 时代相关内容。 初学者入门推荐看 open AI 的官方 Cookbook,小琪姐做了中文精读翻译,也可查看 cloud 的相关内容。 有历史脉络类资料,整理了 open AI 的发展时间线和万字长文回顾等。 网站:ytoAGI.com 相关渠道:公众号“通往 AGI 之路”、 在线教育平台:如 Coursera、edX、Udacity 等,上面有一系列为初学者设计的课程,您可以按照自己的节奏学习,并有机会获得证书。 对于新手学习 AI,建议: 了解 AI 基本概念:阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 开始 AI 学习之旅:在「」中,找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。掌握提示词的技巧,它上手容易且很有用。 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 体验 AI 产品:与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-02-18
有什么提升 RAG 知识库问答的好的 prompt
以下是一些提升 RAG 知识库问答的好的 prompt 相关内容: RAG 在 Natural Questions、WebQuestions 和 CuratedTrec 等基准测试中表现出色,在使用 MSMARCO 和 Jeopardy 问题进行测试时,生成的答案更符合事实、具体且多样,FEVER 事实验证使用 RAG 后也有更好结果,说明 RAG 是可行方案,能增强知识密集型任务中语言模型的输出,基于检索器的方法常与 ChatGPT 等流行 LLM 结合提高能力和事实一致性,可在 LangChain 文档中找到相关例子。 RAG 能显著提高大模型在处理私域知识或垂直领域问答时的效果。其流程包括:上传文档(支持多种格式,会转换为 Markdown 格式)、文本切割、文本向量化(存入向量数据库)、问句向量化、语义检索匹配(匹配出与问句向量最相似的 top k 个)、提交 Prompt 至 LLM、生成回答返回给用户。RAG 研究范式分为基础 RAG、高级 RAG 和模块化 RAG。 高级 RAG 特点:支持多模态数据处理,增强对话性,具备自适应检索策略,能进行知识融合,扩展了基础 RAG 功能,解决复杂任务局限,在广泛应用中表现出色,推动自然语言处理和人工智能发展。 模块化 RAG 侧重于提供更高定制性和灵活性,将系统拆分成多个独立模块或组件,每个组件负责特定功能,便于根据不同需求灵活组合和定制。
2025-02-18
我想学会使用ai,该学习哪些方面的知识
如果您想学会使用 AI ,以下是一些您需要学习的方面: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI ,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 AI 的技术历史和发展方向,目前最前沿的技术点包括: 1. 学习路径偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 学习路径偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-27
临床医生哪些方面可以用的到ai
临床医生在以下方面可以用到 AI: 1. 医学影像分析:AI 可用于辅助分析 X 射线、CT 扫描和 MRI 等医学图像,以辅助诊断疾病。 2. 药物研发:加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。 5. 医疗保健交付和后勤功能:例如文档工作可交给 AI 书记员。 6. 初级医疗服务中的分诊:依赖聊天机器人进行分诊。
2025-01-03
金融业在哪些方面是不能被AI所代替的
在金融业中,以下方面不太容易被 AI 所替代: 1. 战略决策:CFO 及其直接报告人应专注于金字塔顶端的战略决策,这需要综合的判断力、对宏观环境的深刻理解和长期的经验积累,AI 难以完全胜任。 2. 复杂的情感决策:金融服务被认为是情感购买,决策树复杂且难以自动化,需要人类根据客户的个人情况提供个性化的建议。 3. 合规与法律处理:金融服务高度受监管,复杂且非结构化的法律合规要求人类员工的参与和判断,以确保符合规定。 尽管 AI 在金融领域的预测、报告、会计和税务、采购和应付账款等方面能够提供帮助和实现自动化,但上述几个方面仍依赖人类的专业能力和经验。
2024-12-18
ai从哪些方面不能替代人类
AI 在以下方面不能替代人类: 1. 人际交往方面:AI 无法像人类一样建立团队、跨越文化界限进行深入且自然的交流,也难以激发团队的创造力和凝聚力。 2. 团队领导方面:领导团队需要理解和处理复杂的人际关系、激励和引导成员等,这些是 AI 难以做到的。 3. 复杂决策制定方面:在面对涉及众多不确定因素、伦理道德和情感因素的复杂情况时,人类的综合判断和决策能力更为出色。 4. 创新能力方面:人类具有独特的创新思维和灵感,能够创造出全新的理念、方法和作品。 总之,虽然 AI 在某些任务上表现出色,但在需要人际交往、团队领导、复杂决策制定和创新等方面,人类仍具有不可替代的优势。
2024-12-11
图像识别能力能用在哪些方面?
图像识别能力可以应用在以下方面: 1. 自动驾驶:帮助车辆识别道路、交通标志和其他物体。 2. 广告定向投放:根据图像内容精准推送相关广告。 3. 网页搜索结果优化:通过识别图像内容提高搜索结果的准确性。 4. 数字助手:如 Google Now 或 Amazon Alexa 中用于识别图像相关的指令。 5. 安防监控:识别异常行为或人物。 6. 医疗诊断:辅助医生识别医学影像中的病症。 7. 工业检测:检测产品的质量和缺陷。 8. 物流:识别货物的类别和状态。
2024-12-05
生成式ai现在有哪些方面的应用
生成式 AI 具有广泛的应用场景,包括但不限于以下方面: 创作领域:如写作文、创建漫画、编辑电影等。 内容生成:例如生成文章、报告、诗歌等文本,绘画、设计图、合成照片等图像,音乐、语音、环境声音等音频,电影剪辑、教程、仿真等视频。 工作辅助:包括文档摘要、信息提取、代码生成、营销活动创建、虚拟协助(如智能聊天机器人、虚拟客服)、呼叫中心机器人等。 游戏领域:可以生成原始的新内容,如动画、音效、音乐,甚至创造具有完整性格的虚拟角色。
2024-11-29
有什么帮助查找论文,提供论文引用文献和被引用文献的AI
以下是一些能够帮助查找论文、提供论文引用文献和被引用文献的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 此外,还有以下相关的 AI 工具和网站: 1. TXYZ 网站: 帮助搜索、查询专业文献并进行对话的 AI 工具,提供一站式服务。 是唯一和预印本文库 arxiv.org 官方合作的 AI 工具,ArXiv 的每篇论文下有直达 TXYZ 的按钮。 用户可上传 PDF 论文或链接,迅速找到所需答案和内容,在对话中提供论文参考和可信背书。 2. 一些 GPTs 工具: Consensus:AI 研究助手,可搜索 2 亿篇学术论文,获取基于科学的答案并带有准确引用的内容草稿。 AskYourPDF Research Assistant:增强研究,可与多个文件聊天,生成带引文的文章,分析和生成论文参考文献等。 Best Custom GPTs:在一个地方搜索所有公开 GPT,找到适合需求的自定义 ChatGPT。 AutoExpert:自动组建动态专家团队,回答、辩论和探讨问题。 ResearchGPT:人工智能研究助手,帮助从大量文章中发现最新和相关论文,并提供引文支持的答案。 The Glibatree Art Designer:根据提示和要求生成艺术设计作品。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-10
请给我推荐几个带有知识库引用的dify案例
以下是使用 Dify 构建知识库的具体步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 以下是一些带有知识库引用的 Dify 案例:
2025-01-30
Dify引用飞书智能表格
以下是关于 Dify 引用飞书智能表格打造专属 AI 智能体的相关内容: 首先是逐步搭建 AI 智能体: 1. 设计 AI 智能体架构:构思整个架构,规定稍后读阅读清单的元数据。新建飞书多维表格,根据管理需要定义元数据字段,如“内容”(超链接格式,显示页面标题,可点击跳转具体页面)、“摘要”(总结内容主题、关键信息、阅读价值,并指出适合的读者群体)、“作者”、“平台”、“状态”(阅读状态,收藏的默认态为“仅记录”)、“发布日期”、“收集时间”。为方便跟做,可直接复制准备好的模板: 2. 搭建整理入库工作流:这是支撑整个 AI 稍后读服务的前置流程。首先新建工作流「url2table」,根据弹窗要求自定义工作流信息。工作流全局流程设置如下: 开始节点:输入 url,由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置。 变量节点:引入 bot 变量中保存的飞书多维表格地址,将飞书多维表格链接存储在 bot 的变量中,在工作流运行时进行引用。 插件节点:获取页面内容,把开始节点的{{BOT_USER_INPUT}}引入到参数{{url}}中,随便设置{{timeout}}为 60000。
2025-01-21
请问midjourney cref和sref的区别,如果我想引用一张图,但只是把它作为新图的一部分如何写prompt
在Midjourney中,`cref`和`sref`都是用于引用图片的功能,但它们的作用和使用方式有所不同: 1. 角色参考(cref):`cref`的功能是保持图像角色的一致性。根据你提供的现有角色图像的URL, 生成与之相似的角色。使用方法是在提示后添加 `cref`,并紧接着指向人物参考图像的 URL。例如:`/imagine prompt beautiful girl cref `。您可以使用 `cw` 来调整参考图像对生成的图像的影响程度,数值范围从 0 到 100。 2. 风格参考(sref):`sref`的功能是生成类似风格的图片,保持画风的一致性。使用方法是在提示后添加 `sref`,并紧接着指向风格参考图像的 URL。例如:`/imagine prompt beautiful girl sref `。您可以使用 `sw` 来调整参考风格对生成的图像的影响程度,数值范围从 0 到 1000。 如果你想引用一张图,但只是把它作为新图的一部分,你可以使用 `sref` 或 `cref`,并通过调整 `sw` 或 `cw` 的值来控制引用图像的影响程度。 例如,如果你想引用一张图的风格,但只希望它占新图的一部分,你可以这样写提示:`/imagine prompt beautiful girl sref sw 500`。这样,生成的图像将会在保持原有风格的同时,融入一部分引用图像的风格¹。 希望这些信息对您有所帮助!如果您有其他问题,欢迎随时向我提问。
2024-04-21
ai智能体是什么
AI 智能体是指类似于 AI 机器人小助手的存在。参照移动互联网,它类似 APP 应用的概念。简单来说,就是拥有各项能力来帮助人们做特定事情的“打工人”。 随着 ChatGPT 与 AI 概念的爆火,出现了很多相关新名词,如“智能体 Agent”“bot”和“GPTs”等。AI 大模型是一种技术,而面向用户提供服务的是产品,因此很多公司开始关注 AI 应用层的产品机会,出现了不少智能体开发平台,如字节的扣子、阿里的魔搭社区等。 在 C 端,比如社交方向,用户注册后先捏一个自己的智能体,然后让其与他人的智能体聊天,两个智能体聊到一起后再真人介入,这是一种有趣的场景;还有借 Onlyfans 入局打造个性化聊天的创业公司。在 B 端,如果字节扣子和腾讯元器是面向普通人的低代码平台,类似 APP 时代的个人开发者,那还有帮助 B 端商家搭建智能体的机会。 AI 智能体包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,能够完成比较复杂的工作。其出现是为了解决如 GPT 或文心一言大模型存在的胡编乱造、时效性、无法满足个性化需求等问题,用户可以结合自己的业务场景和需求,创建自己的智能体来解决问题。
2025-02-20
多智能体应用搭建
多智能体是由多个自主、独立的智能体组成的系统,每个智能体都能感知环境、决策并执行任务,且相互间能信息共享、任务协调与协同行动以实现整体目标。 随着大型语言模型的出现,以其为核心构建的 Agent 系统受广泛关注。单 Agent 核心在于语言模型与工具的协同配合,可能需与用户多轮交互。而多 Agent 为不同 Agent 分配角色并通过协作完成复杂任务,与用户交互可能减少。 构建多 Agent 框架的主要组成部分包括: 1. 环境:所有 Agent 处于同一环境,包含全局状态信息,且 Agent 与环境有信息交互与更新。 2. 阶段:通常采用 SOP 思想将复杂任务分解为多个子任务。 3. 控制器:可以是语言模型或预先定义好的规则,负责环境在不同 Agent 和阶段间切换。 4. 记忆:因 Agent 数量增多,消息数量及相关字段记录更复杂。 创建智能体时,输入人设等信息并配置工作流,配置完成后可测试,但注意工作流中某些插件的 api_token 不能直接发布,可作为输入让用户购买后输入使用再发布。 OpenAI 官方开源的多智能体框架「Swarm」受欢迎,其在多智能体通信方面表现出色,解决了不同智能体之间传递信息及传递哪些信息等核心难题。例如构建客服多智能体,只需准备普通接线客服和宽带客服两个 Agent,「Swarm」的「Handoffs」处理了交接逻辑。
2025-02-20
人工智能(AI)、机器学习(ML)、深度学习(DL)、生成式AI(AIGC)的区别与联系
AI(人工智能)是一个广泛的概念,旨在让机器模拟人类智能。 机器学习(ML)是AI的一个分支,指计算机通过数据找规律进行学习,包括监督学习(使用有标签的训练数据,学习输入和输出之间的映射关系,如分类和回归)、无监督学习(处理无标签数据,让算法自主发现规律,如聚类)和强化学习(从反馈中学习,以最大化奖励或最小化损失,类似训练小狗)。 深度学习(DL)是一种机器学习方法,参照人脑构建神经网络和神经元,由于网络层数较多被称为“深度”。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI(AIGC)能够生成文本、图片、音频、视频等内容形式。 它们之间的联系在于:深度学习是机器学习的一种重要方法,机器学习又是实现人工智能的重要途径,而生成式 AI 是人工智能的一个应用领域。例如,生成式 AI 中的一些技术可能基于深度学习和机器学习的算法。2017 年 6 月,谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络,对相关技术的发展具有重要意义。大语言模型(LLM)如谷歌的 BERT 模型,可用于语义理解(如上下文理解、情感分析、文本分类),但不擅长文本生成,对于生成式 AI,生成图像的扩散模型不属于大语言模型。
2025-02-19
怎么做一个智能体
要创建一个智能体,以下是一些关键步骤和要点: 1. 选择平台:例如可以使用字节的扣子等平台。 2. 输入基本信息: 起一个智能体的名称。 写一段智能体的简单介绍。 使用 AI 创建一个头像。 3. 配置相关内容: 插件:插件类似于工具箱,里面可以放置一个或多个 API。扣子平台上有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容的 API 等。如果现有的插件不符合需求,还可以自己制作插件并添加所需的 API。 工作流:工作流如同可视化的拼图游戏,可将插件、大语言模型、代码块等功能组合,创建复杂稳定的业务流程。工作流由多个节点组成,开始和结束都有特定的节点,不同节点可能需要不同信息才能工作。 知识库:配置相关知识库。 4. 测试:配置完成后进行测试。 5. 发布:注意工作流中【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,为避免他人调用消耗您的费用,建议将 api_token 作为工作流最开始的输入,用户购买后输入 api_token 再发布。 扣子官网:https://www.coze.cn/
2025-02-19
搭建AI智能体
搭建 AI 智能体的步骤和要点如下: 1. 创建智能体:输入人设等信息,并放上相关工作流。配置完成后可以进行测试,但千万不要直接发布。 工作流中如【所有视频片段拼接】节点使用的插件 api_token 填的是您的 token,其他人调用会消耗您的费用。您可以将 api_token 作为工作流最开始的输入,用户购买后输入 token 再发布。 2. 明确需求和 AI 能力: 在搭建智能体帮助提炼品牌卖点时,需要先明确 AI 的能力边界,例如 AI 对公司及所在市场不了解的部分,包括公司的主要产品、产品解决的用户需求、产品独特之处、获得的认可、核心渠道、核心购买人群、营销手段、期望在新渠道获得的结果等。 AI 真正的能力在于通过分析数据和信息进行逻辑推理、快速处理和分析数据并提取有价值的信息和模式、拥有大量训练数据并能输出更全面的相关信息、理解用户提供的内容并按正确结构梳理有效输出内容。因此,更适合将智能体作为引导型的灵感提问助手。 3. 学会搭建 AI 智能体: AI 智能体如同员工或智能助手,能根据设定的工作流自动调用不同 AI 工具完成全流程任务,无需人类时刻干预。 例如设计“写作助手”的 AI 智能体,输入文章主题、风格和要求,它能自动完成文章大纲处理、初稿撰写、修改润色和排版等工作,大大提高效率。
2025-02-19
具身智能是什么?
具身智能是人工智能领域的一个子领域,指智能体(如机器人、虚拟代理等)通过与物理世界或虚拟环境的直接交互来发展和展现智能。 其核心在于智能体的“身体”或“形态”,这些身体可以是物理形态,如机器人的机械结构,也可以是虚拟形态,如在模拟环境中的虚拟角色。身体不仅为智能体提供了与环境互动的手段,也影响其学习和发展。 具身智能的研究涉及多个学科,包括机器人学、认知科学、神经科学和计算机视觉等。在机器人学中,关注如何设计能自主行动和适应环境的机器人;在认知科学和神经科学中,探索大脑处理与身体相关信息的机制及应用于人造智能系统;在计算机视觉中,致力于开发使智能体能够理解和解释视觉信息,从而进行有效空间导航和物体识别的算法。 具身智能在机器人领域有重要应用,特别是在服务机器人、工业自动化和辅助技术等方面,能让机器人更好地理解和适应人类生活环境,提供更自然有效的人机交互。此外,在虚拟现实、增强现实和游戏设计等领域也有广泛应用,创造更具沉浸感和交互性的体验。 具身智能的三要素包括“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界),本体、智能、环境的高度耦合是高级智能的基础。其行动可分为“感知决策行动反馈”四个步骤,并形成一个闭环。 尽管具身智能取得了显著进展,但仍面临诸多挑战,如设计智能体身体以最大化智能表现、让智能体在复杂多变环境中有效学习,以及处理与人类社会的伦理和安全问题等。
2025-02-19