Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

智能体引用知识库效果不好,可以从哪些方面来着手调整

Answer

智能体引用知识库效果不好,可以从以下方面着手调整:

  1. 整理知识库文档阶段:
    • 确定包含的文档类型,如政策原文文档、业务积累的 QA、操作指引、产品说明等,并进行预处理。
    • 注重知识库本身质量,因为这是大模型生成回答的原始语料。
    • 优化文档格式,实践中根据场景测试 PDF 或.docx 等格式,一般 PDF 文档效果较好,因其格式信息简洁,对大模型干扰少。
    • 规范文档命名,尽量控制在 10 字左右,涵义简洁明了,避免无意义的数字、符号或缩写。
    • 统一文档语言,避免中英文、繁简体混杂。
    • 优化文档内容,设置清晰的一二级标题,对难以处理的图片、表格、公式、超链接、附件、架构图、代码等进行特殊处理。
  2. 调优实践:
    • 更换大模型,如从 ChatGLM2-6B 替换成 baichuan2-13b,针对特定场景可能提升性能。
    • 更换 embedding 模型,如将 LangChain Chatchat 默认的 m3e-base 替换为 bge-large-zh。
    • 测试不同 Top k 的值,如比较 Top 5、Top 10、Top 15 的结果,可能发现 Top 10 时效果最优。
    • 处理文档名称,人工重命名文件,上传相同文件构建知识库,同时在构建时勾选【开启中文标题加强】选项,虽重命名文件效果不明显,但勾选该选项后回答的无关信息减少,效果有所提升。
Content generated by AI large model, please carefully verify (powered by aily)

References

开发:产品视角的大模型 RAG 应用

在最开始,我们需要确定知识库包含哪些文档,比如政策原文文档、业务积累的QA、操作指引、产品说明等,并对这些文档进行预处理。知识库本身质量对最终效果的影响至关重要,这是大模型最终生成回答的原始语料。在此阶段,可以考虑以下优化方向:文档的格式:pdf、docx()等不同格式的文档,识别难度不一样。从目前公开的资料来看,一般PDF文档的效果会更好一些,因为pdf文档的格式信息相对来说较为简洁,对大模型干扰少。但也有说.docx的效果更优的,因此实践中还是要根据场景去测试。文档命名:尽量控制在10字左右,涵义简洁明了,避免标题中出现无意义的数字、符号或缩写。文档语言:尽量统一为同一种。因为embedding模型对于中英文、繁简体的支持可能不一样,如果文档不做处理,引擎会把中英文切到一个chunk里面,向量化之后有一半可能是乱码,有一半是没有用的数据。文档内容:设置可清晰识别的一二级标题,对难以处理的图片、表格、公式、超链接、附件、架构图、代码等进行特殊处理。

【智能体】让Coze智能体机器人连上微信和微信群详细配置文档

本地word文件,这里要注意了~~~如何拆分内容,提高训练数据准确度,将海报的内容训练的知识库里面画小二这个课程80节课程,分为了11个章节,那训练数据能不能一股脑全部放进去训练呢。答案是~~不能滴~~~正确的方法,首先将11章的大的章节名称内容放进来,如下图所示。章节内详细内容格式如下如所示,如果你再分节的内容,依次类推细化下去。每个章节都按照这种固定的方式进行人工标注和处理然后选择创建知识库自定义清洗数据,这里不再赘述。

开发:产品视角的大模型 RAG 应用

基于以上的分析,我们先选取了实现成本最小的方式进行调优,结果如下:1、更换大模型:从ChatGLM2-6B替换成baichuan2-13b,发现针对我们的场景,后者的性能可以提升一倍左右。2、更换embedding模型:将embedding模型从LangChain Chatchat默认的m3e-base替换为bge-large-zh,发现后者优于前者3、测试不同Top k的值:比较Top 5、Top 10、Top 15的结果,发现Top 10时效果最优。4、对文档名称进行处理:由于原来的政策文件,在导出时文件名会进行简化,如too_long_发展行动方案。因此,人工对文件进行重命名,上传相同文件构建知识库,同时在构建知识库时勾选【开启中文标题加强】选项,发现重命名文件对结果的提升效果不明显,但勾选【开启中文标题加强】选项后,回答的无关信息减少,效果有所提升。目前来看,尽管效果有所提升,但仍未达到可用水平,后续我们也将尝试其他的调优策略。

Others are asking
coze搭建智能体,用上传的文件和知识库的文件做对比,分析差异点。
以下是关于在 Coze 中搭建智能体的相关信息: 1. 证件照相关操作: 展示原图上传结果,基本脸型已换,生成效果与上传照片特征有关。 改背景可利用改图功能,一键改图效果更好,输出数据类型为图片。 豆包节点生成的是 URL 地址,与前者不同,在工作流使用有差异,可参考简单提示词。 介绍证件照工作流相关操作,包括通过提示词改背景颜色,设置输出方式为返回变量;讲解消耗 token 及保存结果相关问题;对按钮、表单添加事件并设置参数,限制上传文件数量;还涉及给表单和图片绑定数据,以及每次操作后刷新界面确保设置生效。 围绕操作讲解与优化展开,介绍 for meet 的设置,如表单事件操作、图片上传数量修改等,提及编程基础知识。还讲述成果图连接、绑定数据方法及注意事项。展示基本功能实现情况,分析换性别等问题成因,指出需在工作流优化提示词,也可尝试用视频模型解决,最后进入问答环节。 2. 多维表格的高速数据分析: 创建智能体,使用单 Agent 对话流模式。 编排对话流,创建新的对话流并关联智能体。 使用代码节点对两个插件获取的结果进行数据处理,注意代码节点输出的配置格式。 测试,找到一篇小红书笔记,试运行对话流,在对话窗口输入地址查看数据。 发布,选择多维表格,配置输出类型为文本,输入类型选择字段选择器,完善上架信息,可选择仅自己可用以加快审核。 3. 智能体与微信和微信群的连接: 创建知识库,可选择手动清洗数据提高准确性,包括在线知识库和本地文档。 在线知识库创建时,飞书在线文档中每个问题和答案以分割,可编辑修改和删除。 本地文档中注意拆分内容提高训练数据准确度,如将课程章节按固定方式人工标注和处理。 发布应用,确保在 Bot 商店中能够搜到。
2025-04-18
coze搭建知识库和上传文件做对比分析
以下是关于 Coze 搭建知识库和上传文件的对比分析: 创建文本型知识库: 自动分段与清洗:扣子可对上传的内容进行自动解析,支持复杂布局的文件处理,如识别段落、页眉/页脚/脚注等非重点内容,支持跨页跨栏的段落合并,支持解析表格中的图片和文档中的表格内容(目前仅支持带线框的表格)。操作步骤为在分段设置页面选择自动分段与清洗,然后依次单击下一步、确认,可查看分段效果,不满意可重新分段并使用自定义分段。 自定义:支持自定义分段规则、分段长度及预处理规则。操作时在分段设置页面选择自定义,然后依次设置分段规则和预处理规则,包括选择分段标识符、设置分段最大长度和文本预处理规则,最后单击下一步完成内容分段。 创建表格型知识库: 目前支持 4 种导入类型:本地文档、API、飞书、自定义。 本地文档:选择本地文档从本地文件中导入表格数据,目前支持上传 Excel 和 CSV 格式的文件,文件不得大于 20M,一次最多可上传 10 个文件,且表格内需要有列名和对应的数据。 API:参考特定操作从 API 返回数据中上传表格内容,包括选择 API、单击新增 API、输入 API URL 并选择数据更新频率,然后单击下一步。 飞书:参考特定操作从飞书表格中导入内容,包括选择飞书、在新增知识库页面单击授权并选择要导入数据的飞书账号、单击安装扣子应用(仅首次导入需授权和安装),然后选择要导入的表格并单击下一步。目前仅支持导入“我的空间”下的飞书文档,云文档的创建者必须是自己,暂不支持导入知识库和共享空间下的云文档。 上传文本内容: 在线数据:扣子支持自动抓取指定 URL 的内容,也支持手动采集指定页面上的内容,上传到数据库。 自动采集方式:适用于内容量大、需批量快速导入的场景。操作步骤为在文本格式页签下选择在线数据,然后依次单击下一步、自动采集、新增 URL,输入网站地址、选择是否定期同步及周期,最后单击确认,上传完成后单击下一步,系统会自动分片。 手动采集:适用于精准采集网页指定内容的场景。操作步骤为安装扩展程序,在文本格式页签下选择在线数据,然后依次单击下一步、手动采集、授予权限,输入采集内容的网址,标注提取内容,查看数据确认无误后完成并采集。
2025-04-18
知识库怎么构建
构建知识库的方法主要有以下几种: 1. 使用 Flowith 构建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,为其起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 等待 Flowith 对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 2. 使用 Dify 构建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:根据需求选择高质量模式、经济模式或 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 3. 本地部署大模型并搭建个人知识库(涉及 RAG 技术): 了解 RAG 技术:大模型训练数据有截止日期,RAG 可通过检索外部数据并在生成步骤中传递给 LLM 来解决依赖新数据的问题。 RAG 应用的 5 个过程: 文档加载:从多种来源加载文档,如 PDF、SQL 等。 文本分割:把文档切分为指定大小的块。 存储:包括将文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:将问题和检索出的嵌入片提交给 LLM 生成答案。 文本加载器:将用户提供的文本加载到内存中以便后续处理。
2025-04-15
如何搭建知识库
搭建知识库的方法如下: 使用 flowith 搭建: 选择“Manage Your Knowledge Base”,进入知识库管理页面。 点击左上角的加号添加新的知识库,给知识库起一个便于分辨的名字。 点击添加文件,建议使用 Markdown 格式的文件。 Flowith 会对文件进行抽取等处理,处理完毕后可在知识库管理页面测试检索。 使用 Dify 搭建: 准备数据:收集文本数据,进行清洗、分段等预处理。 创建数据集:在 Dify 中创建新数据集,上传准备好的文档并编写描述。 配置索引方式:提供三种索引方式,根据需求选择,如高质量模式、经济模式和 Q&A 分段模式。 集成至应用:将数据集集成到对话型应用中,配置数据集的使用方式。 持续优化:收集用户反馈,更新知识库内容和优化索引方式。 使用 Coze 智能体搭建: 手动清洗数据: 在线知识库:点击创建知识库,创建 FAQ 知识库,选择飞书文档,输入区分问题和答案,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容,提高训练数据准确度,按章节进行人工标注和处理,然后创建自定义清洗数据。 发布应用:点击发布,确保在 Bot 商店中能搜到。
2025-04-14
如何搭建自己的知识库
以下是搭建自己知识库的方法: 1. 选择“Manage Your Knowledge Base”,进入知识库管理页面。 2. 在页面左上角点击加号,添加新的知识库,并为其起一个易于分辨的名字。 3. 点击添加文件,建议使用 Markdown 格式的文件。 4. 等待 Flowith 对文件进行抽取等处理。 5. 处理完毕后,可在知识库管理页面测试检索,输入关键词过滤相关内容。 此外,搭建本地知识库还需了解 RAG 技术: 1. RAG 是一种当需要依靠不包含在大模型训练集中的数据时所采用的主要方法,即先检索外部数据,然后在生成步骤中将这些数据传递给 LLM。 2. 一个 RAG 的应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种不同来源加载文档,LangChain 提供了 100 多种不同的文档加载器。 文本分割:把 Documents 切分为指定大小的块。 存储:将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库。 检索:通过某种检索算法找到与输入问题相似的嵌入片。 输出:把问题以及检索出来的嵌入片一起提交给 LLM,生成更合理的答案。 对于基于 GPT API 搭建定制化知识库,涉及给 GPT 输入定制化的知识。由于 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。Embeddings 是一个浮点数字的向量,两个向量之间的距离衡量它们的关联性,小距离表示高关联度。在 OpenAI 词嵌入中,靠近向量的词语在语义上相似。文档上有创建 embeddings 的示例。
2025-04-14
我想做一个,基于我个人知识库的chatbot,以供我随时搜索和提问,且优先搜索知识库内的内容而非联网搜索,你有什么建议吗?
以下是为您提供的关于创建基于个人知识库的 chatbot 的建议: 1. 选择合适的平台和工具:例如可以考虑使用飞书智能伙伴创建平台(Aily)或扣子(https://www.coze.cn/home)等。 2. 数据分段储存:由于大模型的上下文长度有限制,需要将上传的资料根据特定符号或字符长度进行分段,如将 8000 字文档按每 800 字分成一个片段储存。 3. 增强检索:当用户输入问题,大模型会根据相似度检索出若干最相关的数据片段,再据此生成答案,这一技术称为 RAG(检索增强生成)。 4. 配置知识库: 在 Bot 内使用知识库: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在 Bots 页面,选择指定 Bot 并进入 Bot 详情页。 在 Bot 编排页面的知识库区域,单击加号图标,添加指定的知识库。 (可选)添加知识库后,可以在自动调用下拉界面内,调整知识库的配置项,如最大召回数量、最小匹配度、调用方式等。 在工作流内使用 Knowledge 节点: 登录相关平台。 在左侧导航栏的工作区区域,选择进入指定团队。 在页面顶部进入工作流页面,并打开指定的工作流。 在左侧基础节点列表内,选择添加 Knowledge 节点。 5. 注意使用限制:单用户最多创建 1000 个知识库,文本类型知识库下最多支持添加 100 个文档,单用户每月最多新增 2GB 数据,累计上限是 10GB。 此外,知识库可以解决大模型幻觉、专业领域知识不足的问题,提升大模型回复的准确率。您可以将知识库直接与 Bot 进行关联用于响应用户回复,也可以在工作流中添加知识库节点,成为工作流中的一环。
2025-04-14
minimax侧重在哪些方面
MiniMax 侧重在以下几个方面: 1. 语音技术: 快速克隆:仅需 10 秒音频即可克隆语音,智能情感系统精准捕捉细腻情感变化。 多维预置语音:提供 300+语音选项,支持 17 种语言(不断扩展),涵盖口音、性别、年龄、风格等。 专业音效:支持房间音效、电话滤镜,输出接近录音室级别。 2. 通用人工智能: 成立于 2021 年 12 月,是通用人工智能时代基础设施建设者和内容应用创造者。 拥有文本、语音、视觉多种模态融合的通用大模型引擎能力并打通产品全链路。 自研了整套端到端 AGI 引擎系统。 3. 团队组成:核心技术研发成员均来自全球知名高校和全球顶尖科技公司,拥有世界顶尖自然语言处理、语音、计算机视觉、计算机图形学等工业界和学术界经验,拥有多项全球领先的人工智能领域研究成果,具有上百个全球发明专利,1/3 的团队成员拥有世界顶尖技术实验室的博士学位。 相关链接: 免费试用: API 平台:
2025-03-28
ai的具体用途在哪些方面
人工智能(AI)的用途广泛,涵盖以下多个方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新治疗方法。 提供个性化医疗,分析患者数据制定个性化治疗方案。 机器人辅助手术,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,识别并阻止欺诈行为。 信用评估,帮助金融机构做出贷款决策。 投资分析,分析市场数据辅助投资决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 产品推荐,分析客户数据推荐可能感兴趣的产品。 改善搜索结果和提供个性化购物体验。 动态定价,根据市场需求调整产品价格。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测性维护,预测机器故障避免停机。 质量控制,检测产品缺陷提高质量。 优化供应链,提高效率降低成本。 控制工业机器人提高生产效率。 5. 交通运输: 开发自动驾驶汽车,提高交通安全性和效率。 优化交通信号灯和交通流量,缓解拥堵。 优化物流路线和配送计划,降低运输成本。 实现无人机送货,快速送达偏远地区。 6. 其他领域: 教育领域,提供个性化学习体验。 农业领域,分析农田数据提高农作物产量和质量。 娱乐领域,开发虚拟现实和增强现实体验。 能源领域,优化能源使用提高效率。 总之,AI 的应用场景还在不断扩展,未来将对我们的生活产生更深远的影响。
2025-03-13
初学者可以从哪些方面上手
对于初学者上手 AI,以下是一些建议: 1. 调度器和采样器方面:可以从 Euler 或 DDIM 开始,因为它们提供了良好的平衡点,便于快速了解生成过程。如果对生成过程中的稳定性和细节处理有严格要求,可以考虑 DPM++ SDE Karras、LCM 和 Dynamic Thresholding 这样的采样器。在需要快速生成图像的情况下,DPM fast、Euler 和 DDIM Fast 是不错的选择。如果希望生成更具创意或独特风格的图像,可以尝试 Heun、DPM++ 3M SDE Palefire 以及 Restart 采样器。对于高要求的图像生成任务,推荐使用 DPM++ 3M SDE Karras、DPM2 Exponential 和 LCM 这些经过优化的采样器。 2. 基本概念方面: 阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系,浏览入门文章。 在「」中找到为初学者设计的课程,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程按照自己的节奏学习。 选择感兴趣的模块深入学习,掌握提示词的技巧。 3. 实践方面: 理论学习之后进行实践,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 4. 体验方面: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 5. Prompt 方面: 认真写出自己的第一个 prompt,理解 GPT 的工作原理,至少先真正理解以下几个问题:GPT 说人话的能力是怎么来的、“涌现”的产生、prompt 的概念和意义、为什么现阶段我们不得不用 prompt。推荐两个课外阅读,即 B 站 UP Yjango(于建国博士)很早前发布的相关视频。 您还可以关注获取更多内容。
2025-03-11
AI除了政务还可以应用在哪些方面
AI 的应用领域非常广泛,除政务外,还包括以下方面: 1. 医疗保健:辅助疾病诊断、医疗影像分析、药物研发等。 2. 金融服务:风险评估、欺诈检测、投资决策等。 3. 教育领域:个性化学习、智能辅导、教学资源推荐等。 4. 制造业:质量检测、生产流程优化、设备维护预测等。 5. 交通运输:自动驾驶、交通流量预测、物流优化等。 6. 市场营销:客户细分、精准营销、市场趋势预测等。 7. 娱乐产业:游戏开发、内容创作、虚拟角色等。 8. 农业:作物监测、病虫害预测、农业资源管理等。
2025-03-05
我想学会使用ai,该学习哪些方面的知识
如果您想学会使用 AI ,以下是一些您需要学习的方面: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI ,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 AI 的技术历史和发展方向,目前最前沿的技术点包括: 1. 学习路径偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 学习路径偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-27
临床医生哪些方面可以用的到ai
临床医生在以下方面可以用到 AI: 1. 医学影像分析:AI 可用于辅助分析 X 射线、CT 扫描和 MRI 等医学图像,以辅助诊断疾病。 2. 药物研发:加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。 5. 医疗保健交付和后勤功能:例如文档工作可交给 AI 书记员。 6. 初级医疗服务中的分诊:依赖聊天机器人进行分诊。
2025-01-03
coze的输入中如何引用变量
在 Coze 的输入中引用变量的方式如下: 在大模型节点的提示词中,支持使用{{variable}}引用输入参数。变量用{{}}来包裹,这里的变量就是前面输入的内容,如果变量名正确,会显示成蓝色。 在文本处理节点中,有两种工作模式。字符串拼接模式下,可以用{{变量名}},{{变量名.子变量名}},{{变量名}}的方式引用变量。如果直接引用一个数组类型的变量,默认会用逗号把数组中的内容连接起来,也可以指定只要数组中的某一项。字符串分隔模式下,用特定的分隔符(比如"||"、"////"或"")把一段文字拆分成多个小段。 在阅读导图的插件节点配置中,确定输入时,在输入区,该插件仅需设置{{query_text}}变量,格式是 string 字符串。只需要引用“标题、导语、大纲”节点的{{enTreeMind}}变量即可。
2025-03-26
coze怎么引用变量
在 Coze 中引用变量的方法如下: 1. 对于利用大语言模型生成文本内容的节点,在提示词中支持使用{{variable}}引用输入参数。提示词本身也可通过 Coze 来写,系统做了设定,变量用{{}}包裹,变量名正确时会显示成蓝色。系统提示词和用户提示词大部分情况下差异不大,可把完整逻辑放在系统提示词里,变量相关内容放在用户提示词里。 2. 在变量节点的使用中: 第一步,在 Bot 的页面创建一个变量的名字。 第二步,在工作流中设置变量的值。变量一般在工作流中使用,首先要创建工作流。工作流中的变量节点有给变量设置值和从变量中获取值两个作用。 第三步,在工作流中获取变量的值。 3. 在文本处理节点中,有两种工作模式: 字符串拼接模式:把多段文字按照指定顺序组合成一段完整文字。在这个模式下,可以用{{变量名}},{{变量名.子变量名}},{{变量名}}的方式引用变量。如果直接引用一个数组类型的变量,默认会用逗号把数组中的内容连接起来,也可以指定只要数组中的某一项。 字符串分隔模式:用特定分隔符把一段文字拆分成多个小段。
2025-03-26
有什么帮助查找论文,提供论文引用文献和被引用文献的AI
以下是一些能够帮助查找论文、提供论文引用文献和被引用文献的 AI 工具: 1. 文献管理和搜索: Zotero:结合 AI 技术,能自动提取文献信息,便于管理和整理参考文献。 Semantic Scholar:由 AI 驱动的学术搜索引擎,可提供文献推荐和引用分析。 2. 内容生成和辅助写作: Grammarly:通过 AI 技术进行文本校对、语法修正和写作风格建议,提升论文语言质量。 Quillbot:基于 AI 的重写和摘要工具,可精简和优化论文内容。 3. 研究和数据分析: Google Colab:提供基于云的 Jupyter 笔记本环境,支持 AI 和机器学习研究,方便进行数据分析和可视化。 Knitro:用于数学建模和优化的软件,有助于进行复杂的数据分析和模型构建。 4. 论文结构和格式: LaTeX:结合自动化和模板,高效处理论文格式和数学公式。 Overleaf:在线 LaTeX 编辑器,有丰富模板库和协作功能,简化论文编写。 5. 研究伦理和抄袭检测: Turnitin:广泛使用的抄袭检测工具,确保论文原创性。 Crossref Similarity Check:检测潜在抄袭问题。 此外,还有以下相关的 AI 工具和网站: 1. TXYZ 网站: 帮助搜索、查询专业文献并进行对话的 AI 工具,提供一站式服务。 是唯一和预印本文库 arxiv.org 官方合作的 AI 工具,ArXiv 的每篇论文下有直达 TXYZ 的按钮。 用户可上传 PDF 论文或链接,迅速找到所需答案和内容,在对话中提供论文参考和可信背书。 2. 一些 GPTs 工具: Consensus:AI 研究助手,可搜索 2 亿篇学术论文,获取基于科学的答案并带有准确引用的内容草稿。 AskYourPDF Research Assistant:增强研究,可与多个文件聊天,生成带引文的文章,分析和生成论文参考文献等。 Best Custom GPTs:在一个地方搜索所有公开 GPT,找到适合需求的自定义 ChatGPT。 AutoExpert:自动组建动态专家团队,回答、辩论和探讨问题。 ResearchGPT:人工智能研究助手,帮助从大量文章中发现最新和相关论文,并提供引文支持的答案。 The Glibatree Art Designer:根据提示和要求生成艺术设计作品。 使用这些工具时,要结合自身写作风格和需求,选择最合适的辅助工具。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-10
请给我推荐几个带有知识库引用的dify案例
以下是使用 Dify 构建知识库的具体步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:Dify 提供了三种索引方式供选择:高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 以下是一些带有知识库引用的 Dify 案例:
2025-01-30
Dify引用飞书智能表格
以下是关于 Dify 引用飞书智能表格打造专属 AI 智能体的相关内容: 首先是逐步搭建 AI 智能体: 1. 设计 AI 智能体架构:构思整个架构,规定稍后读阅读清单的元数据。新建飞书多维表格,根据管理需要定义元数据字段,如“内容”(超链接格式,显示页面标题,可点击跳转具体页面)、“摘要”(总结内容主题、关键信息、阅读价值,并指出适合的读者群体)、“作者”、“平台”、“状态”(阅读状态,收藏的默认态为“仅记录”)、“发布日期”、“收集时间”。为方便跟做,可直接复制准备好的模板: 2. 搭建整理入库工作流:这是支撑整个 AI 稍后读服务的前置流程。首先新建工作流「url2table」,根据弹窗要求自定义工作流信息。工作流全局流程设置如下: 开始节点:输入 url,由于希望收到用户输入的待收藏 url 就开始流程,所以不需要额外配置。 变量节点:引入 bot 变量中保存的飞书多维表格地址,将飞书多维表格链接存储在 bot 的变量中,在工作流运行时进行引用。 插件节点:获取页面内容,把开始节点的{{BOT_USER_INPUT}}引入到参数{{url}}中,随便设置{{timeout}}为 60000。
2025-01-21
请问midjourney cref和sref的区别,如果我想引用一张图,但只是把它作为新图的一部分如何写prompt
在Midjourney中,`cref`和`sref`都是用于引用图片的功能,但它们的作用和使用方式有所不同: 1. 角色参考(cref):`cref`的功能是保持图像角色的一致性。根据你提供的现有角色图像的URL, 生成与之相似的角色。使用方法是在提示后添加 `cref`,并紧接着指向人物参考图像的 URL。例如:`/imagine prompt beautiful girl cref `。您可以使用 `cw` 来调整参考图像对生成的图像的影响程度,数值范围从 0 到 100。 2. 风格参考(sref):`sref`的功能是生成类似风格的图片,保持画风的一致性。使用方法是在提示后添加 `sref`,并紧接着指向风格参考图像的 URL。例如:`/imagine prompt beautiful girl sref `。您可以使用 `sw` 来调整参考风格对生成的图像的影响程度,数值范围从 0 到 1000。 如果你想引用一张图,但只是把它作为新图的一部分,你可以使用 `sref` 或 `cref`,并通过调整 `sw` 或 `cw` 的值来控制引用图像的影响程度。 例如,如果你想引用一张图的风格,但只希望它占新图的一部分,你可以这样写提示:`/imagine prompt beautiful girl sref sw 500`。这样,生成的图像将会在保持原有风格的同时,融入一部分引用图像的风格¹。 希望这些信息对您有所帮助!如果您有其他问题,欢迎随时向我提问。
2024-04-21
想要做一节讲如何用智能体做企业数字化转型的课程,如何设计
以下是关于如何设计用智能体做企业数字化转型课程的建议: 一、参考案例 1. 李国宝的相关经验 具有丰富的从业经验,包括通信工程、数据通信网络培训、创业、网络安全解决方案及培训、AI 课程开发与培训等。 开发过面向不同群体的 AI 课程,如《数字化转型实践》面向传统企业数字化、AI 赋能转型。 2. 90 分钟从 0 开始打造你的第一个 Coze 应用课程 从零开始教学做应用界面,先基础教学,再涉及特定应用。 介绍当前承接业务,包括辅导、培训、定制及企业 AI 落地等。 挖掘用户对 AI 应用的功能需求,如对交互界面的需求。 二、课程设计要点 1. 对于企业管理者 AI 辅助决策:在小规模决策中使用 AI 分析工具,以其分析结果作为决策参考。 员工培训计划:制定 AI 工具使用的培训计划,帮助团队成员了解日常工作中如何有效利用 AI。 流程优化:识别公司中可能受益于 AI 自动化的重复性任务,从小流程开始测试 AI 解决方案的效果。 AI 伦理和政策:制定公司的 AI 使用政策,确保 AI 应用符合伦理标准和法律要求。 2. 对于教育工作者 AI 辅助教案设计:尝试使用 AI 帮助设计课程大纲或生成教学材料 ideas,为课程带来新视角。 个性化学习路径:探索使用 AI 分析学生学习数据,为不同学生制定个性化学习计划。 创新教学方法:考虑将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 AI 素养教育:开发简单的课程模块,教导学生了解 AI 基础知识、应用领域及其对社会的影响。 三、注意事项 无论面向哪个群体,都应记住:与 AI 协作是一个学习过程。从小处着手,保持好奇心和开放态度,会发现 AI 不仅能提高工作效率,还能激发创造力,开拓新的可能性。最重要的是,始终保持批判性思维,将 AI 视为强大的工具,而不是完全依赖的解决方案。
2025-04-18
你是福州市政府工作人员,中国移动拟邀请福州市委书记参加中国移动人工智能生态大会并致辞,该大会是第八届数字峰会的组成部分,需要撰写市委书记的致辞稿,需要中国移动准备哪些素材,请告诉我提示词
以下是为您整理的相关内容: 《促进创新的人工智能监管方法》:包含了关于通用人工智能价值链、相关案例研究以及对人工智能监管框架的探讨等内容。 陶力文律师关于律师写好提示词用好 AI 的方法:包括初始化的欢迎语、遵循的规则、获取案例洞察报告和目标群体、输出纲要和写作方案、根据用户反馈调整等流程。 开幕式主持稿:涉及基地代表发言的时间、主题、物料配合和人员配合等信息。 但这些素材似乎与为中国移动准备市委书记致辞稿所需的素材关联不大。一般来说,为撰写市委书记在中国移动人工智能生态大会上的致辞稿,中国移动可能需要准备以下素材: 1. 本次大会的详细介绍,包括主题、目标、议程安排等。 2. 中国移动在人工智能领域的发展成果、战略规划和未来愿景。 3. 中国移动人工智能生态的构建情况,如合作伙伴、合作项目等。 4. 本次大会在第八届数字峰会中的地位和作用。 5. 相关行业的人工智能发展现状和趋势。 6. 福州市在人工智能领域的发展情况和与中国移动合作的展望。
2025-04-18
AI Agents(智能体)
AI 智能体(Agents)是人工智能领域中一个重要的概念: 1. 从 AGI 的发展等级来看,智能体不仅具备推理能力,还能执行全自动化业务,但目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 2. 作为大模型的主要发展方向之一,智能体中间的“智能体”其实就是大模型(LLM)。通过为 LLM 增加工具、记忆、行动、规划这四个能力来实现。目前行业里主要用到的是 langchain 框架,它把 LLM 与 LLM 之间以及 LLM 与工具之间通过代码或 prompt 的形式进行串接。 3. 从智能体的起源探究来看,心灵社会理论认为智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,每个层次由多个 Agent 负责,每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务。同时存在专家 Agent、管理 Agent、学习 Agent 等不同类型的 Agent 及其相应功能。从达特茅斯会议开始讨论人工智能,到马文·明斯基引入“Agent”概念,“AI”和“Agent”就彻底聚齐,往后被称之为 AI Agent。
2025-04-15
人工智能软件现在有哪些
以下是一些常见的人工智能软件: 1. 在自然语言处理和神经科学应用方面,大型语言模型取得了进展,拥有更先进的工具用于解码大脑状态和分析复杂脑部活动。 2. 在艺术创作领域,有涉及知识产权保护的相关软件,如软件工程师在设计时应确保生成内容合法合规、注重用户知识产权保护等。创作者使用此类软件时,应了解自身权利并做好保护。 3. 在线 TTS 工具方面,如 Eleven Labs(https://elevenlabs.io/)、Speechify(https://speechify.com/)、Azure AI Speech Studio(https://speech.microsoft.com/portal)、Voicemaker(https://voicemaker.in/)等。这些工具可将文本转换为语音,具有不同的特点和适用场景。但请注意,相关内容由 AI 大模型生成,请仔细甄别。
2025-04-15
什么是通用人工智能
通用人工智能(AGI)是指具有人类水平的智能和理解能力的 AI 系统。它有能力完成任何人类可以完成的智力任务,适用于不同的领域,同时拥有某种形式的意识或自我意识。 目前 AGI 还只是一个理论概念,没有任何 AI 系统能达到这种通用智能水平。 OpenAI 在其内部会议上分享了 AGI 的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力的 AI,主要依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平的 AI,能够解决复杂问题,如 ChatGPT,能够根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务的 AI。目前许多 AI Agent 产品在执行任务后仍需人类参与,尚未达到完全智能体的水平。 4. 创新者(Innovators):能够协助人类完成新发明的 AI,如谷歌 DeepMind 的 AlphaFold 模型,可以预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别的 AI,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。 常见名词解释: AGI:通用人工智能(Artificial General Intelligence)能够像人类一样思考、学习和执行多种任务的人工智能系统。 NLP:自然语言处理(Natural Language Processing),就是说人话。 LLM:大型语言模型(Large Language Model),数据规模很大,没钱搞不出来,大烧钱模型。
2025-04-15