直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

能够用ai控制电脑打游戏

回答

AI 在游戏中的应用已经有了很大的发展。生成式 AI 是一种机器学习类别,计算机能根据用户提示生成新内容,目前在文本和图像领域应用较成熟,在其他创意领域如动画、音效、音乐、虚拟角色等也有进展。

在游戏中,早期如雅达利的 Pong 就有计算机控制的对手,但它们只是简单脚本程序,不能学习,能力取决于程序员。如今,由于更快的微处理器和云技术,有了更多计算能力,能构建大型神经网络,在复杂领域识别模式和表示。

在游戏音频方面,生成式 AI 带来了实时生成对话,角色能说任何话并完全响应玩家行为;有助于玩家扮演幻想角色,维持幻觉;能控制声音细微差别;还能实现本地化,将对话翻译成任何语言并以相同声音发音,像 Deepdub 这样的公司专注于此领域。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

游戏中的生成式 AI 革命

生成性AI是一种机器学习类别,计算机可以根据用户的提示生成原始的新内容。目前,文本和图像是这项技术的最成熟应用,但几乎在每一个创意领域都有工作在进行,从动画、音效、音乐,甚至到创造具有完整性格的虚拟角色。当然,AI在游戏中并不是什么新鲜事。即使是早期的游戏,如雅达利的Pong,也有计算机控制的对手来挑战玩家。然而,这些虚拟的敌人并不是我们今天所知道的AI。它们只是由游戏设计师制定的简单脚本程序。它们模拟了一个人工智能对手,但它们不能学习,它们的能力只取决于创建它们的程序员。现在与以前的不同之处在于,由于更快的微处理器和云技术,我们有了更多的计算能力。有了这种能力,我们可以构建大型的神经网络,这些网络可以在高度复杂的领域中识别模式和表示。这篇博文分为两部分:第一部分包括我们对游戏领域的生成性AI的观察和预测。第二部分是我们对该领域的市场地图,概述了各个细分市场并确定了每个市场的关键公司。

生成式AI在游戏领域的机会(市场假设+预测)

什么是生成式AI?生成式AI是机器学习的一个类别,计算机可以根据用户的输入/提示,生成原创的新内容。目前这项技术最成熟的应用主要在文本和图像领域,不过几乎所有的创意领域都有类似的进步(生成式AI的技术应用),覆盖动画、声音效果、音乐,甚至是对具备完整个性的虚拟人物进行原创。当然,人工智能在游戏中并不新鲜。即使是早期的游戏,如雅达利的《Pong》早就有计算机控制的对手和玩家进行对战。(笔者注:游戏开发商雅达利,创办时期在微处理器诞生后不久,在1972年推出首款街机Pong,奠定街机鼻祖地位。1974年,苹果的乔布斯加入雅达利,负责开发电子游戏)然而这些计算机中的虚拟对手和我们今天讲的生成式人工智能并不一样,这些计算机对手只是游戏设计师精心设计的脚本程序,它们确实模拟了一个人工智能的对手,但它们不能学习和迭代,水平和编写它们的工程师一样。

游戏中的生成式 AI 革命

实时生成对话。游戏中的语音通常是由配音演员预先录制的,但这些都局限于预录制的固定语句。借助生成性AI对话,角色可以说任何话——这意味着他们可以完全响应玩家正在做的事情。结合更智能的NPC AI模型(虽然不在本博客的讨论范围内,但目前同样是一个令人兴奋的创新领域),完全对玩家作出反应的游戏将很快成为现实。角色扮演。许多玩家希望扮演与他们现实世界身份相去甚远的幻想角色。然而,一旦玩家用自己的声音发言,这种幻觉就会破裂。使用与玩家的虚拟形象匹配的生成声音可以维持这种幻觉。控制。由于语音是生成的,你可以控制声音的细微差别,比如它的音色、抑扬、情感共鸣、音素长度、口音等等。本地化。允许对话被翻译成任何语言,并以相同的声音发音。像[Deepdub](https://deepdub.ai/)这样的公司专注于这个特定的领域。

其他人在问
制作PPT的AI应用有那些
以下是一些制作 PPT 的 AI 应用: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,背后有实力强大的团队,能敏锐把握市场机遇,已确立市场领先地位。 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 推荐 2 篇市场分析的文章供参考: 1. 《》 2. 《》 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-22
如何学习AI
以下是新手学习 AI 的方法和建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-12-22
AI英文全称
AI 的英文全称是 Artificial Intelligence,意思是人工智能。它是指让计算机或机器能像人类一样思考和学习的技术。在不同的应用场景中,AI 有着丰富的表现形式,比如聊天机器人、推理者、智能体、创新者和组织等。同时,在 AI 领域还有众多的术语,如 BlackBox Attack(黑盒攻击)、Bonding Environments(成键环境)、Bonferroni Correction(邦弗朗尼校正)等。
2024-12-22
ai音乐创作管线
AI 音乐创作管线包括以下几个方面: 1. ByteComposer:由字节跳动人工智能实验室开发,利用大型语言模型(LLM),通过概念分析、草稿创作、自我评估与修改、审美选择四个关键步骤生成旋律。其核心模块包括专家模块、生成器模块、投票器模块以及记忆模块,通过精心设计的提示激发 LLM 的音乐理论知识,并通过交叉验证优化提示设计。在实验中证明了其在音乐创作方面的有效性,达到了初级作曲家的水平,为用户提供了直观、可控且富有创造性的音乐创作平台。 2. 《We Are The One》的融合工作流:呼应了 AI 技术在音乐创作中不可或缺的愿景,核心是介绍使用 AI 音乐平台 UDIO.com 进行音乐创作的技术分享,以歌曲《We Are the One》的制作过程为例,展示如何结合 AI 与传统音频处理手段,打造以 AI 为主导的音乐制作工作流。 3. 自定义前奏的工作流:Suno 和 Udio 推出上传音频文件生成音乐的功能,可精确控制速度、旋律、配器、合成等。节省的点数可用于多 Roll 与流派、心情、场景相关的曲子并存好旋律素材,也可用于 roll 更多细节调整部分以提升作品品质。通过简单例子演示工作流。
2024-12-22
AI客服用哪个智能体
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,可以是软件程序或硬件设备。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并具有以下关键组成部分: 1. 规划:将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 2. 反思和完善:对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 3. 记忆:包括短期记忆(所有的上下文学习利用模型的短期记忆来学习)和长期记忆(通过外部向量存储和快速检索实现长时间保留和回忆无限信息的能力)。 4. 工具使用:学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 AI Agent 有效使用工具的前提是全面了解工具的应用场景和调用方法。利用 LLM 强大的 zeroshot learning 和 fewshot learning 能力,AI Agent 可以通过描述工具功能和参数的 zeroshot demonstration 或提供特定工具使用场景和相应方法演示的少量提示来获取工具知识。 AI Agent 学习使用工具的方法主要包括从 demonstration 中学习和从 reward 中学习。环境反馈包括行动是否成功完成任务的结果反馈和捕捉行动引起的环境状态变化的中间反馈;人类反馈包括显性评价和隐性行为,如点击链接。 在追求人工通用智能(AGI)的征途中,具身 Agent(Embodied Agent)正成为核心的研究范式,强调将智能系统与物理世界紧密结合。与传统的深度学习模型相比,LLMbased Agent 不再局限于处理纯文本信息或调用特定工具执行任务,而是能够主动地感知和理解其所在的物理环境,进而与其互动,并利用内部丰富的知识库进行决策和产生具体行动来改变环境。 然而,关于 AI 客服适合使用哪个智能体,需要根据具体的需求和场景来确定。例如,如果需要处理大量复杂的任务分解和协调,可能需要具备强大规划和推理能力的智能体;如果需要与用户进行频繁的互动和反馈,可能需要对环境感知和理解能力较强的智能体。
2024-12-22
ai怎样精准搜索
AI 精准搜索可以通过以下几个关键步骤来实现: 1. 意图识别:对用户提问进行分类,如导航类、信息查询类、交易类、本地信息类等,还包括多级子分类。通过分类匹配更准的信息源和更好的回复提示词,很大程度提升检索召回率。目前主流的实现方案主要是通过提示词请求大模型完成,但准确度不够高,大模型的 Function Calling 能力也可理解为一种意图识别。 2. 问题改写(Query Rewrite):在完成意图识别并确认需要联网检索后,对用户的 query 进行改写,目的是得到更高的检索召回率。主要包括三个维度的改写,即让提问有更精准/更专业的表达、补全上下文做指代消解、名词提取。改写可以通过设置提示词请求大模型完成。 3. 多信息源聚合(Multi Source):提升 AI 搜索准确度的另一个关键措施是做多信息源整合。结合意图识别和问题改写,假设用户搜索特定问题,可根据意图判断是否联网及搜索类型,提取概念名词,除常见检索外,还可检索其他信息源获取更多内容。多信息源的整合可能涉及海量数据处理和自建信息源索引等技术,传统搜索厂商和依靠 UGC 建立数据飞轮的超级 App 在这方面有优势。 4. 搜索结果重排(Reranking):AI 搜索做多信息源整合时,需要对检索结果重排。重排目的主要是过滤不相关参考信息和对相关性进行排序,便于截取权重最高的 top_k 条记录作为引用参考。重排方案有使用 zilliz 向量数据库+llamaindex 框架做相似度匹配和使用 FlashRank 开源框架,但前者效率低,后者准确度不够高。 5. 搜索内容读取(Read Content)
2024-12-22
我想要让AI来操作,我这个电脑,然后呢?去充当一个AI客服的角色去回答微信上的问题有什么办法吗?
目前在微信中,Coze 平台是一个 AI 智能体创作平台,可以根据需求构建 AI 机器人并发布到多种社交平台。微信的不同功能在与 AI 对接上有所差异: 1. 个人微信/微信群:Coze AI 平台之前不支持直接对接,但国内版正式发布 API 接口功能后,直接对接已成为可能。 2. 微信公众号:Coze AI 平台支持对接,能让 AI 机器人自动回复用户消息。 3. 微信服务号:同样支持对接,可帮助企业提升服务效率。 4. 微信客服:Coze AI 平台支持对接,使 AI 机器人能够自动回答用户咨询,提高客服响应速度。 在把 AI 大模型能力接入微信后,对于类似客服的应用场景,存在模型幻觉导致胡乱回答的问题。对于非技术从业者,落地场景存在困难。一个问答机器人的界面配置包括 AI 模型、提示词、知识库。
2024-12-20
ChatGPT与Sora 是不是只有苹果手机或苹果电脑才能注册与登入?
ChatGPT 注册与登录: 苹果系统: 中国区正常无法在 AppleStore 下载 ChatGPT,需切换到美区。美区 AppleID 注册教程可参考知乎链接:https://zhuanlan.zhihu.com/p/696727277 。 最终在 AppleStore 搜到 ChatGPT 下载安装,注意别下错。 打开支付宝,地区切换到美区任意区,购买【App Store&iTunes US】礼品卡,按需要金额购买(建议先买 20 刀),然后在 apple store 中兑换礼品卡,在 chatgpt 中购买订阅 gpt plus,中途不想继续订阅可到订阅列表中取消。 会员不管在苹果还是安卓手机上购买的,电脑上都能登录。 注册美区 ID 详细步骤: 1. 电脑上打开 Apple ID 的注册页面:https://appleid.apple.com/ac 。 2. 填写验证码后点继续。 3. 到谷歌邮箱接收邮箱验证码。 4. 接着验证手机号码。 5. 验证完后会出现页面,此时美区 ID 已注册但未激活,切换到手机操作。 6. 打开 App Store,点击右上角人形头像。 7. 拉到最底下,点击退出登录,先退出国内的 ID。 8. 之后再点击右上角人形头像。 9. 手动输入美区 ID,会收到短信进行双重验证。 10. 之后完成美区的 ID 登录。 11. 随便找个软件下载,会弹出提示,点击“检查”进行激活。 12. 点击同意,进入下一页填写美国地址。 13. 若付款方式中没有“无”或“none”选项,输入街道地址和电话。 14. 至此,通过中国 IP、中国手机号、免信用卡成功注册一个美区 ID,可用于下载例如小火箭、ChatGPT、Discord、X、TikTok 等软件。 关于 Sora 的注册与登录相关信息未提及。
2024-12-16
如何下载CHATGPT程序到电脑应用
以下是将 ChatGPT 程序下载到电脑应用的方法: 苹果系统: 1. 在 AppleStore 下载 chatgpt:中国区正常下载不了,需要切换到美区才可以下载。美区 AppleID 注册教程参考知乎链接: 。最终在 AppleStore 搜到 chatgpt 结果进行下载安装,注意别下错。 2. 支付宝 购买苹果礼品卡 充值 订阅付费 App:打开支付,地区切换到【美区任意区】,往下滑,找到【品牌精选 折扣礼品卡】,点击进去,可以看到【大牌礼品卡】,往下滑找到【App Store&iTunes US】礼品卡,按需要的金额购买即可,建议先买 20 刀。具体步骤包括支付宝购买礼品卡、在 apple store 中兑换礼品卡、在 chatgpt 中购买订阅 gpt plus,如果中途不想继续订阅了,可到订阅列表中取消订阅。 安卓系统: 1. 安装 google play: 到小米自带的应用商店搜索 google play 进行安装。 安装好后,打开 GooglePlay,按照提示一步步操作,登录 GooglePlay。 2. 下载安装 chatgpt: 到谷歌商店搜索“ChatGPT”进行下载安装,开发者是 OpenAI,别下错。可能遇到“google play 未在您所在的地区提供此应用”的问题,解决方法是在 google play 点按右上角的个人资料图标。依次点按:设置>常规>帐号和设备偏好设置>国家/地区和个人资料。在这里看到账号没有地区,可以“添加信用卡或借记卡”,国内的双币信用卡就行,填写信息时地区记得选美。如果回到 google play 首页还搜不到 chatgpt,可以卸载重装 google play,操作过程保持梯子的 IP 一直是美,多试几次。 3. 体验 ChatGPT:如果只想体验 ChatGPT 3.5 版本,不升级 GPT4,直接登录第二部注册好的 ChatGPT 账号即可。 4. 订阅 GPT4 Plus 版本:先在 Googleplay 中的【支付和订阅】【支付方式】中绑定好银行卡,然后在区 chatgpt 里订阅 Plus。 完成上述步骤后,就可以开始使用 ChatGPT 4o 了。会员不管是在苹果还是安卓手机上购买的,电脑上都能登录。使用时,打开 ChatGPT 应用或网页,点击开始对话。版本切到 ChatGPT 4o,点击右下角“耳机🎧”图标,选择一个声音,就可以体验流畅的语音对话。
2024-12-16
学ai用什么电脑比较好
学习 AI 选择电脑需要考虑硬件情况和自身财力: 本地部署:如果是 M 芯片的 Mac 电脑(Intel 芯片出图速度慢,不建议)或者 2060Ti 及以上显卡的 Windows 电脑,可以选择本地部署,强烈建议在配有 N 卡的 Windows 电脑上进行。 在线平台:对于电脑不符合要求的小伙伴可以直接使用在线工具,在线工具分为在线出图和云电脑两种,前者功能可能会受限、后者需要自己手动部署,大家根据实际情况选择即可。 配台电脑:非常不建议一上来就配主机,因为大概率会变成游戏机或者吃灰(土豪请随意)。玩几个月后还对 AI 有兴趣的话再考虑配个主机。主机硬盘要大,显卡预算之内买最好,其他的随意。 截止 2024 年 5 月,主流的 AI 笔记本电脑主要是一些专门为人工智能和深度学习设计的高性能移动工作站,包括: 1. 微软(Microsoft)第 11 代 Surface Pro 2. 微星(MSI)Creator/Workstation 系列 3. 技嘉(GIGABYTE)Aero/Aorus 系列 4. 戴尔(Dell)Precision 移动工作站 5. 惠普(HP)ZBook 移动工作站 6. 联想(Lenovo)ThinkPad P 系列 这些笔记本一般采用英特尔酷睿或 AMD Ryzen 的高端移动 CPU,配备 NVIDIA RTX 30/40 系列或 AMD Radeon Pro 专业级 GPU。同时也提供了大容量内存(32GB 以上)和高速 NVMe SSD 存储选配。除了硬件配置,这些 AI 笔记本还通常预装了 NVIDIA CUDA、cuDNN 等深度学习框架,以及各种 AI 开发工具,为用户提供了开箱即用的 AI 开发环境。当然,这类高端 AI 笔记本价格也相对较高,通常在 2000 美元以上。用户可以根据自身的 AI 应用需求和预算情况,选择合适的型号。同时也要关注笔记本的散热、续航等实际使用体验。
2024-12-09
AI属于电脑操作系统吗?AI是如何学习的?
AI 不属于电脑操作系统。AI 是人工智能的简称,它的学习方式有多种,主要包括以下几种: 1. 机器学习:这是让电脑找规律学习的方式,包括监督学习、无监督学习和强化学习。 监督学习:使用有标签的训练数据,算法的目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,比如让模型根据一堆新闻文章的主题或内容特征分成具有相似特征的组。 强化学习:从反馈里学习,以最大化奖励或最小化损失,类似训小狗。 2. 深度学习:这是一种参照人脑的方法,具有神经网络和神经元,因为有很多层所以叫深度。神经网络可以用于监督学习、无监督学习、强化学习。 3. 生成式 AI:可以生成文本、图片、音频、视频等内容形式。 4. 大语言模型:如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类等。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-04
我想配置一台可以跑SD的电脑 我该怎么选择?
如果您想配置一台可以跑 SD(Stable Diffusion)的电脑,以下是一些选择建议: 1. 系统要求:系统需为 Win10 或 Win11。查看电脑系统的方法是在桌面上找到“我的电脑”,鼠标右键点击,点击“属性”,查看 Windows 规格。 2. 配置查看: 查看电脑运行内存: 打开任务管理器(同时按下 ctrl+shift+esc)。 查看电脑运行内存,8GB 运行内存可以勉强运行 SD,推荐 16GB 以上运行内存。 查看电脑显卡内存(显存): 鼠标右击桌面底部任务栏,点击“任务管理器”。 查看“GPU”,首先先看右上角显卡的名字或者型号,必须确认是 NVIDIA(俗称 N 卡)。 接着看到下面划线的专用 GPU 内存,4GB 显存可运行 SD,推荐 8GB 以上显存。 3. 配置达标情况: 电脑运行内存 8GB 以上。 是英伟达(NVIDA)的显卡。 显卡内存 4GB 以上。 4. 配置不够的选择:如果配置不够,可选择云端部署(Mac 也推荐云端部署)。 Win 系统 SD 安装教程:https://qa3dhma45mc.feishu.cn/wiki/D5nawAs1fivF4ykx88ucRIYwn1d SD 云端部署教程:https://qa3dhma45mc.feishu.cn/wiki/A6WYw1Nm0ikGplkuO9Ecwomqnnd 5. 备选:如果觉得 SD 太难,可先试试简单的无界 AI:
2024-12-02
我想找一个能够实现运动控制逻辑的编程助手
目前在 AI 领域中,有一些编程助手可以帮助您实现运动控制逻辑。例如,您可以考虑使用 Python 中的相关库,如 `numpy`、`matplotlib` 等,结合数学和物理知识来构建运动控制模型。另外,一些专门的机器人编程框架和工具,如 ROS(Robot Operating System)也能为您提供支持。但具体选择哪种工具,还需要根据您的具体需求和技术背景来决定。
2024-11-20
控制在智能制造中的应用
以下是关于控制在智能制造中的应用的相关信息: 在智能制造领域,控制技术有着广泛的应用: 1. 预测性维护:利用人工智能预测机器故障,帮助工厂避免停机,提高生产效率。 2. 质量控制:通过人工智能检测产品缺陷,提升产品质量。 3. 供应链管理:借助人工智能优化供应链,提高效率并降低成本。 4. 机器人自动化:运用人工智能控制工业机器人,进一步提高生产效率。 此外,ControlNet 是一种由斯坦福大学张吕敏发布的神经网络模型,它能与预训练的图像扩散模型(如 Stable Diffusion)结合,通过引入额外条件输入来控制 AI 绘画的生成过程。其工作原理是将 Stable Diffusion 模型的权重复制到 ControlNet 的可训练副本中,并使用外部条件向量训练副本,具有训练过程的鲁棒性、避免过度拟合、可在小规模设备训练以及架构兼容性和迁移能力强等优点,不仅用于 AI 绘画,还可用于图像编辑、风格迁移、图像超分辨率等多种计算机视觉任务。
2024-10-28
ai控制骨骼动画
以下是关于 AI 控制骨骼动画的相关信息: 在 Stable Diffusion 中,使用 ControlNet 插件进行姿态约束时,对于国风 3 模型,点击生成可能得到相应姿势,但 AI 识别可能不准确,会出现骨骼错位等问题,需要耐心刷图和调整参数。作者还收集了不同 pose 的骨架图,可在公众号【白马与少年】回复【SD】获取以作人物动作参考。 Tripo AI 的模型详情页提供丰富工具和选项,可对模型进行编辑和下载等操作。模型工具包括收藏、分享、动态旋转或暂停、删除等按钮,在模型区域按住鼠标并拖动可自由旋转模型。编辑工具中的 Auto Rigging 可自动绑定骨骼,后续可在 Blender 里做动画。风格化选项有原始、乐高、像素化、沃罗诺伊图等,Custom 设置可根据特定软件或用途进行定制,Retopologize 提供不同精度的拓扑网格选项,Format 提供多种模型文件格式,选择“Download”可下载模型,使用“Refine”可进一步精修。 晨然在其 AI 作品《Devices》的创作中,工作流是使用 Blender 制作白模动画,导出深度图、线框图帧序列,使用 ComfyUI 进行风格迥异的渲染。他认为 AI 视频与传统工作流制作视频各有优缺点,不是替代关系。AI 内容生成速度快、成本低但不可控、画面粗糙;传统工作流可控性强但慢、成本高。应让 AI 与传统工作流结合,在随机性中寻找可控性,平衡两者以创造新的艺术创作流程。
2024-10-10
过程控制系统是指DCS吗
过程控制系统并不完全等同于 DCS(分布式控制系统)。 过程控制系统是一种用于工业生产过程中对工艺参数进行自动控制的系统,旨在确保生产过程的稳定性、提高产品质量和生产效率。 DCS 是过程控制系统的一种常见类型,具有分布式控制、集中管理等特点。然而,除了 DCS 之外,过程控制系统还可能包括其他形式,例如 PLC(可编程逻辑控制器)控制系统等。 总之,DCS 是过程控制系统中的一种,但过程控制系统的范畴更广,包含多种不同的控制形式和技术。
2024-10-08
Midjurnery绘画如何控制风格
要控制 Midjourney 绘画的风格,可以通过以下参数和功能实现: 1. 模型版本切换:使用 `style <4a,4b or 4c>` 可在 Midjourney 模型版本 4 的不同版本间切换。 2. 风格强度调整:`stylize <number>, or s <number>` 参数影响 Midjourney 默认美学风格应用于任务的强度。 3. 人物一致性:通过 `cref URL` 在提示词后添加人物参考图像的 URL,并使用 `cw` 修改参考强度(从 0 到 100),强度为 100(`cw 100`)时使用人物的脸、头发和衣服,强度为 0(`cw 0`)时仅关注脸部(适用于改变服装/发型等)。还可以使用多个 URL 来融合多个图像中的信息/人物,如 `cref URL1 URL2` 。 此外,还有一些其他基本参数会对生成结果产生影响: 1. 宽高比:`aspect,or ar` 可改变生成图像的宽高比。 2. 混沌值:`chaos <number 0–100>` 改变结果的多样性,值越高越不寻常和意外。 3. 负向提示:`no` 用于尝试从图像中去除某些元素。 4. 质量:`quality <.25,.5,1,or 2>, or q <.25,.5,1,or 2>` 决定渲染质量和花费时间。 5. 种子:`seed <integer between 0–4294967295>` 用于指定生成初始图像网格的随机种子数。 6. 停止:`stop <integer between 10–100>` 可在生成过程中途停止作业。 需要注意的是,模型版本 5 的默认值和范围如下:宽高比默认 1:1,混沌值默认 0,质量默认 1,种子随机,停止默认 100,风格化默认 100。宽高比大于 2:1 处于实验阶段,可能产生不可预测的结果。
2024-10-07
运用ai程序控制电脑游戏帮忙搬砖
使用 AI 程序控制电脑游戏进行搬砖的行为是违反游戏规则和道德准则的,可能会导致账号封禁等不良后果,因此不建议您这样做。AI 技术应当被用于合法、有益和符合道德规范的用途。
2024-08-20