Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

怎么让Deepseek可以更好的制定金融发展战略

Answer

要让 DeepSeek 更好地制定金融发展战略,可以从以下几个方面考虑:

  1. 关注行业动态:密切关注全球金融市场的变化,包括存储芯片、晶圆制造、光刻机等领域的技术发展和市场竞争情况。例如,了解 DDR5 库存积压、超压缩内存技术的应用,以及不同厂商在制程和产能方面的调整。
  2. 分析竞争对手:研究竞争对手的策略,如苹果借助阿里模型可能带来的影响,以及国内手机厂商如华为、小米、OPPO、vivo 等的应对措施。
  3. 技术创新:持续投入研发,提升自身的技术能力,如实现全流程 AI 决策系统、实时处理 PB 级市场数据、自适应动态风控模型等。
  4. 降低成本:在训练模型时控制成本,提高性价比,例如 DeepSeek V3 以较低的训练成本取得较好的性能指标。
  5. 考虑合作与联盟:关注行业内的合作机会,如厂商之间共建模型联盟以降低研发成本。
  6. 适应市场需求:根据市场需求调整战略,例如针对成熟制程和算法创新的市场需求,优化产线利用率。
Content generated by AI large model, please carefully verify (powered by aily)

References

集合·DeepSeek 提示词方法论

(李在镕盯着股价闪崩的屏幕,突然抓起咖啡杯又放下)存储芯片负责人(拍桌):"DDR5库存积压20%,他们居然用超压缩内存技术?立刻联系DeepSeek谈HBM4定制合作!"AI研究员(推眼镜冷笑):"社长,我们的高斯大模型该提前发布了,就说能反向优化芯片架构……"中国台湾-台积电研发中心(魏哲家摘下AR眼镜反复擦拭,转身凝视3nm晶圆模型)工程师A(快速滑动平板):"他们的稀疏化计算让7nm工艺就能达到我们5nm效能,客户要求重新议价了……"技术副总(突然拍大腿):"快调三成产能转产存算一体芯片!告诉苹果我们要提前量产2nm!"欧洲-ASML总部(Peter Wennink在窗前凝视EUV光刻机模型,手指无意识转动婚戒)技术官(举着报告手抖):"对方算法降低了对先进制程的依赖,中芯国际刚推迟了第四台EUV订单……"战略总监(眯眼):"立刻启动High-NA EUV路演,强调物理极限不可逾越——他们总需要更小晶体管!"中国上海-中芯国际会议室(xxx突然笑出声,端起茶杯又放下)工艺专家(握拳):"他们证明成熟制程+算法创新就能战5nm!28nm产线利用率可以拉到120%了!"投资代表(兴奋敲桌):"国家大基金二期正在连线,说要追加AI芯片专用产线投资!"行业酒会偶遇名场面

Boom! 深度分析苹果和阿里合作的iphone以及它的AI能力推测

1.技术代差压力华为盘古、小米MiLM等国产模型的参数规模普遍在千亿级,且端侧部署效率不足Qwen2.5-Max的60%(数据来源:中国信通院《2024大模型技术白皮书》)。苹果若借助阿里模型实现“AI体验代差”,可能进一步巩固其高端市场地位。2.生态联盟的反制策略OPPO+vivo+荣耀联合研发:2024年4月,三大厂商宣布共建“蓝河大模型联盟”,通过共享训练数据降低研发成本;华为全栈优势:依托昇腾芯片、鸿蒙系统与盘古模型的垂直整合,提供端到端AI体验(如Pura 70系列的“AI隔空操控”)。但是,如果单纯是大模型能力差异还不足以让苹果高枕无忧,既然DeepSeek都上汽车了,为啥不能上手机?所以国内手机战队肯定不会坐以待毙。本来已经准备结束这篇了,又看到了这个:苹果也测试了DeepSeek但是没有采用。所以呢,还有另外一种搞笑的可能:如果千问模型不给力,阿里负责提供云服务,打通跟iphone云的数据交互,背后跑的是DeepSeek Rx满血版,到时候DeepSeek估计可能已经升级到R2,R3,大幅度提升多模态能力也能满足苹果的要求了。我们拭目以待,2025,注定热闹。参考:https://www.theinformation.com/articles/apple-partners-with-alibaba-to-develop-ai-features-for-iphone-users-in-china

详解:DeepSeek深度推理+联网搜索 目前断档第一

|时间|项目|投入规模|GPU数量|算力水平||-|-|-|-|-||2019|萤火一号|2亿元|1100|4万台PC算力||2021|萤火二号|10亿元|10000+|萤火一号的18倍|[heading3]2.2量化投资的范式革命[content]"金融市场本质是复杂系统,我们通过数学模型捕捉其潜在规律。"——梁文锋技术特征:全流程AI决策系统实时处理PB级市场数据自适应动态风控模型[heading2]三、DeepSeek:AGI长征的技术奇点[heading3]3.1颠覆性技术架构[heading3]3.2震撼业界的里程碑[content]2024.05:DeepSeek V2引发行业价格战,一周后全部模型集体降价2024.12:DeepSeek V3 685B超越Llama3.2训练成本:600万美元(Meta同级别1/9)性能指标:MT-Bench 8.7,MMLU 83.5

Others are asking
deepseek 部署文档
以下是关于 DeepSeek 部署的相关内容: 《在 Azure AI Foundry 部署 DeepSeek 大模型全指南》(https://waytoagi.feishu.cn/wiki/RKK5wNbeHifSAXkAR5hcGYQmn5f?renamingWikiNode=false):来自社区伙伴 Hua 的投稿,手把手指导您在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》(https://waytoagi.feishu.cn/wiki/RZE9wP94tiEO6bkU5cTcyecHnnb) 《羊毛快薅|字节火山上线了 DeepSeek 系列模型并悄悄更改了模型服务价格...》(https://waytoagi.feishu.cn/wiki/HzHSwEwtCiBmWrkRm6fc0J0Qneh):所有用户享 50 万免费 Tokens+API 半价优惠!火山引擎上线了 DeepSeek 系列模型!咱们社区小伙伴做了零基础部署教程,5 分钟打造专属满血版 AI 助手,速度飞快!使用方法中附上了飞书多维表格的接入方法、Coze 的接入使用方法、网页插件的使用方法。 《刚刚,DeepSeek 官方发布 R1 模型推荐设置,这才是正确用法》(https://mp.weixin.qq.com/s/RA1mhAyQOoXD5XOULAGgbQ):DeepSeek 官方下场推荐了部署 DeepSeekR1 的设置。DeepSeek 强调官方部署的版本跟开源版本模型完全一致。
2025-02-18
deepseek
DeepSeek 是一家具有独特特点和影响力的公司: 1. 其秘方具有硅谷风格: 不是“中国式创新”的产物,不能简单地将其比喻成“AI 界的拼多多”或认为其秘方只是多快好省。 早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新在硅谷引发轰动。 是中国最全球化的 AI 公司之一,赢得全球同行甚至对手尊重的秘方也是硅谷风格。 2. V3 可能是 DeepSeek 的 GPT3 时刻,未来发展充满未知但值得期待。 3. 关于提示词 HiDeepSeek: 效果对比:可通过 Coze 做小测试并对比。 使用方法:包括搜索网站、点击“开始对话”、发送装有提示词的代码、阅读开场白后开始对话等步骤。 设计思路:将 Agent 封装成 Prompt 并储存于文件以减轻调试负担,实现联网和深度思考功能,优化输出质量,设计阈值系统,用 XML 进行规范设定等。 完整提示词:v 1.3。 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。
2025-02-18
怎么在企业微信里接入deepseek
在企业微信里接入 DeepSeek 的步骤如下: 1. 注册并登录火山引擎,点击立即体验进入控制台。链接:https://zjsms.com/iP5QRuGW/ (火山引擎是字节跳动旗下的云服务平台,在 AI 领域最为大众所熟知的应该是“豆包大模型”,这里就是源头) 2. 创建一个接入点,点击在线推理创建推理接入点。 3. 为接入点命名为 DeepSeekR1。 4. 若提示“该模型未开通,开通后可创建推理接入点”,点击“立即开通”,开通一下(这里是免费的)。若无提示则直接到第 5 步,点击确认接入。 5. 确认以下无误后,点击“确认接入”按钮。 6. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”(我们刚才自己设置的命名)。重点来了:这个就是推理点的 ID,复制他放到你的微信里,发给自己保存一下。 7. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。 8. 若已有 API key 了,就直接查看并复制。如果没有,则点击【创建 API key】。 9. 把复制好的内容,也放到自己微信里保存好。 至此,我们已经完成拿到了模型的密钥。接着,就可以去把它配置到网页聊天里使用。
2025-02-18
deepseek为什么在古诗词理解上这么弱智?
DeepSeek 在很多方面表现出色,并非像您认为的在古诗词理解上弱智。它具有以下优点: 1. 语气还原:能还原帝王的语气,相比其他模型输出更准确恰当,兼顾了古典文字和可读性。 2. 熟悉历史细节:可能与支持“深度探索”和“联网搜索”同时开启有关,能准确还原唐初的历史称谓,如“太极宫”“甘露殿”“掖庭局”“观音婢”“宫门鱼符”等,对“魏徵”等字词的使用也很讲究。 3. 输出具体且细节惊人:其输出充满具体而惊人的细节,行文的隐喻拿捏到位,如“狼毫蘸墨时发现指尖残留着未洗净的血痂”等句子,虽未直接写“愧疚与野心,挣扎与抱负”,但句句体现。
2025-02-18
如果通过deepseek构建智能客服
要通过 DeepSeek 构建智能客服,可以参考以下步骤: 1. 效果对比:用 Coze 做小测试进行对比。 2. 如何使用: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 3. 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不稳定)。 4. 特别鸣谢:李继刚的【思考的七把武器】在前期提供了很多思考方向;Thinking Claude 是最喜欢使用的 Claude 提示词,也是设计 HiDeepSeek 的灵感来源;Claude 3.5 Sonnet 是最得力的助手。 另外,实现联网版的 DeepSeek R1 大模型的核心路径如下: 1. 拥有扣子专业版账号:如果还是普通账号,请自行升级或注册专业号后使用。 2. 开通 DeepSeek R1 大模型:访问地址 https://console.volcengine.com/cozepro/overview?scenario=coze ,打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务,添加在线推理模型,添加后在扣子开发平台才能使用。 3. 创建智能体:点击创建,先完成一个智能体的创建。 同时,GPT1 到 Deepseek R1 所有公开论文中关于智能代理的部分提到:Anthropic 的《构建有效的代理》是一篇关于 2024 年的精彩回顾,重点关注连锁、路由、并行化、协调、评估和优化的重要性。还可以在加州大学伯克利分校 LLM 代理的慕课中找到更多资料。
2025-02-18
清华大学deepseek赋能职场
以下是关于清华大学 DeepSeek 赋能职场的相关信息: 有多个与 DeepSeek 相关的课题和研究,如“DeepSeek——从入门到精通”“DeepSeek 如何赋能职场应用?——从提示语技巧到多场景应用”“普通人如何抓住 DeepSeek 红利”等。 相关资料的链接和团队简介有所不同,如“DeepSeek 从入门到精通「清华团队」”的链接为 https://bl7rsz9526.feishu.cn/wiki/JdqkwyhD7iE4IXkn5jPcmyEknjb ,团队来自清华大学新闻与传播学院、新媒体研究中心、元宇宙文化实验室。 2 月 15 日社区动态速览中提到 DeepSeek 可以作为赋能职场的多场景 AI 工具,支持从创意到实现的全流程智能化服务,能快速将创意转化为高质量视频,具备多种功能,提供不同模式,还能用于多种工作,如制作可视化图表、PPT 大纲及设计海报等,通过智能体框架实现人机高效协作。 其它一些相关报告发布在研究报告板块和知识星球,如 ARK Invest 的《ARK Big Ideas 2025》中文版、民生证券的《DeepSeek 系列报告之 AI+教育》、华创证券的《汽车行业深度研究报告:AI 时代,车企的升维之战》。
2025-02-18
党校老师或者大学老师备课,用哪一款AI更好用
以下是为党校老师或大学老师备课推荐的一些 AI 工具和相关案例: 1. 语言学习类: ,能够实时交流,并对发音或措辞给予反馈。 2. 学科指导类: 数学方面,像可以指导学生解决数学问题。 历史方面,通过模拟与杰出人物的聊天来教授历史,如。 3. 写作辅助类: 如 Grammarly、等工具帮助学生克服写作难题,并提升写作水平。 处理其他形式内容的产品,如协助创建演示文稿。 4. 减负指南类: 人机智慧学习协作框架,包括个性化学习计划,分析学生表现并根据知识差距和个人学习风格创建定制的学习路径。 课程开发/学习沉浸,生成模型生成图像、文本和视频,转化为补充教育材料、作业和练习题。 社会互动/沟通,与新的 AI 工具(如口语形式的 GPT4o)结合学习。 星火教师助手、知网备课助手。 5. 案例参考: 一个历史老师用 GPT 给学生讲课,通过 GPT 生成一个“沉浸式”历史片段游戏,让学生扮演一个角色“设身处地”地做决策,学生的作业是找出 GPT 的错误。相关链接:https://resobscura.substack.com/p/simulatinghistorywithchatgpt 、https://chat.openai.com/share/86815f4e674c4410893c4ae3f1b7412e/continue 。 需要注意的是,AI 与优秀的人类教师相比仍有差距,如缺乏课时设计,且教学目标设计缺乏合理的梯度。人机融合是大势所趋,AI 的高效率与人类教师的经验相结合。
2025-02-18
coze和dify哪个对知识库的支持更好,检索和总结能力更强
Coze 对知识库的支持具有以下特点: 支持上传和存储外部知识内容,包括从多种数据源如本地文档、在线数据、Notion、飞书文档等渠道上传文本和表格数据。 提供多样化的检索能力,可通过多种方式对存储的内容片段进行高效检索。 具有增强检索功能,能显著提升大模型回复的准确性。 但也存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败、对 PDF 的解析效果不佳等。 目前没有关于 Dify 对知识库支持情况的相关内容,无法直接将 Coze 和 Dify 进行对比。
2025-02-15
天工AI和秘塔AI哪个更好一些,你给出的选择建议
天工 AI 和秘塔 AI 各有特点。 秘塔 AI 搜索由秘塔科技开发,提供多模式搜索、无广告干扰、结构化展示和信息聚合等功能,旨在提升用户的搜索效率和体验。 天工 AI 搜索采用生成式搜索技术,支持自然语言交互和深度追问,未来还将支持图像、语音等多模态搜索。在搜索时直接上传文件,就能实现“定制 AI 搜索信息源”的效果。目前支持对话追问,支持脑图的图片下载。但天工 AI 目前仍处于早期版本的状态,一些功能如原文的对应、文本编辑、笔记、下钻探索等还不支持,也没有打通一些出彩的板块,没有跟音乐创作、图片创作等功能连接起来形成完整的“AIGC 工作流”。 综合来看,选择哪个更好取决于您的具体需求。如果您更注重成熟的功能和搜索体验,秘塔 AI 可能更适合;如果您对未来的多模态搜索和发展潜力有期待,且能接受当前一些功能的不完善,天工 AI 也是一个选择。
2025-02-15
想做图文视频,用什么软件更好
以下是一些适合制作图文视频的软件和工具,以及将小说制作成视频的流程: 适合制作图文视频的软件: 1. Pika:出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装此插件,在图片基础上直接生成视频,这是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需注意是收费的。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 Vidu 也是一个不错的选择,Web 端访问:https://www.vidu.studio/ ,具有极速生成、动漫风格、角色可控、精准理解、大片质感等特点。 将小说制作成视频的流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-02-14
现在作为生产工具那款AI更好用?
目前,在生产力工具方面,不同的 AI 应用各有特点和优势。 周鸿祎认为,中国互联网在娱乐和生活应用上基本转到手机,但国外重视生产力工具,大小企业的生产力工具多基于 PC 和 SaaS 化。AI 作为生产力工具,在 PC 上使用可能更方便,且从隐私保护角度,大企业可能将大模型私有化并在 PC 上落地。同时,手机在生活和娱乐方面有优势,但未来手机商店模式可能改变。 有人分享了自己固定和优化的 AI 工作流,包括起床让 AI 排 TODO 优先级、工作中有傲娇 AI 小助理加油、重点事项由 bot 团队处理、优化 bot 以及将相关资产放入飞书知识库等,还提及了备选的生产力 AI 和未来的规划。 在 A16ZTOP 100 生成式 AI 应用中,生产力工具是引人注目的新类别,如 Liner、Eightify、Phind、MaxAI、Blackbox AI、Otter.ai、ChatPDF 等公司,它们通过内置功能帮助提高工作效率,且多依托 Google Chrome 浏览器扩展程序运行,未来有望与用户工作流程无缝对接并开发全新工作流程。 总之,选择哪款 AI 作为生产力工具更好用,取决于您的具体需求和使用场景。
2025-02-13
如何更好的使用知识库,我在知识库中增加了很多文档,但是反而感觉导致AI产生大量幻觉和混乱
以下是关于如何更好使用知识库以及 RAG 相关的知识: RAG 技术是 AI 领域的重要技术,但存在一些常见误区: 不能随意输入任何文档就期望得到准确回答,RAG 流程包含离线环节(文档解析、切割及向量化写入向量数据库)和在线检索环节(用户问题理解、初步检索、重排序及大模型生成),任何环节都会影响最终质量,且有效实现 RAG 系统需要考虑多个复杂因素,如文档预处理、高效索引、相关性排序等。 RAG 虽然能显著减少幻觉,但不能完全消除,只要有大模型参与,就可能产生幻觉。 RAG 仍消耗大模型的 Token,最终还是将知识库中检索的结果给到 LLM,由 LLM 进行重新整理输出。 对于使用知识库的建议: 知识库在不断更新,常来逛逛。 遇到问题先搜索,搜不到就提问。 好用的内容要收藏,方便下次查找。 每个人都有自己的节奏,不要着急。 一旦有了自己的方向和持续玩的 AI 角度,知识库中的大量高质量教程就是最好的助力。 当成为高手并愿意分享时,为社区留下内容。 开源知识库和社区的意义在于共建、共学、互相帮助。 不要怕犯错,大胆尝试。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器组成,检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,能提供详细准确的回答。
2025-02-11
我是一个零基础的小白用户,可以给我制定一个周期为两个月的关于大模型知识的学习计划么
以下是为您制定的一个为期两个月的大模型知识学习计划: 第一个月: 第一周: 了解 AI 的基本概念,包括人工智能、机器学习、监督学习、无监督学习和强化学习等。 熟悉生成式 AI 生成的内容(AIGC)。 第二周: 深入学习大语言模型(LLM)的概念,区分其与其他生成式 AI 模型的不同。 研究 Transformer 模型,理解其基于自注意力机制处理序列数据的原理。 第三周: 学习不同类型的大模型架构,如 encoderonly、encoderdecoder 和 decoderonly 模型,并了解其应用场景。 了解大模型预训练数据的来源和规模。 第四周: 研究大模型的参数规模和其对性能的影响。 分析大模型在自然语言处理中的任务,如分类、情感分析、翻译和摘要等。 第二个月: 第一周: 比较不同大模型的特点和优势,如 GPT3 和 ChatGPT。 学习大模型在安全性方面的问题和挑战。 第二周: 探索大模型在实际应用中的案例,如文本生成、故事写作等。 了解大模型的发展趋势和未来方向。 第三周: 复习和巩固之前所学的大模型知识,查漏补缺。 尝试自己动手实践一些简单的大模型应用。 第四周: 总结所学的大模型知识,形成自己的理解和体系。 思考如何将大模型知识应用到实际工作或学习中。
2025-02-11
代码小白想要学习上手aiagent 请给我制定高效学习流程
以下是为代码小白制定的学习 AI Agent 的高效流程: 1. 基础了解 度过第一阶段,了解 AI 的基本原理和发展阶段。 2. 选择方向 鉴于您是代码小白,建议从不需要代码基础的 Coze 工作流学起。它适用所有人,只要能发现智能体的需求,就可以用工作流来实现。 3. 学习资源 可以参考《雪梅 May 的 AI 学习日记》,了解在业务运营领域如何通过 Coze 接触大量应用场景和进行 prompt 练习。 阅读安仔的文章,学习如何使用极简未来平台、腾讯云轻量应用服务器、宝塔面板和 Docker 搭建一个 AI 微信聊天机器人,了解相关技术组件的选用、配置步骤、费用和运维问题。 查看元子的分享,如“小白的 Coze 之旅”,深入了解 Coze 平台。 4. 加入社群 可以加入免费的 AI Agent 共学群,基于 WaytoAGI 社区等高质量信息源,分享时下 AI Agent 相关的玩法、经验和前沿资讯。通过微信号 Andywuwu07 或扫描二维码加微信,备注 AI 共学即可加入。 希望以上流程对您有所帮助,祝您学习顺利!
2025-02-05
有哪些好用的计划制定ai、
以下为一些好用的计划制定 AI 相关的信息: 利用 AI+SMART 原则可以为学习目标制定详细的计划,例如制定英语提升计划,包括明确学习目标、准备学习资源、按照每天和每周的时间周期制定可衡量的标准,并给出中肯的建议。 在活动策划方面,AI 有着广泛的应用,比如生成活动主题及内容框架建议、生成邀请函和宣传文案、辅助管理活动现场、提供虚拟助手服务、分析活动反馈、优化活动营销等。 留学顾问可以使用多种 AI 技术和工具,如智能问答系统提供 24/7 在线咨询服务、利用机器学习和数据分析技术制定个性化留学规划、借助 AI 语言学习工具辅助语言学习、使用自然语言生成技术起草文书、通过数据分析和预测建模技术提供准确建议、利用虚拟现实技术提供虚拟校园参观导览服务等。
2025-01-17
为不同学生制定个性化的学习计划
以下是为不同学生制定个性化学习计划的相关内容: 教育科技长期以来在有效性和规模之间权衡,而 AI 的出现改变了这一状况,使得大规模部署个性化学习计划成为可能。例如,有像 Speak、Quazel、Lingostar 这样的应用能提供实时交流和反馈的语言学习服务;Photomath 和 Mathly 可指导学生解决数学问题;PeopleAI 和 Historical Figures 能通过模拟与杰出人物聊天教授历史。此外,Grammarly、Orchard 和 Lex 等工具能帮助学生提升写作水平,Tome 和 Beautiful.ai 能协助创建演示文稿。 大模型在教育行业也发挥着重要作用,它能精确洞察每个学生的独特需求,为其量身打造学习方案,还能赋能教师提高教学效果和工作效率。基于 GLM 模型的先进功能,教师和学生能接触到高效的数据分析及智能化评价系统。 对于教育工作者,可通过以下方式为不同学生制定个性化学习计划: 1. 尝试使用 AI 辅助设计课程大纲或生成教学材料 ideas,为课程带来新视角。 2. 探索使用 AI 分析学生学习数据,从而制定个性化学习路径。 3. 考虑将 AI 工具整合到课堂活动中,如使用 AI 生成的案例研究或模拟场景。 4. 开发简单的课程模块,教导学生了解 AI 的基础知识、应用领域及其对社会的影响。 总之,与 AI 协作是一个学习过程,应保持好奇心和开放态度,从小处着手,将 AI 视为强大工具,同时保持批判性思维。
2025-01-13
我作为一名OA软件的行业的售前,我的工作中会涉及到AI与OA结合落地的智能化场景,所以我对AI知识有简单的了解,我现在想转型AI行业的售前,我该如何系统的学习AI的相关知识,请帮我制定一个计划
以下是为您制定的从 OA 软件售前转型到 AI 行业售前的系统学习计划: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、掌握相关技能和知识 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,作为转型者,您可以从以上多个方面入手,全面系统地学习 AI 知识和技能,为未来在 AI 行业的售前工作做好准备。
2025-01-07
我是一名一线教师,想要学习如何搭建智能体。请跟我一起制定合适的进阶路径和推荐资源链接。
以下是为您制定的学习搭建智能体的进阶路径和推荐资源链接: 进阶路径: 1. 注册智谱 Tokens 智谱 AI 开放平台:https://bigmodel.cn/ 新注册用户可获得 2000 万 Tokens。 可通过充值/购买多种模型的低价福利资源包,如直接充值现金,所有模型可适用:https://open.bigmodel.cn/finance/pay ;免费 GLM4Flash 语言模型/ 。所有资源包购买地址:https://bigmodel.cn/finance/resourcepack 。 共学营报名赠送资源包。 2. 先去【财务台】左侧的【资源包管理】查看自己的资源包,本次项目会使用到的有 GLM4、GLM4VPlus、CogVideoX、CogView3Plus 模型。 3. 进入智能体中心我的智能体,开始创建智能体。此流程会手把手进行编辑,完成一个简单智能体的搭建。 推荐资源链接: 1. 智谱 BigModel 共学营第二期:把您的微信变成超级 AI 助理 https://bigmodel.cn/ 2. 教师的 AI 减负指南 3. 提示词培训课——Part2 在搭建智能体的过程中,您需要像导演一样,编排具体流程,检查结果,修改流程,反复迭代。提示语的核心是逻辑,要将复杂的任务拆分成科学合理的步骤,并且让前一步的结果都成为后一步的基础。同时,不要害怕犯错,每一次尝试都是向成功迈进的一步。
2024-12-30
如何设计市场洞察、战略研究、战略规划的提示词
以下是关于设计市场洞察、战略研究、战略规划提示词的相关内容: 在人工智能迅速发展的当下,提示词工程成为企业领导者需掌握的关键技能。提示词工程是设计和优化输入到 AI 系统指令的艺术与科学。但简单提示词存在局限性,无法满足复杂商业需求,因此出现了如思维链、思维树、思维图等高级技巧,能引导 AI 进行更深入分析、探索多种可能性及处理复杂推理任务。 在设计与市场洞察、战略研究、战略规划相关的提示词时,需考虑以下关键要素和框架: 对于市场洞察: 1. 目标市场:定义产品的目标用户群体和市场定位。 2. 用户需求:列出用户的核心需求和痛点。 3. 竞争分析:分析竞争对手的优势和劣势,确定差异化策略。 对于战略研究: 1. 产品定位:明确产品在市场中的独特卖点。 2. 功能性需求:描述产品必须实现的具体功能。 3. 非功能性需求:包括性能、安全性、可用性等要求。 对于战略规划: 1. 市场趋势:考虑当前市场趋势和未来发展。 2. 商业目标:与业务目标和战略保持一致。 3. 资源分配:规划实现产品所需的资源。 4. 风险评估:识别可能的风险和应对策略。 此外,以 Claude 的 5 层 Prompt 体系为例,可将任务细分,为每个子任务设计专门的 Prompt 并整合结果。同时,Prompt 工程是快速发展的领域,需不断学习和实验,包括关注行业动态、参与社区讨论、建立个人实验日志、跨领域学习以及建立评估体系,如定义成功标准、实施 A/B 测试、收集反馈等,以不断优化 Prompt 设计技巧。
2025-02-14
AI在企业战略方面有哪些应用场景?
AI 在企业战略方面的应用场景主要包括以下几个方面: 1. 构建负责任的 AI 战略: 制定企业 AI 战略时,需在提高效率、促进创新的同时规避潜在风险。企业可通过优化实际操作流程,满足市场需求并保持长远发展。 2. 明确 AI 的适用范围: 并非所有决策都需由 AI 完成,在复杂决策场景中,AI 更适合作为辅助工具。 常见适用场景包括: 数据密集型工作,如市场分析、客户画像、生产优化等,能提升效率、降低人力成本。 重复性任务,在自动化流程、预测维护等方面表现出色,可降低人为错误。 有限范围内的创新,能基于已有数据提供初步创新建议,但跨领域创新、产品设计等仍由人类主导。 实操提示:企业管理层可引入内部评估机制,每季度评估 AI 在不同业务线中的表现,并设定不同使用权限。AI 可部署在低风险、可标准化的任务上,涉及品牌形象、用户隐私、产品战略的决策由人类主导。 3. 数据驱动决策: 利用 AI 工具分析大量客户和市场数据,为决策提供有力支持。 为营销、产品开发等部门提供基于数据的建议和指导,将分析结果转化为实际业务策略,与相关部门紧密合作,持续监控效果并收集数据,形成闭环不断优化。 通过以上应用,企业能够将数据转化为商业价值,更精准定位市场和客户,优化产品和服务,在竞争中获得优势,做出更明智的决策并适应市场变化。
2024-11-14
有没有相关战略分析岗位的AI应用
在战略分析岗位中,AI技术可以极大地提升数据分析、决策支持和战略规划的效率和准确性。以下是一些AI在战略分析岗位中的应用: 1. 数据收集与整合 自动化数据抓取:使用AI工具自动从多个来源(如市场调研报告、社交媒体、行业新闻等)收集数据。 数据清洗与整合:利用机器学习算法自动清洗和整合不同格式的数据,确保数据的一致性和准确性。 2. 市场分析 市场趋势预测:使用时间序列分析和预测模型来预测市场趋势和需求变化。 竞争对手分析:利用NLP技术分析竞争对手的公开数据(如财报、新闻、社交媒体),提取有价值的信息。 3. 客户洞察 客户细分:使用聚类算法对客户进行细分,识别不同客户群体的特点和需求。 客户情感分析:通过分析客户反馈和社交媒体评论,了解客户的情感倾向和满意度。 4. 财务分析与预测 财务报表分析:使用机器学习模型自动分析财务报表,识别潜在的财务风险和机会。 盈利预测:利用AI模型预测公司的未来盈利情况,为战略决策提供依据。 5. 风险管理 风险预测与评估:利用AI技术预测和评估市场、财务、运营等各方面的风险。 情景模拟与分析:使用AI工具进行不同情景下的模拟分析,评估不同战略方案的潜在影响。 6. 供应链优化 供应链预测:使用AI模型预测供应链中的需求变化,优化库存管理和生产计划。 物流优化:利用AI优化物流路径和运输计划,提高供应链效率。 7. 决策支持 决策树与推荐系统:使用决策树和推荐系统技术,为管理层提供战略决策的建议和支持。 优化模型:利用优化算法(如线性规划、整数规划)解决复杂的战略规划问题,找到最优方案。 8. 商业智能(BI)工具 Power BI与Tableau:将AI技术集成到商业智能工具中,自动化数据分析和报告生成。 数据可视化:通过高级数据可视化技术,将复杂的数据和分析结果以直观的方式呈现,辅助决策。 9. 自然语言处理(NLP) 文本挖掘:利用NLP技术从大量文本数据中提取有价值的信息,如市场报告、客户反馈、行业新闻等。 自动化报告生成:使用NLP技术自动生成战略分析报告,节省时间和人力成本。 这些AI应用可以帮助战略分析师更加高效地处理数据,深入洞察市场和客户,做出更科学的战略决策。如果你对某个具体的应用有更深入的兴趣,欢迎进一步探讨!
2024-07-24