直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

COT技术

回答

COT 技术,即思维链(Chain of Thought)提示技术,当面对复杂问题或任务时,让模型如 Claude 逐步思考问题然后再给出最终答案往往是有益的。这种技术可以显著提高模型回答问题的准确性和细微差别。

在输出防护提示词中,还引入了 CCoT 技术,即对比思维链提示(Contrastive Chain-of-Thought Prompting)。简单来说,其作用是通过举正反例的方式来告诉模型什么状况下做出的举动是对的或错误的。如果想通过这种对比的形式来提升模型的表现性,那么意味着这些例子(对的或错的)总是成对出现的。想进一步深入了解技术的朋友可以进入此链接查看原文:《Contrastive Chain-of-Thought Prompting》(https://arxiv.org/pdf/2311.09277.pdf )

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

8.Let Claude think 让 Claude 思考

When faced with a complex question or task,it's often beneficial to let Claude think through the problem step-by-step before providing a final answer.This technique,also known as chain of thought(CoT)prompting,can significantly improve the accuracy and nuance of Claude's responses.当面对复杂问题或任务时,让克劳德逐步思考问题然后再给出最终答案往往是有益的。这种技术,也被称为思维链(CoT)提示,可以显著提高克劳德回答问题的准确性和细微差别。

20.RAG提示工程系列(二):大模型安全与防护实践

我们可以观察到,输出防护提示词实际上是一种尾部处理机制,它构成了安全防护的最后一道防线。在此基础上,我们还可以进一步在输出阶段引入额外的过滤机制,形成一套独立的输出过滤提示词,以进一步提升系统的安全性。通过这种深化的防护措施,我们可以确保模型在生成输出时,不仅遵循了内容的相关性,还额外通过了一层安全过滤,从而为整个系统的安全性提供了更全面的保障。在输出防护提示词中,我们引入了CCoT技术。那么什么是CCoT?CCoT(Contrastive Chain-of-Thought Prompting)即“对比思维链提示”,简单来说其作用就是:通过举正反例的方式来告诉模型什么状况下做出的举动是对的或错误的。如果想通过这种对比的形式来提升模型的表现性,那么意味着,这些例子(对的或错的)总是成对出现的。想进一步深入了解技术的朋友可以进入此链接查看原文:《Contrastive Chain-of-Thought Prompting》([https://arxiv.org/pdf/2311.09277.pdf](https://arxiv.org/pdf/2311.09277.pdf))

RAG提示工程(二):安全与防护实践

我们可以观察到,输出防护提示词实际上是一种尾部处理机制,它构成了安全防护的最后一道防线。在此基础上,我们还可以进一步在输出阶段引入额外的过滤机制,形成一套独立的输出过滤提示词,以进一步提升系统的安全性。通过这种深化的防护措施,我们可以确保模型在生成输出时,不仅遵循了内容的相关性,还额外通过了一层安全过滤,从而为整个系统的安全性提供了更全面的保障。在输出防护提示词中,我们引入了CCoT技术。那么什么是CCoT?CCoT(Contrastive Chain-of-Thought Prompting)即“对比思维链提示”,简单来说其作用就是:通过举正反例的方式来告诉模型什么状况下做出的举动是对的或错误的。如果想通过这种对比的形式来提升模型的表现性,那么意味着,这些例子(对的或错的)总是成对出现的。想进一步深入了解技术的朋友可以进入此链接查看原文:《Contrastive Chain-of-Thought Prompting》([https://arxiv.org/pdf/2311.09277.pdf](https://arxiv.org/pdf/2311.09277.pdf))

其他人在问
LLM和COT分别是什么
LLM 即大型语言模型(Large Language Model),是一种基于深度学习的自然语言处理模型,具有强大的语言理解和生成能力。例如 FlanT5、ChatGLM、UL2、Qwen、Chinchilla、OPT、PaLM、LLaMA、LLaMA2、Vicuna 等都是常见的 LLM 模型。 COT 即思维链(ChainofThought),它能引导 LLM 逐步推理,增强其逻辑推理能力,对于需要逻辑解决方案的任务非常有效,但在创造性问题解决中存在局限性。在一些研究中,如多模态大模型中,LLM 作为核心智能体可以继承包括 COT 在内的一些显著属性。同时,ReAct 框架中也提到了将 ReAct 和 COT 结合使用的方法。
2024-10-28
CoT是什么
CoT(思维链)是一种表达思维过程的方式,通过一系列有逻辑关系的步骤来呈现完整的思考过程。它可以分为多种类型,具体取决于应用场景和具体任务。在广义上,CoT 的类型可以基于以下几个维度来分类: 1. 逻辑推理链:涉及使用逻辑推理来解决问题,例如通过应用演绎、归纳或类比推理来得出结论。 2. 步骤序列:在某些任务中,表现为一系列操作或步骤的顺序,这些步骤需要按照特定的顺序执行以解决问题,如算法问题解决或复杂任务的规划。 3. 因果链:在处理因果关系问题时,用来表示事件之间的因果链条,帮助模型理解事件之间的因果关系。 4. 情境模拟:在某些情况下,涉及模拟或想象一个场景并在该情境下进行思考,以解决问题或做出决策。 5. 对话链:在对话系统或交互式任务中,指一个连续的对话过程,其中每一步回应都基于之前的交流内容。 在不同的研究和应用中,CoT 的具体实现和分类可能有所不同。在 AI 领域,特别是在开发能够进行复杂推理和理解的模型时,CoT 方法正变得越来越重要。通过模拟人类的思考过程,CoT 旨在帮助 AI 系统更好地理解问题的上下文、解决问题的步骤,以及如何有效地应用知识来得出结论。
2024-07-01
请问COT与思维导图、系统图等的关系是什么?
我总结了以下关于 CoT(ChainofThought)与思维导图、系统图等的关系: 1. CoT 与思维导图的关系: 思维导图是一种可视化的思维表达方式,通过节点和连线展示思维过程。 CoT 也是一种表达思维过程的方式,通过一系列有逻辑关系的步骤来呈现完整的思考过程。 两者都旨在清晰地展示思维过程,但表达形式不同,思维导图更注重可视化,CoT 更注重文字描述。 2. CoT 与系统图的关系: 系统图是用来描述系统结构和组件之间关系的一种建模方式。 而 CoT 则更侧重于描述解决问题的思维过程,即系统内部的推理逻辑。 系统图和 CoT 都试图以图形化的方式表达复杂的逻辑关系,但前者关注系统架构,后者关注思维过程。 3. CoT 与思维树(ToT)的关系: 思维树(Tree of Thoughts)是 CoT 的一种扩展,在 CoT 的基础上引入了多路径探索的思维模式。 思维树允许在每个步骤中生成多个可能的思维分支,形成一个树状结构,以覆盖更广泛的推理空间。 相比 CoT 单一的思维链,思维树提供了更丰富的思维表达能力。 总的来说,CoT、思维导图、系统图等都是用于表达和组织复杂思维过程的方式,各有侧重点,但都旨在帮助更好地理解和解决问题。它们之间存在一定的联系和区别。
2024-04-22
siri是不是使用大模型技术
Siri 目前并非使用大模型技术。苹果公司的 Siri 概念虽好,但由于技术限制,其表现未达到人工智能的水平,常被称为“人工智障”。不过,随着技术发展,未来可能会用大模型重新改造 Siri,将手机上的所有功能控制起来,使其成为真正的智能助理。例如,苹果公司在手机算力的芯片发展到能够支撑大模型上手机的情况下,可能会推出大模型的小数据量、专业的版本来替代 Siri。同时,苹果公司若 All in 手机,其大模型可能会是本地化的,以重视个人数据保护和隐私。
2024-11-21
sairi是不是使用大模型技术
Sora 是使用大模型技术的。周鸿祎认为 Open AI 训练这个模型会阅读大量视频,大模型加上 Diffusion 技术需要对世界进一步了解,学习样本以视频和摄像头捕捉到的画面为主。Sora 在训练数据上采用在原始尺寸上进行训练的策略,避免了传统 AI 对人为抽象的依赖。此外,Sora 还采用了一些数据预处理技术,如将视觉图块压缩成低维潜在表示,并将其排列成序列,注入噪声后输入扩散变换器的输入层,同时采用时空分块化来降低后续对时间信息建模的复杂性。这种对原始视频和图像特征的细腻处理标志着生成模型领域的重大进步。
2024-11-21
ai诈骗防范措施和技术手段
以下是关于 AI 诈骗防范的一些措施和技术手段: 1. 政府层面: 拜登签署的 AI 行政命令要求,开发最强大 AI 系统的开发者需向美国政府分享安全测试结果和其他关键信息。对于可能对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型,开发公司在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。 商务部将制定内容认证和水印的指导方针,以清晰标记 AI 生成的内容,联邦机构将使用这些工具,为公众识别官方内容提供便利,并为私营部门和全球各国政府树立榜样。 2. 技术层面: 国家技术标准研究所将制定严格的标准进行广泛的红队测试,以确保在公开发布前的安全性。 国土安全部将把这些标准应用于关键基础设施部门,并建立 AI 安全和安保委员会。能源部和国土安全部也将处理 AI 系统对关键基础设施以及化学、生物、放射性、核和网络安全风险的威胁。 3. 企业层面: 360 立志解决大模型的安全问题,将大模型的安全问题分为三类进行研究。 在个人层面,要提高对 AI 诈骗的警惕性,不轻易相信来源不明的信息,学会识别可能的 AI 生成的虚假内容。
2024-11-21
Ai诈骗的技术分析
AI 诈骗通常利用了以下技术手段: 1. 利用 AI 生成的虚假内容:AI 模型可能生成不存在的人物、地点、事件,或者对已知事实进行错误的描述,从而制造虚假信息来误导用户。 2. 模仿真实信息:通过对训练数据中统计模式的过度依赖,生成看似真实但实际与现实不符的内容,以假乱真。 3. 针对用户认知偏差:如同人类认知偏差中的确认偏误、可得性偏差、锚定效应等,AI 诈骗内容可能会迎合这些偏差,让用户更容易接受和相信虚假信息。 产生的原因包括: 1. 训练数据问题:如果训练数据存在偏差、错误或不全面,模型会学习到这些问题并反映在生成的内容中。 2. 模型结构和训练策略:不合理的模型结构和训练策略可能导致模型无法准确理解和生成真实有效的信息。 其影响主要有: 1. 误导用户做出错误决策,例如在投资、消费等方面。 2. 传播虚假信息,破坏信息的真实性和可靠性。 3. 在一些关键领域如医疗诊断中,可能引发安全事故,延误患者治疗。 为了防范 AI 诈骗,需要建立相关的标准和最佳实践来检测 AI 生成的内容,并对官方内容进行认证和标记,例如商务部可以开发内容认证和水印的指导方针,联邦机构可以利用这些工具让公众更容易识别真实的官方通信。
2024-11-20
人工智能诈骗技术
以下是关于人工智能诈骗技术的相关内容: 欧洲议会和欧盟理事会规定,某些人工智能系统采用潜意识成分或其他操纵欺骗技术,以人们无法意识到的方式颠覆或损害人的自主、决策或自由选择,可能造成重大伤害,特别是对身体、心理健康或经济利益产生不利影响,此类系统应被禁止。例如脑机界面或虚拟现实可能促进这种情况发生。同时,若人工智能系统利用个人或特定群体的特殊状况实质性扭曲个人行为并造成重大危害也应被禁止。若扭曲行为由系统之外且不在提供者或部署者控制范围内的因素造成,则可能无法推定有扭曲行为的意图。 拜登签署的 AI 行政命令要求最强大的人工智能系统开发者与美国政府分享安全测试结果等关键信息。依照《国防生产法》,开发对国家安全、经济安全或公共卫生和安全构成严重风险的基础模型的公司,在训练模型时必须通知联邦政府,并分享所有红队安全测试的结果。商务部将为内容认证和水印制定指导方针,以明确标记人工智能生成的内容,联邦机构将使用这些工具让美国人容易知晓从政府收到的通信是真实的,并为私营部门和世界各国政府树立榜样。 关于人工智能相关危害的可争议性或补救途径的评估中,提到了一系列高水平风险,如人工智能生成和传播的虚假信息可能破坏获取可靠信息的途径以及对民主机构和进程的信任。人工智能工具可被用于自动化、加速和放大有针对性的网络攻击,增加恶意行为者的威胁严重性。
2024-11-20
如何通过技术手段提高非盐生植物的耐盐性
目前知识库中暂时没有关于如何通过技术手段提高非盐生植物耐盐性的相关内容。但一般来说,可以从以下几个方面考虑: 1. 基因工程:通过基因编辑或转基因技术,导入与耐盐相关的基因,增强植物的耐盐能力。 2. 选育优良品种:通过传统的育种方法,筛选和培育具有较高耐盐性的植物品种。 3. 土壤改良:改善土壤的物理、化学和生物性质,降低土壤盐分对植物的危害。 4. 合理灌溉:采用科学的灌溉方式和量,避免盐分在土壤中的过度积累。 5. 施加调节剂:使用植物生长调节剂,调节植物的生理代谢,提高其耐盐性。 需要注意的是,具体的技术手段需要根据植物的种类、生长环境等因素进行综合考虑和选择。
2024-11-18