直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

车载语音唤醒 技术原理

回答

车载语音唤醒技术原理:

出门问问的语音合成(TTS)技术可以应用于车载导航语音合成的个性化语音播报等场景。其接口请求域名是 https://open.mobvoi.com/api/tts/v1 ,接口请求频率限制为 5 次/秒。该技术可以将任意文本转化为语音,实现让机器和应用张口说话。它提供了普通话、台湾腔、粤语、四川话、东北话等多种方言,数百个发音人,上千种风格,满足不同场景的选择需求。实时合成支持 SSML,语法详见 SSML 标记语言。请求参数方面,HTTP Method 支持 POST 请求,并具有相应的调用参数及说明。

内容由 AI 大模型生成,请仔细甄别(powered by aily)
其他人在问
语音唤醒在不同噪音下的工作原理
很抱歉,目前知识库中没有关于语音唤醒在不同噪音下工作原理的相关内容。但一般来说,语音唤醒在不同噪音环境下工作时,会涉及到声音信号的采集、预处理、特征提取、模式匹配和决策等过程。在噪音环境中,系统通常会采用一些降噪算法和增强技术来提高对目标语音的识别准确性,例如自适应滤波、频谱减法等。同时,还会通过优化模型和算法,提高对不同噪音特征的适应性和鲁棒性。
2024-08-13
语音唤醒与什么有关
语音唤醒与以下因素有关: 1. 语音识别技术:能够准确识别特定的语音指令或关键词。 2. 语音合成引擎:实现清晰、自然的语音反馈。 3. 设备中的语音芯片:如文中提到的小语音芯片,对唤醒功能起到支持作用。 4. 产品的设计和体验:例如设置“永不退出”等功能,以及对用户体验的渴望和满足。 5. 相关的技术路线:如 RAG 技术,有助于虚拟人的不断演化和提供更深入的定制。
2024-08-13
语音唤醒速度与什么有关
语音唤醒速度主要与以下几个方面有关: 1. 硬件性能:包括处理器的运算能力、麦克风的质量和灵敏度等。 2. 算法优化:语音识别和唤醒算法的效率和准确性对速度有重要影响。 3. 声学模型:其准确性和适应性会影响语音唤醒的速度。 4. 网络环境:如果涉及云端处理,网络的稳定性和速度也会产生作用。 5. 语音特征提取:提取语音特征的方法和精度会影响唤醒的速度。 6. 模型训练数据:数据的质量、数量和多样性会影响模型的性能和唤醒速度。 7. 系统资源占用:其他正在运行的程序占用的系统资源多少会对语音唤醒速度产生影响。
2024-08-13
车载ai智能体
车载 AI 智能体是一种应用于车辆领域的智能体。 智能体一般被赋予更高级的目标,并拥有更多实现目标的方法和工具选择自由度。同时,受程序性知识指导,遵循组织期望的执行方式,拥有预定义工具,并受保护栏和审查措施约束。 在应用方面,智能体在各种领域扮演重要角色,如: 1. 自动驾驶:感知周围环境,做出驾驶决策。 2. 家居自动化:根据环境和用户行为自动调节设备。 3. 游戏 AI:游戏中的对手角色和智能行为系统。 4. 金融交易:根据市场数据做出交易决策。 5. 客服聊天机器人:通过自然语言处理提供客户支持。 6. 机器人:各类机器人中集成的智能控制系统。 设计和实现一个智能体通常涉及以下步骤: 1. 定义目标:明确需要实现的目标或任务。 2. 感知系统:设计传感器系统采集环境数据。 3. 决策机制:定义决策算法,根据感知数据和目标做决策。 4. 行动系统:设计执行器或输出设备执行决策。 5. 学习与优化:若为学习型智能体,设计学习算法以改进。 领先的智能体公司似乎正在收敛于一种在自主性和控制之间寻找折衷的架构。新兴的 AI 智能体示例包括;以及横跨销售、安全运营和供应链等领域的许多其他智能体。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-01
车载相关的AI
以下是人工智能在车载相关领域的应用: 1. 市场与销售分析:汽车公司利用 AI 分析市场趋势、消费者行为和销售数据,以更好地理解客户需求,制定营销策略和优化产品定价。 2. 电动化和能源管理:在电动汽车中,AI 用于优化电池使用和充电时间,提高能源效率和延长电池寿命。 3. 共享出行服务:如 Uber 和 Lyft 等共享出行平台,借助 AI 优化路线规划、调度车辆和定价策略,提升服务效率和用户满意度。 4. 语音助手和车载娱乐:AI 驱动的语音助手,如 Amazon Alexa Auto 和 Google Assistant,允许驾驶员通过语音控制车辆功能、获取信息和娱乐内容。 5. 车辆远程监控和诊断:AI 系统能够远程监控车辆状态,提供实时诊断和支持,帮助车主及时了解车辆状况并采取措施。 6. 自动驾驶技术:利用 AI 进行图像识别、传感器数据分析和决策制定,使自动驾驶汽车实现自主导航和驾驶,如特斯拉、Waymo 和 Cruise 等公司都在开发和测试。 7. 车辆安全系统:AI 用于增强自动紧急制动、车道保持辅助和盲点检测等系统,通过分析数据预防事故。 8. 个性化用户体验:根据驾驶员的偏好和习惯调整车辆设置,如座椅位置、音乐选择和导航系统,提供更舒适的驾驶体验。 9. 预测性维护:分析车辆实时数据,预测潜在故障和维护需求,减少停机时间和维修成本,提高车辆可靠性和效率。 10. 生产自动化:在汽车制造中,AI 用于自动化生产线,提高生产效率和质量控制,监测设备状态,优化生产流程并减少人为错误。
2024-08-13
有几十个角色台词的语音文件,用什么方式克隆他的声音质量更好?
很抱歉,您提供的内容中并未包含关于克隆几十个角色台词语音文件以获得更好声音质量的具体方法和相关信息。但一般来说,要提高语音克隆的质量,可以考虑以下几个方面: 1. 选择高质量的原始语音文件,确保其清晰、无噪音。 2. 利用先进的语音克隆技术和工具,例如一些专业的语音处理软件。 3. 对语音特征进行精细的分析和提取,以准确捕捉原始声音的特点。 4. 进行适当的参数调整和优化,以适应不同的角色和场景需求。
2024-11-01
文字转语音
以下是为您整理的相关内容: OpenAI2Claude 转换器:包括语法纠正、机场代码提取、根据心情生成颜色的 CSS 代码等功能的转换任务及示例。 《PROMPTS FOR AI DANCE MUSIC》:这是一本关于用文字与 AI 合作创作音乐的电子书,强调音乐不仅是音符,还包括氛围、感觉和旅程,适合各类音乐创作者。 使用 GPT 的视觉功能和 TTS API 处理和讲述视频:以冬季景观中狼群与野牛的斗争为例,展示如何将脚本传递给 TTS API 生成画外音的 MP3。
2024-10-31
语音开发,都要学哪个技术,可以举个案例吗
语音开发需要学习以下技术: 1. 深度学习和自然语言处理基础: 机器学习、深度学习、神经网络等基础理论。 自然语言处理基础,如词向量、序列模型、注意力机制等。 相关课程:吴恩达的深度学习课程、斯坦福 cs224n 等。 2. 理解 Transformer 和 BERT 等模型原理: Transformer 模型架构及自注意力机制原理。 BERT 的预训练和微调方法。 掌握相关论文,如 Attention is All You Need、BERT 论文等。 3. 学习 LLM 模型训练和微调: 大规模文本语料预处理。 LLM 预训练框架,如 PyTorch、TensorFlow 等。 微调 LLM 模型进行特定任务迁移。 相关资源:HuggingFace 课程、论文及开源仓库等。 4. LLM 模型优化和部署: 模型压缩、蒸馏、并行等优化技术。 模型评估和可解释性。 模型服务化、在线推理、多语言支持等。 相关资源:ONNX、TVM、BentoML 等开源工具。 5. LLM 工程实践和案例学习: 结合行业场景,进行个性化的 LLM 训练。 分析和优化具体 LLM 工程案例。 研究 LLM 新模型、新方法的最新进展。 以下是一个语音开发的案例: 要开发一个网页,一个页面可以承载离谱生物档案的网站,每个页面都是一个离谱生物的介绍,图片,头像,文字介绍,可以跟他打字和语音对话。以及展示跟他相关的离谱事件。 1. 项目初始化与配置: 选择编程语言和技术栈: 前端:React.js 或 Vue.js,适合构建动态的用户界面,有丰富的组件库支持多媒体内容展示。 后端:Node.js 加上 Express.js,可使用 JavaScript 同时开发前端和后端,简化开发过程,其非阻塞 IO 特性适合处理实时通讯需求。 数据库:MongoDB,适合存储文档形式的数据,如离谱生物档案和相关事件。 语音处理:使用 Google Cloud SpeechtoText 和 TexttoSpeech API 实现语音与文本的相互转换,支持语音对话。 开发环境配置: IDE:Visual Studio Code,免费、开源,支持大量插件,适用于前端和 Node.js 开发。 Node.js 和 NPM:安装 Node.js 时会一并安装 npm,用于管理项目依赖。 项目结构模板:项目目录可能如下所示。 此外,为您列举一些人工智能音频初创公司: 将书面内容转化为引人入胜的音频,并实现无缝分发。 专业音频、语音、声音和音乐的扩展服务。 (被 Spotify 收购) 提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 利用合成媒体生成和检测,带来无限可能。 一键使您的内容多语言化,触及更多人群。 生成听起来真实的 AI 声音。 为游戏、电影和元宇宙提供 AI 语音演员。 为内容创作者提供语音克隆服务。 超逼真的文本转语音引擎。 使用单一 AI 驱动的 API 进行音频转录和理解。 听起来像真人的新声音。 从真实人的声音创建逼真的合成语音的文本转语音技术。 生成听起来完全像你的音频内容。 为所有人提供开放的语音技术。
2024-10-28
如果视频里只需要一个背景图片,导入一个旁白语音,搭配字幕,如何ai生成视频
以下是使用 AI 生成您所需视频的步骤: 1. 生成数字人 在剪映右侧窗口顶部,打开“数字人”选项,选取免费且适合的数字人形象,如“婉婉青春”。软件会播放数字人的声音,可判断是否需要,点击右下角“添加数字人”,剪映会生成对应音视频并添加到当前视频轨道中,左下角会提示渲染完成,可点击预览查看效果。 2. 增加背景图片 删除先前导入的文本内容,因为音频中已包含文字。 点击左上角“媒体”菜单,“导入”本地图片,选择一张图片上传,如书架图片,点击图片右下角加号添加到视频轨道(会覆盖数字人)。 拖动轨道右侧竖线至视频最后,使其在整个视频播放时显示。 选中背景图片轨道,在显示区域拖动图片角放大到适合尺寸,如覆盖视频窗口,并将数字人拖动到合适位置。 3. 增加字幕 点击文本智能字幕识别字幕,点击开始识别,软件会自动将文字智能分段并形成字幕。 如果您是想把小说做成视频,流程如下: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2024-10-28
文本转语音网站
以下是一些文本转语音的网站和人工智能音频初创公司: 文本转语音网站: 1. WaytoAGI 的工具网站:https://www.waytoagi.com/sites/category/50 2. Eleven Labs:https://elevenlabs.io/ 是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 3. Speechify:https://speechify.com/ 是一款人工智能驱动的文本转语音工具,可作为多种应用程序使用,用于收听网页、文档等。 4. Azure AI Speech Studio:https://speech.microsoft.com/portal 提供支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供自定义语音模型。 5. Voicemaker:https://voicemaker.in/ 可将文本转换为各种区域语言的语音,并允许创建自定义语音模型。 人工智能音频初创公司(语音合成(TTS)): 1. 基于 AI 的语音引擎能够模仿人类语音的情感和韵律。 2. 基于 NLP 的最先进文本和音频编辑平台,内置数百种 AI 声音。 3. 使用突触技术和脑机接口将想象的声音转化为合成 MIDI 乐器的脑控仪器。 4. 为出版商和创作者开发最具吸引力的 AI 语音软件。 5. 使用户能够使用文本转语音技术生成播客。 6. 基于生成机器学习模型构建内容创作的未来。 7. 从网页仪表板或 VST 插件生成录音室质量的 AI 声音并训练 AI 语音模型。 8. 演员优先、数字双重声音由最新的 AI 技术驱动,确保高效、真实和符合伦理。 9. 将书面内容转化为引人入胜的音频,并实现无缝分发。 10. 专业音频、语音、声音和音乐的扩展服务。 11. (被 Spotify 收购) 提供完全表达的 AI 生成语音,带来引人入胜的逼真表演。 12. 利用合成媒体生成和检测,带来无限可能。 13. 一键使您的内容多语言化,触及更多人群。 14. 生成听起来真实的 AI 声音。 15. 为游戏、电影和元宇宙提供 AI 语音演员。 16. 为内容创作者提供语音克隆服务。 17. 超逼真的文本转语音引擎。 18. 使用单一 AI 驱动的 API 进行音频转录和理解。 19. 听起来像真人的新声音。 20. 从真实人的声音创建逼真的合成语音的文本转语音技术。 21. 生成听起来完全像你的音频内容。 22. 为所有人提供开放的语音技术。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-10-27
文本转语音
以下是关于文本转语音的相关信息: 一、TTS 简介 Text to Speech(TTS)是一种人机交互技术,将文本转换为自然的语音输出。通过该技术,计算机可模拟人类语音与用户交互,实现语音提示、导航、有声读物等功能,在智能语音助手、语音识别、语音合成等领域广泛应用。 二、在线 TTS 工具推荐 1. Eleven Labs:https://elevenlabs.io/ ,是一款功能强大且多功能的 AI 语音软件,能生成逼真、高品质音频,可根据上下文调整表达方式。 2. Speechify:https://speechify.com/ ,人工智能驱动的文本转语音工具,可将文本转换为音频文件,有多种应用形式。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal ,提供 100 多种语言和方言的语音转文本和文本转语音功能,还提供自定义语音模型。 4. Voicemaker:https://voicemaker.in/ ,可将文本转换为各种区域语言的语音,并允许创建自定义语音模型。 三、语音合成技术原理 传统语音合成技术一般经过以下三个步骤: 1. 文本与韵律分析:先将文本分词,标明每个字的发音及韵律信息,提取文本特征生成特征向量。 2. 声学处理:通过声学模型将文本特征向量映射到声学特征向量。 3. 声音合成:使用声码器将声学特征向量反变换生成声音波形,拼接得到整个文本的合成语音,反变换过程中可调整参数改变音色、语调、语速等。 四、StyleTTS 2 StyleTTS 2 是一个开源的媲美 Elevenlabs 的文本转语音工具,结合文本角色内容和场景音可快速生成有声小说。其特点包括多样化的语音风格、更自然的语音、高效生成、精确的语音控制、接近真人的语音合成、适应不同说话者。工作原理是利用风格扩散和与大型语音语言模型(SLM)的对抗性训练来实现接近人类水平的 TTS 合成,采用非自回归架构,可并行生成整个语音。 内容由 AI 大模型生成,请仔细甄别。
2024-10-27
AIGC的底层科学原理是神经网络吗?
AIGC 的底层科学原理包含神经网络。 神经网络是一种模仿生物神经网络的结构和功能的数学模型或计算模型,用于对函数进行估计或近似。它由大量的人工神经元联结进行计算,是一种自适应系统,具备学习功能。 在 AI 领域,神经网络是一种重要的技术。深度学习就是一种参照人脑结构,包含神经网络和神经元的方法(因层数较多而称为深度)。神经网络可以用于监督学习、无监督学习、强化学习等多种学习方式。 同时,Transformer 模型的出现也对 AIGC 产生了重要影响,它完全基于自注意力机制处理序列数据,比循环神经网络更适合处理文本的长距离依赖性。
2024-10-30
LLM原理
LLM(大语言模型)的工作原理如下: 大模型在回复时是一个字一个字地推理生成内容,就像输入法的输入联想逻辑,会根据输入的字推测下一个字。但仅算字的概率存在问题,且全量数据计算算力吃不消。 为解决这些问题,出现了词向量机制和 transformer 模型中的 attention 自注意力机制。 以“我今天吃了狮子头和蔬菜”这句话为例,在 transformer 中,attention 层会对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,层与层之间由模型自主学习哪些信息补充、保留和传递,最终把海量数据以关系网形式“消化”并保留重要相关性。 这些层就像人阅读文章时的连贯性注意力过程,记忆的不是点状知识而是网状经验。 大模型以词向量和 transformer 的模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。 就像人脑阅读学习,记忆不是逐字逐句,而是按相关性、重要程度结合历史经验,比如记忆“红色”时会带有很多“feature”信息。 常见缩写和专业词汇解释: LLM:Large language model 的缩写,即大语言模型。 Prompt:中文译作提示词,是输入给大模型的文本内容,其质量会影响回答质量。 Token:大模型语言体系中的最小单元,不同厂商对中文的切分方法不同,1Token 约等于 1 2 个汉字,收费和输入输出长度限制以 token 为单位。 上下文:英文为 context,指对话聊天内容前、后的信息,其长度和窗口会影响回答质量。
2024-10-24
kimi探索版技术原理
Kimi 探索版的技术原理如下: 工作流方面:通过工作流输出的卡片绑定和多轮输出推动剧情发展,其中相对复杂的技术实现是工作流中嵌套的图像流。但此 bot 未涉及自有 plugin、数据库、用户状态、外部系统交互等技术组件。 模型选择:选用 kimi 的 32k 模型,可选模型有 GLM4、Moonshot、MinMax 和百川,不确定作者选定此模型的具体理由,个人倾向于通义,底模决定了 bot 的能力。 历史更新:2024 年 10 月 11 日,Kimi 和智谱同时发布了深度推理的功能。相关共学课程的课件和回放已发布。此外,还有关于转变对 AI 态度的相关论述,强调将 AI 作为协作伙伴,通过对话式编程提升工作效率,解锁其创造力。
2024-10-22
. 了解射频识别技术的基本原理及常见应用。 2. 能够利用射频识别技术开展实践,了解物与物 之间近距离通信的过程。 第7课 电子标签我揭秘 7.1 乘坐火车时,人们只需拿身份证在检票机上刷一下,便能顺利通过检票 闸机,进出火车站。在这个过程中,正是 RFID 技术在发挥作用。 揭秘射频识别技术 本课将关注以下问题: 1. RFID 系统的工作流程是怎样的? RFID 是一种物品标识和自动识别技术,本质上是一种无线通信技术, 无须与被识别物品直接接触。RFID 系统由电子标签和读卡器组成(图 7
射频识别(RFID)技术是一种物品标识和自动识别的无线通信技术,无需与被识别物品直接接触。RFID 系统由电子标签和读卡器组成。 其基本原理是:读卡器发射特定频率的无线电波,当电子标签进入有效工作区域时,产生感应电流,从而获得能量被激活,并向读卡器发送自身编码等信息,读卡器接收并解码后,将信息传送给后台系统进行处理。 常见应用包括:乘坐火车时的身份证检票,物流领域的货物追踪管理,图书馆的图书借还管理,超市的商品结算等。 在利用射频识别技术开展实践时,能够了解物与物之间近距离通信的过程。例如在物流中,货物上的电子标签与读卡器之间通过无线电波进行信息交互,实现对货物的实时监控和管理。 RFID 系统的工作流程大致为:读卡器发射无线电波,激活电子标签,电子标签向读卡器发送信息,读卡器接收并解码信息后传送给后台系统。
2024-10-21
transformer原理详解
Transformer 模型的原理主要包括以下几个方面: 1. 自注意力机制(SelfAttention Mechanism):能够同时考虑输入序列中所有位置的信息,而非像循环神经网络或卷积神经网络那样逐个位置处理。通过该机制,模型可根据输入序列中不同位置的重要程度,动态分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码(Positional Encoding):由于自注意力机制不考虑输入序列的位置信息,为使模型能够区分不同位置的词语,引入位置编码。位置编码是一种特殊向量,与输入词向量相加,用于表示词语在序列中的位置信息,通常基于正弦和余弦函数计算得到固定向量,帮助模型学习位置信息的表示。 3. 多头注意力机制(MultiHead Attention):通过引入该机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接(Residual Connection)和层归一化(Layer Normalization):在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间引入残差连接,并对输出进行层归一化。残差连接可缓解梯度消失和梯度爆炸问题,使模型更易训练和优化;层归一化能加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络(Positionwise FeedForward Networks):在每个注意力子层之后,包含位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立计算,提高了模型的并行性和计算效率。 此外,用一个简单的例子解释其工作流程:假设要将英文句子“I am a student”翻译成中文。 1. 输入嵌入(Input Embeddings):首先将每个单词映射为一个向量,即单词嵌入。 2. 位置编码(Positional Encodings):给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,即多头注意力机制捕捉单词间的依赖关系,前馈神经网络对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。
2024-10-18
模型训练的底层原理
模型训练的底层原理如下: 对于多模态模型,以生图片环节的扩散模型(如 StableDiffusion)为例,其训练过程是先对海量带有标注文字描述的图片逐渐加满噪点,模型学习并沉淀每一步图片向量值和文字向量值的数据分布演变规律。后续输入文字后,模型根据文字转化的向量指导充满噪点的图片减噪点以生成最终图片。 大语言模型在接收到请求时,会将自然语言转化为机器可理解的向量格式。其训练过程类似于通过已知的几组值计算方程式中的参数,大语言模型的参数可能多达 1750 亿个。 大型语言模型(LLMs)的参数获取是关键,训练是一个计算量极大的过程,如 Llama2 70B 模型的训练涉及约 10TB 的互联网文本抓取,需要大量互联网资源和约 6000 个 GPU 运行约 12 天,花费约 200 万美元,将文本压缩成参数文件,这是一种有损压缩,得到的是训练文本的一种格式塔。
2024-10-15