Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai应用开发sop

Answer

以下是关于 AI 应用开发的 SOP:

对于不会代码的开发者:

  • 可以在 20 分钟内循序渐进地完成以下任务:
    • 完成一个简单程序。
    • 完成一个爬虫应用,抓取公众号文章。
    • 完成一个 AI 应用,为公众号文章生成概述。

在完成一个 AI 应用后,如果希望继续精进,可以学习以下内容:

  • 继承和多态:了解类之间的继承关系以及如何实现多态。
  • 异常处理:
    • 理解异常:了解什么是异常,以及它们在 Python 中是如何工作的。
    • 异常处理:学习如何使用 try 和 except 语句来处理程序中可能发生的错误。
  • 文件操作:
    • 文件读写:学习如何打开文件、读取文件内容以及写入文件。
    • 文件与路径操作:理解如何使用 Python 来处理文件路径,以及如何列举目录下的文件。

对于 AI 知识的深入学习,可以尝试了解以下基础内容:

  • AI 背景知识:
    • 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。
    • 历史发展:简要回顾 AI 的发展历程和重要里程碑。
  • 数学基础:
    • 统计学基础:熟悉均值、中位数、方差等统计概念。
    • 线性代数:了解向量、矩阵等线性代数基本概念。
    • 概率论:基础的概率论知识,如条件概率、贝叶斯定理。
  • 算法和模型:
    • 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。
    • 无监督学习:熟悉聚类、降维等算法。
    • 强化学习:简介强化学习的基本概念。
  • 评估和调优:
    • 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。
    • 模型调优:学习如何使用网格搜索等技术优化模型参数。

在核心产品链路方面:

  • 第 7 步是应用发布和线上调测。
  • 核心概念包括:
    • AI 应用:围绕大模型能力的 AI 应用,以自然语言为主要交互形式,通常包含一个或多个技能。
    • 技能(Skills):AI 应用所具备的各种能力,如应用问答、数据查询、数据更新等。
    • 数据和知识:支撑 AI 技能的数据资产,聚合各类数据,包括数据表、分析表、知识库和数据流。
    • 记忆:存储和检索信息的能力,用于学习和记忆与用户和环境交互中的经验,为用户提供更定制化更精准的服务。
    • 权限:定义数据可被哪些用户访问和操作。
    • 模型配置:配置 AI 应用使用的模型及相关参数。
    • 应用发布:将开发好的应用发布到不同渠道,如 Lark Bot 和 My AI 等。
    • 应用管理:应用发布上线后,管理应用的数据、进行角色授权、监控应用使用状态等。
Content generated by AI large model, please carefully verify (powered by aily)

References

写给不会代码的你:20分钟上手 Python + AI

在深入学习AI时,许多朋友发现需要编程,变得头大。同时,各类教程都默认了你会打命令行,导致入门十分困难。鉴于此,就有了这份简明入门,旨在让大家更快掌握Python和AI的相互调用。并使你在接下来的20分钟内,循序渐进的完成以下任务:完成一个简单程序完成一个爬虫应用,抓取公众号文章完成一个AI应用,为公众号文章生成概述恭喜你完成了一个AI应用

【简单6步,快速上手】体验核心产品链路

|概念/名词|解释|<br>|-|-|<br>|AI应用|围绕大模型能力的AI应用,以自然语言为主要交互形式,通常包含一个或多个技能|<br>|技能(Skills)|AI应用所具备的各种能力,如应用问答、数据查询、数据更新等|<br>|数据和知识|支撑AI技能的数据资产,聚合各类数据,包括数据表、分析表、知识库和数据流|<br>|记忆|存储和检索信息的能力,用于学习和记忆与用户和环境交互中的经验,为用户提供更定制化更精准的服务|<br>|权限|定义数据可被哪些用户访问和操作|<br>|模型配置|配置AI应用使用的模型及相关参数|<br>|应用发布|将开发好的应用发布到不同渠道,如Lark Bot和My AI等|<br>|应用管理|应用发布上线后,管理应用的数据、进行角色授权、监控应用使用状态等|

写给不会代码的你:20分钟上手 Python + AI

继承和多态:了解类之间的继承关系以及如何实现多态。异常处理理解异常:了解什么是异常,以及它们在Python中是如何工作的。异常处理:学习如何使用try和except语句来处理程序中可能发生的错误。文件操作文件读写:学习如何打开文件、读取文件内容以及写入文件。文件与路径操作:理解如何使用Python来处理文件路径,以及如何列举目录下的文件。对于AI,可以尝试了解以下内容,作为基础AI背景知识基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。历史发展:简要回顾AI的发展历程和重要里程碑。数学基础统计学基础:熟悉均值、中位数、方差等统计概念。线性代数:了解向量、矩阵等线性代数基本概念。概率论:基础的概率论知识,如条件概率、贝叶斯定理。算法和模型监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。无监督学习:熟悉聚类、降维等算法。强化学习:简介强化学习的基本概念。评估和调优性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。模型调优:学习如何使用网格搜索等技术优化模型参数。神经网络基础

Others are asking
零基础学习ai
以下是为零基础学习 AI 提供的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 知识库提供了很多实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还有一个案例供您参考:二师兄来自上海,是典型的 80 后,房地产行业从业二十年,计算机零基础。2024 年 2 月,他在七彩虹的售后群中,因老哥分享用 AI 绘画的心得,要了 SD 秋叶安装包,下载了教学视频,迈出了 AI 学习的第一步。之后他不断学习和实践,如在 3 月啃完 SD 的所有教程并开始炼丹,4 月与小伙伴探讨 AI 变现途径,5 月加入 Prompt battle 社群,开始 Midjourney 的学习。
2025-02-18
AI数据分析
以下是关于 AI 数据分析的相关内容: ChatGPT 助力数据分析: 本文重点介绍了 AI 与数据分析结合的应用,通过实际案例与相关技巧,描述了 ChatGPT 如何助力数据分析。 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身使用情况,输入一句话可分析用户配置图表相关数据。用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行返回结果数据,再传给 GPT 分析,最后输出分析结论和建议并返回前端页面渲染图表。 个性化分析:平台支持上传数据,可提供数据信息辅助分析,前端解析文件后传给 GPT 分析,后续步骤与 SQL 分析一致。 分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图可随意切换。 生成式 AI 季度数据报告 2024 月 1 3 月: 作者包括郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara 等。 报告涵盖总体流量概览、分类榜单、文字相关(个人生产力、营销、教育、社交)、创意相关(图像、视频)、音频大类、代码大类、Agent、B2B 垂类等方面。 涉及数据准备、分类标准图谱准备、赛道分析、竞争分析等内容。
2025-02-18
找一个能够生成音乐的AI。我给一个曲名(比如《生日快乐歌》),他就能给我生成不同风格的音乐供我下载。
以下为您推荐能够根据给定曲名生成不同风格音乐并供下载的 AI 工具: 1. Suno AI: 地址:https://www.suno.ai/ 简介:被誉为音乐界的 ChatGPT,能够根据简单提示创造出从歌词到人声和配器的完整音乐作品。 账号要求:需要拥有 Discord、谷歌或微软中的至少一个账号,并确保网络环境稳定。 订阅信息: 免费用户每天 50 积分,每首歌消耗 5 积分,每天可创作 10 首歌曲,每次点击生成两首歌曲。 Pro 用户每月 2500 点数(大约 500 首歌),按月每月 10 美元,按年每月 8 美元,每年 96 美元。 Premier 用户每月 10000 点数(大约 2000 首歌),按月每月 30 美元,按年每月 24 美元,每年 288 美元。 操作模式: 默认模式:包括关闭个性化、歌曲描述、乐器开关、模型选择 v3 等设置。 个性化模式:开启个性化定制,可填写歌词、曲风、标题等。 生成歌词:可使用大模型如 Kimi、GPT、文心一言等生成。 开始生成:填写好所需内容后点击 Create,等待 2 3 分钟即可。 下载:生成后可下载。 2. Udio:由前 Google DeepMind 工程师开发,通过文本提示快速生成符合用户音乐风格喜好的高质量音乐作品。地址:https://www.udio.com/ 3. YuE:支持从歌词生成 5 分钟高质量音乐(含人声与伴奏),多语言支持(中、英、日、韩),覆盖多种音乐风格与专业声乐技术。详细介绍:https://www.xiaohu.ai/c/xiaohuai/yue5
2025-02-18
什么是aigc
AIGC(人工智能生成内容)是一种利用人工智能技术生成各种类型内容的应用方式。它能够通过机器学习和深度学习算法,根据输入的数据和指令生成符合特定要求的内容,在内容创作、广告、媒体等领域有着广泛的应用。 具体来说,AIGC 包括以下方面: 1. 文字生成:使用大型语言模型(如 GPT 系列模型)生成文章、故事、对话等内容。 2. 图像生成:使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等。 3. 视频生成:使用 Runway、KLING 等模型生成动画、短视频等。 AIGC 作为一种强大的技术,能赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对 AIGC 的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs 和 Transformer 等模型生成文本,如 GPT4 和 Gemini Ultra。图像生成依赖于 GANs、VAEs 和 Stable Diffusion 等技术,应用于数据增强和艺术创作,代表项目有 Stable Diffusion 和 StyleGAN 2。音视频生成利用扩散模型、GANs 和 Video Diffusion 等,广泛应用于娱乐和语音生成,代表项目有 Sora 和 WaveNet。此外,AIGC 还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。 例如 AI 文本续写,文字转图像的 AI 图、AI 主持人等,都属于 AIGC 的应用。类似的名词缩写还有 UGC(普通用户生产),PGC(专业用户生产)等。能进行 AIGC 的产品项目也很多,能进行 AIGC 的媒介也很多,包括且不限于: 1. 语言文字类:OpenAI 的 GPT,Google 的 Bard,百度的文心一言,还有一种国内大佬下场要做的的 LLM 都是语言类的。 2. 语音声音类:Google 的 WaveNet,微软的 Deep Nerual Network,百度的 DeepSpeech 等,还有合成 AI 孙燕姿大火的开源模型 Sovits。 3. 图片美术类:早期有 GEN 等图片识别/生成技术,去年大热的扩散模型又带火了我们比较熟悉的、生成质量无敌的 Midjourney,先驱者谷歌的 Disco Diffusion,一直在排队测试的 OpenAI 的 Dalle·2,以及 stability ai 和 runaway 共同推出的 Stable Diffusion。
2025-02-18
多维表格AI接入分享课程有回放么
多维表格 AI 接入分享课程有回放。例如,在“1204|微信超级 AI 知识助手教学(上)—智谱共学营智能纪要”中提到直播有回放。在“飞书多维表格 AI 共学解锁更强大的豆包 2024 年 12 月 21 日”中,王大仙表示分享有回放,可顺着搭建流程使用。
2025-02-18
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
如何让AI协助我做sop
以下是关于如何让 AI 协助您做 SOP 的相关内容: SOP 是一种文档化的流程,规定了完成特定任务的标准步骤。其存在确保了工作的一致性和可重复性,降低出错率。 SOP 的好处包括: 1. 提升工作效率,大大减少工作中的失误。 2. 节省时间,无需再花时间思考下一步,直接按流程操作。 3. 提升团队协作,让团队成员了解整个流程,便于分工合作。 制定一份有效的 SOP 关键步骤如下: 1. 识别重复任务,如回复邮件、准备报告等。 2. 分析流程,详细列出每个任务的执行步骤,考虑是否必要。 3. 制定标准,为每个步骤设定明确的标准和时间限制。 4. 文档化,将 SOP 流程写成文档,方便随时查阅和执行。 5. 测试与优化,在实际工作中测试并根据反馈调整。 借助 AI 助手建立和优化 SOP 可以帮助您在快节奏的职场中提升工作效率。例如在写作大纲方面,有一套列写作大纲的 SOP: 1. 头脑风暴,先把所有想到的点都记下来,重在数量,不自我审查。 2. 整理分类,将相关想法归类。 3. 细化每个部分,思考要说什么及用什么例子支撑。 4. 检查逻辑,确保各部分联系紧密,无重复或矛盾,调整顺序。 5. 预留互动,增加文章趣味性。 6. 检查,确保涵盖所学写作技巧。
2024-12-24
ChatGPT使用sop
以下是产品经理使用 ChatGPT 的详细步骤: 1. 旧代码输入: 由于要优化的旧代码有 1900 行,直接粘贴会报错,需做分次输入。 分次输入并联合,让 ChatGPT 理解旧代码实现的效果、熟悉查询表和字段,方便后续生成可直接在数据库中运行的优化代码。原 SQL 主要逻辑是统计近 30 天内每天的业务数据日报,按天和地区分组汇总,需查询多张表几百万条数据。 2. 需求及现状问题输入: 在完成旧代码输入后,将真实的业务需求场景及现存问题输入给 ChatGPT,帮助其更好理解需求,从而给出更具针对性的优化建议。 此过程包含多轮输入输出的讨论,不断强化 ChatGPT 对真实需求的认知。 3. 根据优化结果不断调试: ChatGPT 给出新代码后,不断调试优化直至生成满足需求的新代码。 按照原 SQL 思路存在更新数据耗时久、资源浪费严重的问题,经与 ChatGPT 反复沟通,得到 3 点重要优化建议:每次更新 1 天而非 30 天的数据;创建中间结果表存储非二次计算数据,二次计算指标通过中间表再查询;利用 CASE WHEN 合并查询约束条件基本相同的指标。 基于这三个核心优化思路,结合自身 SQL 水平,花费半天多时间完成代码优化,并分模块在系统中测试,结果完全一致。整个过程较为繁琐,需耐心处理查资料、报错、纠正 ChatGPT 及补充需求细节等问题。
2024-12-23
🚀接着上期SOP+AI:打造职场高效能人士的秘密武器的分享,今天继续聊聊SOP+AI的应用,🎯今天的主题是“怎样利用AI节约10倍内容创作时间?”📚最近跟团队有开始运营小红书账号,就想着先给自己打造点顺手的工具,于是乎「小红书文案专家」就出生啦~🎉[heading1]一、先介绍下我们小Bot[content]🛺BOT名称:小红书文案专家功能价值:见过多个爆款文案长啥样,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可以一键复制发布的初稿,提供创意和内容,1
以下是关于“SOP+AI”的相关内容: 怎样利用 AI 节约 10 倍内容创作时间? 最近团队开始运营小红书账号,于是打造了“小红书文案专家”。 BOT 名称:小红书文案专家 功能价值:见过多个爆款文案,输入网页或视频链接就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 设计思路: 痛点:个人时间有限,希望有人写初稿并生成配图。 实现思路:为自己和团队设计工作流,让 AI 按运营思路和流程工作。 一期产品功能: 1. 提取任何链接中的标题和内容。 2. 按小红书平台文案风格重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 SOP+AI:打造职场高效能人士的秘密武器 案例分享:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前,客服工作流程混乱,效率低下,客户满意度不高。引入 SOP 标准化操作后,效率提高。进一步引入 AI 助手,自动回复常见问题、处理简单请求,减少客服工作量,还能及时发现问题帮助优化。结果客服团队工作效率提升 30%以上,客户满意度显著提高。SOP 能提升效率、减少失误、促进协作,借助 AI 助手,SOP 制定和优化更高效智能。
2024-12-20
如果用AI 生成自己的SOP
以下是关于如何用 AI 生成自己的 SOP 的相关内容: 一、利用 AI 生成爆款公众号文章 1. 关键在于提供清晰且具有指导性的提示词(prompt)。 基础提示词可生成基础文章,更详细、具创意的提示词能提升文章质量。 例如:“请根据我们收集的关于 OpenAI 回应马斯克言论的资讯,创作一篇既深入又易于理解的科技资讯文章。文章应该有一个吸引人的标题,开头部分要概述事件的背景和重要性,主体部分详细分析 OpenAI 的回应内容及其可能产生的影响,结尾处提出一些引人深思的问题或观点。” 2. 最终产出的内容可能需要微调,以符合预期和公众号风格。 二、SOP 的作用和好处 1. SOP 是文档化的流程,规定完成特定任务的标准步骤,确保工作的一致性和可重复性,降低出错率。 2. 好处包括: 提升工作效率,减少失误。 节省时间,无需思考下一步。 提升团队协作,成员了解流程便于分工。 三、制定有效的 SOP 的关键步骤 1. 识别重复任务,如回复邮件、准备报告等。 2. 分析流程,详细列出执行步骤,考虑必要性。 3. 制定标准,为每个步骤设定明确标准和时间限制。 4. 文档化,写成文档方便查阅和执行。 5. 测试与优化,根据实际工作中的反馈调整。 四、借助 AI 助手建立和优化 SOP 1. 在制定和优化 SOP 过程中,AI 助手发挥重要作用,可通过 Agent 平台 DIY 工作流。 2. 以下场景可通过 AI 工作流提效: 数据收集与分析,找出流程瓶颈和问题,提出改进建议。 自动化重复性高、标准化强的工作流程,如通过 RPA 技术自动执行固定步骤。 实时监控与反馈,及时发现问题并反馈,确保流程顺畅运行。
2024-12-19
语音产品运营sop
以下是一些 AI 产品案例和投稿,可能对您的语音产品运营 SOP 有所帮助: 标题:保姆级攻略:小白也能用 Ai 做一部电影大片 简介:目的是做个未来战争游戏的预告片,先让 GPT 写出视频内容,再细化每个分镜需要的内容,最后提炼个响亮的名字,输出宣传片朋友圈宣传文案 作者:晴岚 分类:自媒体 前往查看: 入库时间:2023/11/09 标题:AIGC 运营:小红书爆款概率预测分析 简介:1.透视运营数据,调整运营策略。2.高效寻找对标,快速切换赛道。3.紧跟大盘趋势,抢流量创笔记。4.高效装修主页,节省时间财力 作者:自媒体 分类:自媒体 前往查看: 入库时间:2023/11/09 标题:实践:群总结工具 简介:本项目是基于微信机器人的微信群聊总结助手,可以帮助群主或管理员自动收集群聊中的聊天记录,并使用 AI 进行总结,最终将其发送到指定的群聊中。 作者:自媒体 分类:自媒体 前往查看: 入库时间:2023/11/09 标题:创作:换脸应用 作者:自媒体 分类:自媒体 前往查看: 入库时间:2023/11/09 标题:语音:语音转文字 简介:语音转文字推荐 OpenAI 的 wishper 作者:自媒体 分类:自媒体 前往查看: 入库时间:2023/11/09
2024-10-09
sop技能是什么
SOP(标准操作程序)在 AI 相关的项目中具有重要作用,以下是一些关于 SOP 的示例: 在 AI 动画短片制作中,SOP 流程包括: 1. 项目规划:确定短片主题和目标观众,制定详细的制作计划。 2. 剧本创作:编写故事脚本,设计角色和场景以及创意。相关剧本创作资料可参考:https://waytoagi.feishu.cn/wiki/G11fwW8bmiVLe6kYLgYc2iGin6e ;捏剧本 Bot(捏剧本离谱村专用 :https://www.coze.cn/store/bot/7367669913697239052?panel=1&bid=6cs144r404016 。 3. 分镜头脚本:根据脚本制作分镜头脚本,确定每个镜头的画面和动作。 4. 资源准备:准备动画制作所需的素材,包括背景、角色和音效。 5. 画面图片制作:利用 AI 出图工具,比如通过 ChatGPT、MJ、SD 等工具快速生成高质量的图片。 6. 视频制作:利用 AI 工具制作动画,通过 RUNWAY、Luma、Dreamina 等平台快速生成高质量的动画。 在 AI 主题自媒体短视频创作工作坊中,小组 1 的使用工具 SOP 为: 1. 选定主题:校招场景下的递进式+反转风格 AI 图文短视频。 2. 撰写递进脚本:保持基本提示词不变的情况下,只修改表情的关键词通过 ChatGPT4DELLE 生图。 此外,还有如“剧本创作”Bot 也是基于专业的剧本制作标准流程(SOP)和专业提示词来制作的。
2024-08-18
扣子AI应用发布到微信小程序中失败
扣子 AI 应用发布到微信小程序中失败可能有以下原因及解决办法: 1. 容器编排不运行: 宝塔面板中设置加速镜像不生效需安,通过命令行手动设置。 新建/etc/docker/daemon.json 文件(如果已经存在可以不用创建)。 在 daemon.json 中添加相应代码。 重启 Docker 服务:systemctl restart docker。若仍无法解决,可继续排查。 2. 本地镜像的方法: 服务下载:服务的百度网盘地址:https://pan.baidu.com/s/1Ueyp6KnOmD18h6wICwJKNg?pwd=85jv 提取码:85jv ;服务的夸克网盘地址:https://pan.quark.cn/s/189b6f3e0d94 。需要把 chatgptonwechat.tar 和 coze2openai.tar 下载到本地。 上传服务:在宝塔操作面板中点击文件,选择上传下载到本地的文件。上传到根目录/www/backup 文件夹下面。 导入镜像:选择 Docker 中选择本地镜像,然后选择导入镜像。导入镜像要选择上传的目录,如根目录/www/backup 。 3. 修改参数不生效:需要删掉“容器编排”和“容器”中的内容,再重新生成一次。 4. 知识库不更新:确认扣子里有点击右上角的发布按钮。 5. 微信机器人无法正常画图,给的图片链接点进去有错误提示:查看/root/chatgptonwechat/run.log 中有相关提示。可能是点链接的时候多了一个小括号。 6. 扫码后,手机登陆后,没有任何机器人的反应:配置有错错误,或者安装不对,根据步骤去逐一检查。或者重装。 7. 机器人回答问题:COW 本身处理不了一次调取多个对话。有代码能力,可以直接调整代码实现。 8. 宝塔之后登录的时候登录不上去:按下图所示重启服务器之后就好了,重启时间可能会久,但一定会重启成功,请耐心等待。 此外,零基础模板化搭建 AI 微信聊天机器人的步骤如下: 1. 直接对接 Coze 平台 Bot 的微信聊天机器人搭建: Coze 相关配置: 创建 Coze API 令牌:进入到,点击左下角的扣子 API 选项,进入到 API 管理页面,点击 API 令牌,按照图示创建第一个 API 令牌,创建成功后保存好,因为这个 API 令牌只会在创建成功后显示一次。 记下 Coze AI Bot 的 Bot ID:去到要绑定的 AI Bot 的设计界面,在所在的链接里面记下 Bot ID,将 Bot 发布到 Bot as API 上。
2025-02-18
我是不懂编码的文科生,我学习扣子Coze的应用,难度大吗?大概需要多长时间?
对于不懂编码的文科生来说,学习扣子 Coze 的应用是具有一定挑战性的,但并非不可逾越。 根据相关资料,扣子 Coze 应用于 11 月底推出,其低代码或零代码的工作流等场景做得较好。在学习过程中,您需要熟悉操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。 课程安排方面,第一天会熟悉扣子应用、认识界面、搭建证件照简单应用,解决表单使用等卡点。 不过,社区中很多不懂代码的设计师和产品经理在搭建时也感到吃力。对于学习所需的时间,难以给出确切的时长,这取决于您的学习能力和投入程度。但如果您能认真参与课程学习,逐步掌握相关知识和技能,相信会在一段时间内取得一定的成果。
2025-02-18
有哪些在企业内部落地应用AI大模型工具的实践案例?不要营销文案生成、代码开发助手、智能客服问答机器人这种太常见的
以下是一些在企业内部落地应用 AI 大模型工具的实践案例: 1. 阿里云百炼: 智能体应用:能够弥补大模型的不足,如回答私有领域问题、获取实时信息、回答专业问题等。适用于有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务,以及缺少技术人员开发大模型问答应用的场景。典型场景包括私有领域知识问答、个性化聊天机器人、智能助手等。 内部业务助手:通过企业内部规章制度、部门结构、产品介绍等文档构建知识库,并借助 RAG 智能体实现内部知识问答功能。系统支持多源异构数据,并通过复杂文档解析和视觉增强技术,提升文档理解的准确性与深度。目前该功能已灰度上线,需提供 UID 并通过白名单进行开启。 2. 达摩院: AI 模特(虚拟换装):支持虚拟换装、姿态编辑。 3. 电商零售: 推广文案写作:通过内置的多样化营销场景的文体模板,基于用户输入的创作主题以及参考素材,大模型即可为您生成对应的营销文案,为营销活动和宣传文案提供灵感和文案写作支持。 4. 泛企业: VOC 挖掘:是一个面向各类企业的 VOC 标签挖掘的工具。不论是用户的长短评论、帖子、还是用户和客服/销售的聊天记录、通话记录,都可以使用。通过选中或自定义标签,即可让大模型针对海量非结构化的 VOC 数据快速打标。相比于人工打标或规则打标准确率更高;对于业务标签变动频繁的情况,也能更敏捷、快速地影响。 5. 通义晓蜜:基于深度调优的对话大模型,为营销服类产品提供智能化升级所需的生成式摘要总结、质检、分析等能力应用。
2025-02-18
prompt的应用
以下是关于 prompt 应用的全面介绍: 一、什么是 prompt 1. 提示是您给模型(如 Claude)的文本,用于引发相关输出。它通常以问题或指示的形式出现。例如:“为什么天空是蓝色的?” 2. 在 AI 视频生成中,prompt 是直接描述或引导视频生成的文本或指令。类似给 AI 的提示,包含主体、运动、风格等信息,用户借此控制和指导生成内容。它在 AI 视频生成中作用十分重要,是表达需求的方式,影响视频内容和质量。如果上述过于抽象,您可以理解 Prompt 为:将您输入的文字变成对应的画面和运动形式。 3. 简单来说,prompt 是一套您和大模型交互的语言模板。通过这个模板,您可以输出对于大模型响应的指令,用于指定大模型应该具体做什么、完成什么任务、如何处理具体的任务,并最终输出您期望的结果。大模型的本质是一个基于语言的概率模型,若直接问大模型而不提供 prompt,相当于大模型随机给出答案。有了 prompt,相当于给了一个模板,包括对于模型的要求、输入和输出的限制,大模型在这个限制之下,去得到概率最大的答案。 二、prompt 在不同场景的应用 在即梦 AI 视频生成中,要想获得最佳的视频质量,需要写好 prompt。在图片生视频和文本生视频中,都有 prompt 的输入位置。
2025-02-18
适合团队一起应用开发的AI
以下是一些适合团队一起应用开发的 AI 类型及示例场景: 1. 智能体应用(Assistant): 简介:基于上下文对话,自主决策并调用工具来完成复杂任务的对话式 AI 应用。通过简单配置可快速上手实现基本功能。 示例场景:客户服务(了解诉求、解决问题,如查询订单状态、处理退款等)、个人助理(管理日程安排、提醒事项、发送邮件等)、技术支持(了解技术问题,提供解决方案,排除故障)。 参考链接: 2. 工作流应用(Workflow): 简介:将复杂任务拆解为若干子任务,以提高工作流程可控性的流程式 AI 应用。用户可通过拖拽节点创建自定义任务流程。 示例场景:AI 翻译(实现初步翻译、内容审校、再次优化的翻译流程,提升翻译质量)。 参考链接: 3. 智能体编排应用: 简介:支持多智能体协作的流程式 AI 应用,能编排多个智能体的执行逻辑,使多个智能体自动规划和执行任务。 示例场景:综合调研报告(组建报告撰写团队,包括负责写作意图识别、大纲书写、总结摘要、智能绘图、事件研判、段落撰写、文笔润色等任务的智能体)、软件开发团队(组建智能体开发团队,包括负责需求分析、系统设计、编码实现、测试调试、文档编写等任务的智能体)。 参考链接: 此外,还有以下摊位展示的相关 AI 应用: 1. 简单高效地构建 AI+装修,AI+行业应用平台,并进行模型的训练和微调。 2. ai+家庭教育咨询与体验服务。 3. 摄影+AI 效果叠加。 4. ai 模型部署,使用,交流的一站式平台。 5. 自传语伴:帮助普通人轻松撰写自传,用户通过与 AI 聊天讲述人生故事,生成自传。 在 6 月 3 日的参赛 bot 试玩分享中,讨论了多个团队的相关产品,包括: 1. AI 秒学团队的儿童绘本故事生成:将新闻转化为绘本故事,结合李普村的 AI 会话和分镜,使用 ByteDance AI 画图。 2. Lux 珀尔团队的卡通头条:在海外版搜索新闻应用中,根据用户选择生成不同风格的图片。 3. 吴琪的 AI 工具:通过简单提问生成小朋友喜欢的图片。 4. 核心搭子团队的产品:帮助父母辟谣的 AI,可识别三种体裁,根据疑问生成对应回复并保存知识,有热情和冷淡回复两种模式。 5. 学以致用团队的产品:提供日本市场实时信息的工具。 6. 李小白聊天机器人:具备陪聊、诗句生成、新闻展示等功能。 7. 两款智能写作机器人:喵喵日报(从 100 条新闻中挑选 5 条科技咨询定时推送,可根据用户问题自动搜索和重新组稿)、芋头小宝(帮助用户列出文章框架、生成配图以及汇总新闻等)。
2025-02-18
生成式AI教育场景应用 项目式学习 中小学案例
以下是一些中小学在生成式 AI 教育场景应用中采用项目式学习的案例: 北京市新英才学校: 开设“AI 创作家”小学课后服务特色课程,12 个五、六年级的学生在老师的引导和帮助下,主导设计一款实用的桌游。 学生们提出解决学校面积大导致新生和访客迷路的问题,决定制作一款学校地图桌游。 课程中,学生有时听老师讲解人工智能知识和工具使用方法,有时自己写 prompt 与大语言模型对话,还使用文生图 AI 工具生成桌游卡牌背后的图案,手绘第一版学校地图,选择游戏机制并梳理游戏流程。 在教育领域,生成式 AI 带来了诸多改变: 解决了教育科技长期以来在有效性和规模之间的权衡问题,可大规模部署个性化学习计划,为每个用户提供“口袋里的老师”,如实时交流并给予发音或措辞反馈的语言老师。 出现了众多辅助学习的产品,如教授新概念、帮助学习者解决各学科问题、指导数学作业、提升写作水平、协助创建演示文稿等。
2025-02-18
作为前端开发人员,推荐学习哪些AI技术呢
作为前端开发人员,以下是一些推荐学习的 AI 技术: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能、机器学习、深度学习、自然语言处理等主要分支及其联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,其上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验。 此外,如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识: 基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:了解向量、矩阵等线性代数基本概念。 概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型: 监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:熟悉聚类、降维等算法。 强化学习:简介强化学习的基本概念。 4. 评估和调优: 性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础: 网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 如果偏向技术研究方向: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果偏向应用方向: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?
以下是一些您可以从以下角度开发产品来赋能兼职督学岗位的工作效率,并锻炼您的 AI 能力,以争取上司或老板为产品支付报酬: 1. 利用 Coze 的多语言模型支持,为解答高中生学习方法等疑问提供更准确和全面的回答。 2. 借助插件系统,集成与学习相关的插件,如学习资料查询、学习工具推荐等,丰富服务内容。 3. 运用知识库功能,上传各类学科知识点、优秀学习案例等,方便在服务中快速调用和推送。 4. 利用数据库和记忆能力,记住每个高中生的学习情况和需求,提供个性化服务。 5. 设计工作流,例如自动发送测试卷、自动通知后端制作学习计划、自动推送学习计划链接等流程,提高工作效率。 6. 采用多代理模式,针对不同学科或学习阶段设置专门的代理,提供更精准的服务。 7. 利用 Coze 易于发布和分享的特点,将服务产品推广给更多需要的高中生和督学人员。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?又该如何将它推销给上司?
以下是关于您利用 Coze 和 DeepSeek 等 AI 接入飞书来赋能兼职督学岗位工作效率的一些建议: 开发产品的角度: 1. 智能答疑系统:利用 AI 技术,对高中生常见的学习方法疑问进行自动分析和回答,提高答疑效率和准确性。 2. 个性化测试卷生成:根据学生的学习情况和需求,通过 AI 生成个性化的测试卷。 3. 学习计划优化:基于学生提交的测试卷结果,利用 AI 更精准地制定学习计划。 4. 知识点精准推送:运用 AI 分析学生的学习进度和薄弱环节,定期推送更具针对性的知识点。 5. 打卡提醒优化:通过 AI 实现更灵活、个性化的打卡提醒方式。 推销给上司的方法: 1. 展示效率提升:详细说明产品如何大幅提高兼职督学的工作效率,节省人力和时间成本。 2. 个性化服务优势:强调产品能够为高中生提供更个性化、精准的服务,提升学习效果。 3. 数据支持:提供相关的数据和案例,证明 AI 赋能后的积极效果。 4. 成本效益分析:说明开发和使用该产品的成本相对较低,而带来的收益显著。 5. 未来发展潜力:阐述产品在不断优化和拓展功能方面的潜力,适应更多的教育需求。 另外,Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。它具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式、免费使用、易于发布和分享等特点。这些特点可以为您的产品开发提供有力支持。
2025-02-18
我是一个有23年软件系统开发和设计经验的架构师,但是对AI还没有系统化了解过,请问我该如何开始?如何在短时间内掌握AI的使用、原理以及二次开发?
以下是为您提供的在短时间内系统化学习 AI 的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。我建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识 (1)基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 (2)历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 (1)统计学基础:熟悉均值、中位数、方差等统计概念。 (2)线性代数:了解向量、矩阵等线性代数基本概念。 (3)概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 (1)监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 (2)无监督学习:熟悉聚类、降维等算法。 (3)强化学习:简介强化学习的基本概念。 4. 评估和调优 (1)性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 (2)模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 (1)网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 (2)激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,以证件照为例,Code AI 应用开发教学中,智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。在创建 AI 应用时,要学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-02-17