Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我能用AIAgent,做什么关于Java程序员可用的工具?

Answer

AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。AI Agent 包括以下几个概念:

  • Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。
  • Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。
  • Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。

总结下来,有三个 Agent:

  • Responser Agent:主 agent,用于回复用户(伪多模态)。
  • Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。
  • Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。

这三个 Agent 每隔一段时间运行一次(默认 3 分钟),期间会分析历史对话,变更人物关系(亲密度、了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,并且有概率主动聊天(与亲密度正相关,跳过夜间时间)。

对于 Java 程序员来说,可以利用 AI Agent 中的工具调用功能,例如对相关技术文档的搜索和检索,以辅助解决编程中的问题;也可以借助其分析和理解能力,对代码逻辑进行审查和优化建议等。

Content generated by AI large model, please carefully verify (powered by aily)

References

皮皮:你的微信虚拟女友 - 李洛云

AI Agent:基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。AI Agent包括下面几个概念:Chain:通常一个AI Agent可能由多个Chain组成。一个Chain视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的Chain是大语言模型完成的LLM Chain。Router:我们可以使用一些判定(甚至可以用LLM来判定),然后让Agent走向不同的Chain。例如:如果这是一个图片,则a;否则b。Tool:Agent上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。总结下来我们需要三个Agent:Responser Agent:主agent,用于回复用户(伪多模态)Background Agent:背景agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)Daily Agent:每日agent,用于生成剧本,配套的图片,以及每日朋友圈Responser AgentDaily AgentBackground Agent每隔一段时间运行一次(默认3分钟)分析期间的历史对话变更人物关系(亲密度,了解度等)变更反感度,如果超标则拉黑用户抽简对话内容,提取人物和用户的信息成为“增长的记忆体”按照时间推进人物剧本有概率主动聊天(与亲密度正相关,跳过夜间时间)

皮皮:你的微信虚拟女友 - 李洛云

AI Agent:基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。AI Agent包括下面几个概念:Chain:通常一个AI Agent可能由多个Chain组成。一个Chain视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的Chain是大语言模型完成的LLM Chain。Router:我们可以使用一些判定(甚至可以用LLM来判定),然后让Agent走向不同的Chain。例如:如果这是一个图片,则a;否则b。Tool:Agent上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。总结下来我们需要三个Agent:Responser Agent:主agent,用于回复用户(伪多模态)Background Agent:背景agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)Daily Agent:每日agent,用于生成剧本,配套的图片,以及每日朋友圈Responser AgentDaily AgentBackground Agent每隔一段时间运行一次(默认3分钟)分析期间的历史对话变更人物关系(亲密度,了解度等)变更反感度,如果超标则拉黑用户抽简对话内容,提取人物和用户的信息成为“增长的记忆体”按照时间推进人物剧本有概率主动聊天(与亲密度正相关,跳过夜间时间)

Others are asking
AIagent的发展方向
AI Agent 被认为是大模型未来的主要发展方向之一,其发展具有以下特点和阶段: 从原理上看,中间的“智能体”通常是 LLM 或大模型,为其增加了工具、记忆、行动、规划四个能力。目前行业里主要用到的是 langchain 框架,它通过代码或 prompt 的形式将 LLM 与 LLM 之间以及 LLM 与工具之间进行串接。 在人工智能的发展历程中,AI Agent 并非一蹴而就,其发展可分为几个阶段,并受到符号主义、连接主义、行为主义的影响。在人工智能的黎明时期,符号人工智能作为主导范式,以对符号逻辑的依赖著称,代表之作是基于知识的专家系统。其特点是基于逻辑和规则系统,使用符号来表示知识,通过符号操作进行推理。优点是推理过程明确、可解释性强,缺点是知识获取困难、缺乏常识、难以处理模糊性。时间为 20 世纪 50 70 年代。 近期出现的各类 AI 搜索引擎不断颠覆传统搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等。AI Agent 在辅助高效处理信息和简便信息表达方面表现出色,例如智能摘要能辅助快速筛选信息,自然语言描述可生成美观可用的图片。在工作流方面,每个人应根据自身情况找到适合的工具,如产品经理可使用 AI 进行用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。关于 AI Agent 的未来,曾被认为异想天开的想法都可能成为现实,技术迭代会不断向前。
2025-02-15
代码小白想要学习上手aiagent 请给我制定高效学习流程
以下是为代码小白制定的学习 AI Agent 的高效流程: 1. 基础了解 度过第一阶段,了解 AI 的基本原理和发展阶段。 2. 选择方向 鉴于您是代码小白,建议从不需要代码基础的 Coze 工作流学起。它适用所有人,只要能发现智能体的需求,就可以用工作流来实现。 3. 学习资源 可以参考《雪梅 May 的 AI 学习日记》,了解在业务运营领域如何通过 Coze 接触大量应用场景和进行 prompt 练习。 阅读安仔的文章,学习如何使用极简未来平台、腾讯云轻量应用服务器、宝塔面板和 Docker 搭建一个 AI 微信聊天机器人,了解相关技术组件的选用、配置步骤、费用和运维问题。 查看元子的分享,如“小白的 Coze 之旅”,深入了解 Coze 平台。 4. 加入社群 可以加入免费的 AI Agent 共学群,基于 WaytoAGI 社区等高质量信息源,分享时下 AI Agent 相关的玩法、经验和前沿资讯。通过微信号 Andywuwu07 或扫描二维码加微信,备注 AI 共学即可加入。 希望以上流程对您有所帮助,祝您学习顺利!
2025-02-05
购物推荐的aiagent 目前有好用的吗
以下是一些好用的购物推荐的 AI Agent: AutoGPT GUI:其 GUI 已开放 waitlist,可在 https://news.agpt.co/ 注册。 MULTI·ON plugin by MULTI·ON:今年 2 月开始使用,能在笔记本电脑上自动执行许多任务。现开发了 ChatGPT 插件,功能强大。链接:https://www.multion.ai/ ,演示:https://twitter.com/DivGarg9/status/1648394059483054081 。 BabyBeeAGI:由 Yohei 本人开发,有更强的任务管理等能力,但速度较慢,适合处理复杂任务。链接:https://replit.com/@YoheiNakajima/BabyBeeAGI?v=1 。 MiniAGI:基于 GPT3.5Turbo/4 的最小通用自主代理,保留简单实用功能,可执行多种任务,如订比萨。链接:https://github.com/muellerberndt/miniagi 。 此外,智谱的 AutoGLM 经过深度测试,展现出了较好的场景理解能力,如能准确区分“帮我买一杯咖啡”和“帮我买一包咖啡豆”并打开相应应用,但目前离好用还有一定距离,存在语音识别偏差、复杂界面操作稳定性待提升、只支持安卓等问题。 Cursor 虽然免费版只有 chat 功能,但其中的 Agent 功能只要给一个模糊指令,就会自动规划和解决问题。Cline 作为一个 AI 助手,能力有保障,长期霸榜 OpenRouter token 消耗榜,新版本还推出检查点功能。实际体验中,DeepSeekV3 和 Gemini 2.0 Flash Thinking 可作为不错的候选。
2025-01-26
aiagent智能体是从什么时候开始实现的
AI Agent 的概念起源可以追溯到达特茅斯会议开始讨论人工智能(Artificial Intelligence),之后马文·明斯基引入“Agent”概念,至此“AI”和“Agent”彻底聚齐。心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果,这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。明斯基在《心灵社会》中还详细描述了不同类型的 Agent 及其功能,如专家 Agent、管理 Agent、学习 Agent 等。
2025-01-12
aiagent
AI Agent 是一个热门且复杂的概念,被认为是大模型未来的主要发展方向。 在对其深入探讨前,首先要明确其定义和总结。AI Agent 是融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多学科精髓的综合实体,不仅有实体形态,还有丰富的概念形态,并具备许多人类特有的属性。因为这些学科多以人为研究对象,致力于探索人类内在本质。 网络上对 AI Agent 的介绍往往晦涩难懂,通过必应和 Kimi 的搜索也难以获得清晰的答案。 从原理上理解,中间的“智能体”通常是 LLM 或大模型,为其增加工具、记忆、行动、规划这四个能力。目前行业里主要用到的是 langchain 框架,它把 LLM 之间以及 LLM 和工具之间通过代码或 prompt 的形式进行串接。比如长期记忆是给大模型一个数据库工具记录重要信息,规划和行动是在大模型的 prompt 层做逻辑,将目标拆解并输出固定格式指令给工具。但 langchain 或 AI Agent 不止这些,还有其他代码逻辑,主要的主干逻辑在 prompt 层和工具层。
2025-01-12
AIagent是什么
AI Agent 是一个融合了语言学、心理学、神经学、逻辑学、社会科学、计算机科学等多个学科精髓的综合实体,不仅拥有实体形态,还蕴含丰富的概念形态,并具备许多人类特有的属性。因为这些学科大多以人为研究对象,致力于探索人类内在的本质。 同时,AI Agent 也是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。它包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 此外,还需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),运行期间会分析历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2024-09-26
java程序员怎么转型大模型算法工程师
以下是为 Java 程序员转型大模型算法工程师提供的一些建议: 1. 学习相关理论知识:了解大模型的基本原理,包括模型架构、预训练及微调、部署及推理等。 2. 掌握技术工具:熟悉 LLM 相关技术,如 Transformer、Prompt Tuning、RLHF、Langchain、Agent、MOE、RAG 等。 3. 提升编程能力:熟悉算法和数据结构,具备扎实的编程基础,尤其是 Python 开发。 4. 积累项目经验: 可以参考大圣的全网最适合小白的 Llama3 部署和微调教程,该教程手把手教您下载并部署 Llama3 模型,使用甄嬛数据集微调模型,并了解微调的意义和概念。但需注意,此教程不会讲解微调的技术性原理及文中用到的 Python 代码。 关注招聘信息,例如序智科技和中国移动设计院的招聘需求,了解大模型算法工程师的职责和要求,针对性地提升自己的能力。 5. 增强相关技能: 对至少 2 个框架具备源码级别的理解和优化能力,包括但不限于 Langchain、XAgent、ChatDev、DsPy、AutoGPT、BabyAGI、MetaGPT。 熟悉 GPT Function Calling 原理,熟练掌握 Prompt Engineering。 对预训练/微调(尤其是微调)熟练,熟练掌握 huggingface/deepspeed(或其他框架)。 对多模态大模型有一定了解,精通低代码平台会是加分项。 您可以根据自身情况,有针对性地进行学习和实践,逐步实现从 Java 程序员向大模型算法工程师的转型。
2025-03-12
java程序员,怎么吧AI结合到公司的业务上去,K12教育公司
对于 Java 程序员将 AI 结合到 K12 教育公司的业务中,以下是一些可能的方向和建议: 首先,可以考虑利用自然语言处理技术来改善学生与学习平台的交互体验。例如,开发智能客服,能够自动回答学生和家长常见的问题,提高服务效率。 其次,通过机器学习算法对学生的学习数据进行分析,从而实现个性化的学习推荐。比如根据学生的学习进度、成绩、学习习惯等因素,为他们推荐适合的课程、练习和学习资源。 另外,运用图像识别技术来辅助教学材料的制作和评估。例如,自动识别和批改学生的手写作业、试卷等。 还可以开发智能辅导系统,为学生提供实时的学习指导和答疑服务。 最后,利用语音识别和合成技术,打造有声读物、语音教学等功能,丰富教学形式。 但在将 AI 引入业务的过程中,需要注意数据的安全性和合法性,以及确保技术的可靠性和稳定性。同时,要充分考虑教育的特点和学生的需求,以实现有效的融合和应用。
2025-02-23
有java scala hadoop spark flink开发经验员工入门AI 学习提纲以及对应学习内容
以下是为有 Java、Scala、Hadoop、Spark、Flink 开发经验的员工提供的 AI 入门学习提纲及对应学习内容: 1. 学习资源推荐: 系统化学习:观看李弘毅老师的生成式 AI 导论、吴达的生成式 AI 入门视频等,并整理学习笔记与大家交流互动。 社区共创学习:参与社区共创活动,通过做小项目反向推动学习。 参考资料:A16Z 推荐的 AI 相关原理内容,包括 GPT 相关知识、Transformer 模型运作原理、大语言模型词语接龙原理等基础知识。 官方 cookbook:open AI 的官方 cookbook,小琪姐做了中文精读翻译。 历史脉络资料:整理 open AI 的发展时间线、万字长文回顾等。 2. 学习路径: 从提示词开始学习与各类模型的对话,了解其重要性和结构化提示词的优势。 学习过程中可以先从国内模型工具入手,不花钱,若想进阶再考虑高阶方向。 3. 其他学习方式: 创作者将内容做成可视化形式,后续会发到群里。 上传相关 PPT 用作参考。 从温达、李弘毅老师课程等学习入门。 了解时代杂志评选的百位领军人物。 学习 AI 相关名词解释,如 AGI、AIGC、agent、prompt 等,可通过与 AI 对话或李继刚老师的课程来理解。 订阅赛博蝉星公众号、国外优质博主的 blog 或 Twitter 等获取最新信息并投稿。 参与社区活动,如 AIPU、CONFIUI 生态大会、每月的切磋大会、新活动 AIPO 等。
2025-02-21
大模型在软件开发公司(主java+vue)的应用场景有哪些
大模型在以 Java 和 Vue 技术为主的软件开发公司中,具有以下一些应用场景: 1. 代码自动生成:大模型可以根据需求描述生成 Java 或 Vue 的代码片段,提高开发效率。 2. 代码优化建议:分析现有代码,提供优化的建议和策略,提升代码质量。 3. 智能错误检测与修复:快速识别代码中的错误,并提供可能的修复方案。 4. 需求分析与理解:帮助更好地理解和梳理复杂的业务需求,转化为技术实现的思路。 5. 自动化测试用例生成:根据代码和需求生成有效的测试用例,提高测试效率和覆盖度。 6. 技术选型辅助:在面临新的项目或技术难题时,提供相关技术选型的参考和建议。
2025-02-06
35岁java后端开发如何转型AI开发
对于 35 岁的 Java 后端开发人员转型 AI 开发,以下是一些建议: 1. 利用固定格式文档结合 AI 进行代码开发时,要强调组员的主观能动性,让他们自主设计,组长负责引导和经验分享。文档并非唯一最佳方式,可尝试用简短描述或 Prompt 辅助代码生成。在 AI 编程中,设计非常重要,模块化低耦合设计和清晰的上下文对代码生成效果尤为关键。参考链接: 2. 借助 AI 编程工具(如 Cursor),熟悉 LLM 原理,探索复杂 Prompt 和定制化规则。开展 LLM 相关的 Side Project(如翻译工具、AI 对话应用等),通过实践快速掌握技能。将 AI 当老师,边做边学,获取即时反馈,持续提升。核心建议是行动起来,找到正反馈,坚持使用 AI 辅助编程。参考链接:
2025-01-29
Java 程序员如何从 0 到 1 开发微调模型
以下是 Java 程序员从 0 到 1 开发微调模型的步骤和相关信息: 准备工作: 假设您已经按照相关说明准备了训练数据。 使用 OpenAI CLI 进行微调: 1. 明确从哪里 BASE_MODEL 开始的基本模型的名称(如 ada、babbage、curie 或 davinci),您可以使用后缀参数自定义微调模型的名称。 2. 运行相关命令,该命令会执行以下操作: 使用文件 API 上传文件(或使用已经上传的文件)。 创建微调作业。 流式传输事件直到作业完成(这通常需要几分钟,但如果队列中有很多作业或您的数据集很大,则可能需要数小时)。 关于基本模型: 每个微调工作都从一个默认为 curie 的基本模型开始。模型的选择会影响模型的性能和运行微调模型的成本。您的模型可以是 ada、babbage、curie 或 davinci。请访问定价页面了解有关微调费率的详细信息。 微调作业的时间: 开始微调作业后,可能需要一些时间才能完成。在系统中,您的工作可能排在其他工作之后,训练模型可能需要几分钟或几小时,具体取决于模型和数据集的大小。如果事件流因任何原因中断,您可以通过运行特定命令恢复它。工作完成后,它应该显示微调模型的名称。 微调的优势: 1. 比即时设计更高质量的结果。 2. 能够训练比提示中更多的例子。 3. 由于更短的提示而节省了 Token。 4. 更低的延迟请求。 微调的步骤: 1. 准备和上传训练数据。 2. 训练新的微调模型。 3. 使用您的微调模型。 可微调的模型: 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。这些是原始模型,在训练后没有任何说明(例如 textdavinci003)。您还可以继续微调微调模型以添加其他数据,而无需从头开始。 安装建议: 建议使用 OpenAI 命令行界面。要安装这个,运行相关指令(以下说明适用于 0.9.4 及更高版本。此外,OpenAI CLI 需要 python 3)。通过将相关行添加到您的 shell 初始化脚本(例如.bashrc、zshrc 等)或在微调命令之前的命令行中运行它来设置您的环境变量。 此外,还有“大圣:全网最适合小白的 Llama3 部署和微调教程”,其核心代码全部参考如下开源项目: 。该教程有诸多亮点,如教您如何购买算力,手把手教您下载并部署 Llama3 模型,使用甄嬛数据集微调 Llama3 模型等,但不会讲解微调的技术性原理以及文中会用到的 Python 代码,且需要您充值 50 块钱购买算力的预充值。
2025-01-04
我有七篇参考文献,如何给ai提问学,让我能够做出论文,本科
对于您拥有七篇参考文献并希望借助 AI 来完成本科论文的情况,您可以向 AI 这样提问:首先,清晰地描述您的论文主题和研究目的,比如“我正在撰写关于,请您据此给出具体的写作思路和方法。”同时,您还可以询问 AI 如何有效地整合和引用这七篇参考文献中的观点和数据,以支持您的论文观点。
2025-03-06
我能用AI实现手机自动记账吗
目前利用 AI 技术实现手机自动记账是可行的。通过使用具备自然语言处理和机器学习能力的 AI 应用,能够对您的消费信息进行智能识别和分类记录。例如,某些记账应用可以自动解析短信中的消费通知,或者通过语音输入您的消费描述来完成记账。但要实现较好的效果,可能需要您对相关应用进行一定的设置和训练,以适应您的消费习惯和记账需求。
2025-03-05
告我能生成数字人的Ai网站,不少于3个
以下是一些能生成数字人的 AI 网站: 1. HeyGen:这是一个 AI 驱动的平台,可以创建逼真的数字人脸和角色。使用深度学习算法生成高质量的肖像和角色模型,适用于游戏、电影和虚拟现实等应用。 2. Synthesia:是一个 AI 视频制作平台,允许用户创建虚拟角色并进行语音和口型同步。支持多种语言,可用于教育视频、营销内容和虚拟助手等场景。 3. DID:一家提供 AI 拟真人视频产品服务和开发的公司,只需上传人像照片和输入要说的内容,平台提供的 AI 语音机器人将自动转换成语音,然后就能合成一段非常逼真的会开口说话的视频。 更多数字人工具请访问网站查看:https://www.waytoagi.com/category/42 。请注意,这些工具的具体功能和可用性可能会随着时间和技术的发展而变化。在使用这些工具时,请确保遵守相关的使用条款和隐私政策,并注意保持对生成内容的版权和伦理责任。
2025-02-28
我能否借助开源社区力量构建高质量的 AI 数字人
您可以借助开源社区力量构建高质量的 AI 数字人。 构建数字人的躯壳有多种方式: 1. 2D 引擎:风格偏向二次元,亲和力强,定制化成本低,代表是 Live2D Cubism。 2. 3D 引擎:风格偏向超写实的人物建模,拟真程度高,定制化成本高,代表是 UE、Unity、虚幻引擎 MetaHuman 等,但个人学习在电脑配置和学习难度上有一定门槛。 3. AIGC:省去建模流程直接生成数字人的展示图片,但存在算法生成的数字人很难保持 ID 一致性、帧与帧连贯性差等弊端。如果对人物模型真实度要求不高,可以使用,典型项目有 wav2lip、videoretalking 等。AIGC 还有直接生成 2D/3D 引擎模型的方向,但仍在探索中。 构建数字人的灵魂需要注意以下几个工程关键点: 1. AI Agent:要让数字人像人一样思考就需要写一个像人一样的 Agent,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建都是挑战。 2. 驱动躯壳的实现:灵魂部分通过定义接口由躯壳部分通过 API 调用,调用方式可以是 HTTP、webSocket 等。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对成熟但闭源。 3. 实时性:由于算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的 API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。 4. 多元跨模态:不仅仅是语音交互,还可以通过添加摄像头数据获取数据,再通过系列 CV 算法做图像解析等。 5. 拟人化场景:正常和人交流时不是线性对话,会有插话、转移话题等情况,这些情景需要通过工程丝滑处理。 如果都要自建代码实现各模块,开发工作量巨大,迭代难度也很高,对于个人开发者来讲不现实。因此推荐借助开源社区的力量,现在开源社区已经有了像 dify、fastgpt 等等成熟的高质量 AI 编排框架,它们有大量的开源工作者维护,集成各种主流的模型供应商、工具以及算法实现等等。我们可以通过这些框架快速编排出自己的 AI Agent,赋予数字人灵魂。在笔者的开源项目中,使用了 dify 的框架,利用其编排和可视化交互任意修改流程,构造不同的 AI Agent,并且实现相对复杂的功能,比如知识库的搭建、工具的使用等都无需任何的编码和重新部署工作。同时 Dify 的 API 暴露了 audiototext 和 texttoaudio 两个接口,基于这个两个接口就可以将数字人的语音识别和语音生成都交由 Dify 控制,从而低门槛做出来自己高度定制化的数字人。具体的部署过程参考 B 站视频:https://www.bilibili.com/video/BV1kZWvesE25 。如果有更加高度定制的模型,也可以在 Dify 中接入 XInference 等模型管理平台,然后部署自己的模型。此外,数字人 GUI 工程中仍然保留了 LLM、ASR、TTS、Agent 等多个模块,能够保持更好的扩展,比如实现更加真实性感的语音转换、或者如果有更加 Geek 的 Agent 实现也可以选择直接后端编码扩展实现。 使用 Dify 接口需要注意: 1. 必须在应用编排功能中打开文字转语音和语音转文字功能,否则接口会返回未使能的错误。 2. 只有接入了支持 TTS 和 SPEECH2TEXT 的模型供应商,才会在功能板块中展示出来,Dify 的模型供应商图标下标签有展示该供应商支持哪些功能,这里可以自行选择自己方便使用的。对于 TTS,不同的模型供应商支持的语音人物不同,可以根据个人喜好添加。
2025-01-21
我能不能用人工智能做一个二手车批发的APP,让车商能在里面自由批发车辆,这个APP要异于常规APP,具备人工智能?
使用人工智能来开发一个二手车批发的 APP 是可行的,但具有一定的挑战性。 首先,从技术角度来看,要实现车商在其中自由批发车辆的功能,需要具备强大的数据库和稳定的网络架构,以确保车辆信息的准确、及时更新和交易的顺利进行。 对于人工智能的应用,可以考虑以下几个方面: 1. 智能推荐:根据车商的浏览历史、交易记录和偏好,为其推荐可能感兴趣的车辆。 2. 价格预测:利用机器学习算法,对二手车的价格进行预测,为车商提供参考。 3. 风险评估:通过分析车辆的历史数据、市场趋势等,评估交易中的风险。 然而,要开发这样一个 APP 也面临一些困难和需要注意的问题: 1. 数据质量和安全性:确保车辆数据的准确性、完整性和安全性,防止数据泄露和滥用。 2. 法律法规:二手车交易涉及众多法律法规,需要确保 APP 的运营符合相关规定。 3. 用户体验:要设计简洁、易用的界面,让车商能够方便地进行操作。 总之,虽然具有挑战性,但如果能够充分利用人工智能技术,并解决好上述问题,开发一个具备人工智能的独特二手车批发 APP 是有可能的。
2024-12-22
我能不能用AI做一个实时交流的社群
以下是关于您能否用 AI 做一个实时交流社群的相关信息: AI 音乐方面: 存在 AI 音乐共建者的社群。 使用方式:文档中可贴喜欢的音乐或投稿教程,定期组织音乐交流会,社群中可实时交流音乐相关创作作品和经验分享。 加入条件:至少有一首以上的 AI 音乐作品,添加 AAAAAAAJ 备注音乐。 近期活动:「在线音乐会」网友出题,现场生音乐(时间待定);「Reaction」收集 AI 音乐,大家一起欣赏,记录听到意想不到的好听的歌的反应(时间待定)。 有趣的音乐可贴在文档下方,持续收集中。 Inworld AI 方面: 使 NPC 能够自我学习和适应,具有情绪智能。 特点和功能: 实时语音:使用内置语音设置进行最小延迟,可配置角色的性别、年龄、音调和说话速度,或使用第三方服务创建自定义和克隆语音。 “Contextual Mesh”功能:定制 AI 非玩家角色(NPC)的行为和知识。 可配置的安全性:可配置 NPC 对话方式,适应不同年龄级别游戏。 知识:输入“个人知识”控制角色应知道或不应知道的信息,使用“共享知识”定义多个角色拥有的知识。 玩家档案:收集玩家信息,让 NPC 在互动时考虑。 关系:配置角色关系流动性,创建不同关系的角色。 第四堵墙:确保角色只从其世界中的知识获取信息,创建更沉浸的体验。 可与各种游戏引擎(如 Unity、Unreal Engine 等)和其他游戏开发工具无缝对接,帮助品牌创建交互性强的 AI 角色,无需编码。
2024-12-22
我不会写代码,怎么像个程序员一样利用ai帮我写代码
如果您不会写代码但想利用 AI 帮您写代码,可以参考以下方法: 1. 对于编程小白来说,最好向 AI 提供代码节点中的范例,也就是新进入代码节点的 IDE 中所看到的那些代码(从 async def 到 return 的内容)。因为 AI 可能并不清楚代码中规定的输入输出格式(比如代码节点的 Python 语言使用字典的形式来组织输入和输出的变量),所以提供范例可以尽可能减少您需要对 AI 所写代码的改动。 2. 需要向 AI 说清楚输入变量与输出变量的类型。 3. 最好说明与工作流中匹配或想要的变量名称,以减少二次修改。 4. 最好列出输入变量的具体书写形式,以方便 AI 尽可能准确地理解。如果是 Object 或 Array 这样较为复杂的形式,您不会写,可以使用下面这个方法:在前一个节点后接一个“文本处理”节点,选择字符串拼接,输入选择前一个节点输出中所需的那个变量,拼接内容写{{String1}}就行,然后试运行,展开该节点的运行结果,复制最终输出中“output:”后面的内容即可,如果内容太长,提问时可省略不重要的具体内容,保留书写形式即可。 5. 说清楚代码要实现什么功能,如果功能较为复杂,尽量将运行逻辑说清楚,越清楚越好。描述中尽量用变量名称来指代所涉及到的各个变量。 这里给出一个提问范式供大家参考: 请仿照上述代码的结构,用 python 编写代码,实现以下功能: 输入变量为。 输出变量为。 。关键步骤请附上注释。 另外,如果您在处理 SQL 代码时不会写,也可以让 AI 帮忙。例如,您可以将以下内容发送给 AI:学习这个文档 https://www.coze.cn/docs/guides/database,然后帮我撰写用于工作流的 sql。之后按照 AI 的回复要求提供具体需求,如数据库表名称、操作类型、相关字段等,AI 会为您生成相应的 SQL 语句。 在使用代码节点时,即使您不是程序员,也可以让 AI 帮您写代码。但要先搞清楚输入和输出以及想要代码实现的逻辑。比如在处理谷歌搜索节点的输出作为 Code 节点的输入时,要先了解相关字段,如 link(网址)、title(标题)、snippet(简短介绍)、source(来源)等。
2025-03-08
程序员在使用AI的时候会涉及哪些AI工具,帮我分别具体列举出来
程序员在使用 AI 时,可能会涉及以下一些 AI 工具: 1. GitHub Copilot:由 GitHub 联合 OpenAI 和微软 Azure 团队推出,支持多种语言和 IDE,能为程序员快速提供代码建议,帮助提高编写代码的效率。 2. 通义灵码:阿里巴巴团队推出,基于通义大模型,提供行级/函数级实时续写、自然语言生成代码、单元测试生成、代码注释生成等多种能力。 3. CodeWhisperer:亚马逊 AWS 团队推出的由机器学习技术驱动的代码生成器,为开发人员实时提供代码建议。 4. CodeGeeX:智谱 AI 推出的开源免费 AI 编程助手,基于 130 亿参数的预训练大模型,可快速生成代码。 5. Cody:代码搜索平台 Sourcegraph 推出的 AI 代码编写助手,借助强大的代码语义索引和分析能力,了解开发者的整个代码库。 6. CodeFuse:蚂蚁集团支付宝团队为国内开发者提供的智能研发服务的免费 AI 代码助手,基于蚂蚁集团自研的基础大模型进行微调。 7. Codeium:一个由 AI 驱动的编程助手工具,通过提供代码建议、重构提示和代码解释来帮助软件开发人员提高编程效率和准确性。 此外,还有一些其他相关的 AI 工具,如: 1. ChatAll:可以同时与多个 AI 机器人实时聊天的开源工具,支持多种主流 AI 聊天机器人。 2. AIProductsAllInOne:整理了一些 ChatGPT 以及 AI 相关的生产力工具。 3. Shell GPT:在命令行中集成了 ChatGPT,帮助快速编写 shell 命令、代码片段等。 4. 飞书 GPT:集成了飞书、GPT3.5、Dall·E、Whisper 等 API,支持多种功能。 5. ChatPDF:提取 PDF 文件内容并交给 ChatGPT 分析,实现一对一对话交流。 6. GitHub Copilot X:基于 AI 驱动的跨时代代码编辑器,带来全新编程体验。 在 PPT 制作方面,有以下 AI 工具: 1. MindShow 2. 爱设计 3. 闪击 4. Process ON 5. WPS AI 每个工具都有其特色和适用场景,程序员可以根据自己的需求选择最适合的工具。
2025-03-07
通义灵码AI程序员
通义灵码是基于通义大模型的 AI 研发辅助工具,具有以下特点和能力: 提供代码智能生成、研发智能问答、多文件代码修改、自主执行等能力,为开发者带来智能化研发体验,引领 AI 原生研发新范式。 具备多文件代码修改和工具使用的能力,可与开发者协同完成编码任务,如需求实现、问题解决、单元测试用例生成、批量代码修改等。 核心能力包括:从片段级到多文件级的 AI 编码,能完成涉及工程内多文件级的编码任务;新增多种上下文感知、意图理解、反思迭代、工具使用等能力,开发者可与 AI 协同完成更复杂的编码任务;自动完成工程内多个文件的代码修改的 Diff 生成,并提供多文件的变更审查视图,高效完成 AI 生成代码的确认;构建人机协同工作流,通过多轮对话逐步完成编码任务,产生多个快照版本,可任意切换、回退。 第二期「AI 实训营」手把手学 AI 【第二期:大咖带你快速上手通义灵码 AI 程序员】相关信息: 讲师:梦飞,WaytoAGI Agent 核心创作者,词元映射 CEO。 课表: 01/22 20:00 【直播回放】 ,主题为0 基础入门篇:写代码像聊天一样简单,可以进入钉钉群获取更多文档:https://alidocs.dingtalk.com/i/nodes/yQod3RxJKGvvkP3rfj5Lgoy7Jkb4Mw9r?utm_scene=person_space ,课程内容包括 AI 编程的能力与边界、通义灵码上手指南、一句话 AI 编程小游戏展示。 01/23 20:00 【直播回放】 ,主题为AI 编程实战篇:人人都能“福从天降”,课程内容包括 0 基础带练“福从天降”小游戏、自然语言生成更多小游戏、如何在 Github 部署并生成在线链接。 本期共学直播地址: 会议时间:20:00 21:30 会议 ID:932 264 694 会议链接:vc.feishu.cn/j/932264694 加入通义灵码钉钉共学群(钉钉群号:78080029971),大咖在线答疑。春节专题,现场发红包!2 天课程,带你从小白到进阶,从学习到实践,全面了解 AI 应用开发!和百万开发者一起共学、共享、共实践!
2025-03-07
通义灵码AI程序员
通义灵码是基于通义大模型的 AI 研发辅助工具,具有以下特点和能力: 提供代码智能生成、研发智能问答、多文件代码修改、自主执行等能力,为开发者带来智能化研发体验,引领 AI 原生研发新范式。 具备多文件代码修改和工具使用的能力,可与开发者协同完成编码任务,如需求实现、问题解决、单元测试用例生成、批量代码修改等。 核心能力包括:从片段级到多文件级的 AI 编码,能完成涉及工程内多文件级的编码任务;新增多种上下文感知、意图理解、反思迭代、工具使用等能力,开发者可与 AI 协同完成更复杂的编码任务;自动完成工程内多个文件的代码修改的 Diff 生成,并提供多文件的变更审查视图,高效完成 AI 生成代码的确认;构建人机协同工作流,通过多轮对话逐步完成编码任务,产生多个快照版本,可任意切换、回退。 第二期「AI 实训营」手把手学 AI 【第二期:大咖带你快速上手通义灵码 AI 程序员】相关信息: 讲师:梦飞,WaytoAGI Agent 核心创作者,词元映射 CEO。 课表: 01/22 20:00 【直播回放】 ,主题为0 基础入门篇:写代码像聊天一样简单,可以进入钉钉群获取更多文档:https://alidocs.dingtalk.com/i/nodes/yQod3RxJKGvvkP3rfj5Lgoy7Jkb4Mw9r?utm_scene=person_space ,课程内容包括 AI 编程的能力与边界、通义灵码上手指南、一句话 AI 编程小游戏展示。 01/23 20:00 【直播回放】 ,主题为AI 编程实战篇:人人都能“福从天降”,课程内容包括 0 基础带练“福从天降”小游戏、自然语言生成更多小游戏、如何在 Github 部署并生成在线链接。 本期共学直播地址: 会议时间:20:00 21:30 会议 ID:932 264 694 会议链接:vc.feishu.cn/j/932264694 加入通义灵码钉钉共学群(钉钉群号:78080029971),大咖在线答疑。春节专题,现场发红包!2 天课程,带你从小白到进阶,从学习到实践,全面了解 AI 应用开发!和百万开发者一起共学、共享、共实践!
2025-03-07
python程序员 学习AI
对于 Python 程序员学习 AI,以下是一些建议和基础内容: AI 背景知识: 基础理论:理解人工智能、机器学习、深度学习的定义及相互关系。 历史发展:简要回顾 AI 的发展历程和重要里程碑。 数学基础: 统计学基础:熟悉均值、中位数、方差等统计概念。 线性代数:掌握向量、矩阵等基本概念。 概率论:了解基础的概率论知识,如条件概率、贝叶斯定理。 算法和模型: 监督学习:熟悉常用算法,如线性回归、决策树、支持向量机(SVM)。 无监督学习:了解聚类、降维等算法。 强化学习:知晓其基本概念。 评估和调优: 性能评估:掌握如何评估模型性能,包括交叉验证、精确度、召回率等。 模型调优:学会使用网格搜索等技术优化模型参数。 神经网络基础: 网络结构:理解神经网络的基本结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 激活函数:熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,还有相关的课程内容,如“和 Cursor AI 一起学 Python 编程”: 第一节:Python 是什么、Cursor 使用、notebook 远程编程。包括熟悉 Cursor 界面,安装和设置,指导下载安装 Cursor 编辑器,了解界面布局和基本功能,编写第一个程序,体验 AI 辅助功能,如代码自动补全和错误提示,使用 Bohrium 进行远程编程,注册和登录,在线编写和运行代码等。课程时间为 45 分钟,教学内容涵盖 Python 简介、发展历史和特点、在数据分析和人工智能领域的优势、在人文学科的应用、在语言教学和研究中的实际案例,以及对 Cursor 编程环境和 Bohrium 在线编程平台的介绍。
2025-02-26