直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

机器学习发展史

回答

机器学习是人工智能的一个分支,其发展有着清晰的脉络,从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点。机器学习在近 30 多年已发展为多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。

在 Deep Learning 理论和数据集的加持下,2012 年以来深度神经网络算法开始大爆发,出现了卷积神经网络(CNN)、递归神经网络(RNN - Recurrent Neural Network)和长短期记忆网络(LSTM - Long Short-Term Memory)等。例如,CNN 的结构基于两类细胞的级联模型,在计算上更有效、快速,在自然语言处理和图像识别等应用中表现出色。递归神经网络是较高层的神经元直接连接到较低层的神经元。

日本的计算机研究员福岛邦彦根据人脑中视觉的运作方式,创建了一个人工神经网络模型。该架构基于人脑中两种类型的神经元细胞,称为简单细胞和复杂细胞,它们存在于初级视觉皮层中,负责处理视觉信息。简单细胞检测局部特征,如边缘;复杂细胞汇总简单细胞在一个区域内产生的结果,逐级识别得到完整结果。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

AIGC常见名词解释(字典篇)

机器学习是人工智能的一个分支。人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径之一,即以机器学习为手段,解决人工智能中的部分问题。机器学习在近30多年已发展为一门多领域科际集成,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

CNN的结构是基于这两类细胞的级联模型,主要用于模式识别任务。它在计算上比大多数其他架构更有效、更快速,在许多应用中,包括自然语言处理和图像识别,已经被用来击败大多数其他算法。我们每次对大脑的工作机制的认知多一点,神经网络的算法和模型也会前进一步!

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

在Deep Learning理论和数据集的加持下,2012年以来深度神经网络算法开始大爆发,卷积神经网络(CNN)、递归神经网络(RNN - Recurrent Neural Network)和长短期记忆网络(LSTM - Long Short-Term Memory)等等,每一种都有不同的特性。例如,递归神经网络是较高层的神经元直接连接到较低层的神经元。来自日本的计算机研究员福岛邦彦(Kunihiko Fukushima)根据人脑中视觉的运作方式,创建了一个人工神经网络模型。该架构是基于人脑中两种类型的神经元细胞,称为简单细胞和复杂细胞。它们存在于初级视觉皮层中,是大脑中处理视觉信息的部分。简单细胞负责检测局部特征,如边缘;复杂细胞汇集了简单细胞在一个区域内产生的结果。例如,一个简单细胞可能检测到一个椅子的边缘,复杂细胞汇总信息产生结果,通知下一个更高层次的简单细胞,这样逐级识别得到完整结果。配图05:深度神经网络如何识别物体(TensorFlow)

其他人在问
AI发展史
AI(人工智能)的发展有着悠久的历史,其起源最早可追溯到上世纪: 1. 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 2. 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 3. 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落: 1. 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):包括专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到发展。 当前 AI 前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 过去的其他 AI 更多应用于完成人脸识别等分类判断任务,而生成式 AI 的诞生让人们看到其在写文章、画画、写歌等方面展现出类似人类的创作交流能力。
2024-11-11
AI的整个发展史,有没有AI相关综述,让我阅读一下
以下是为您提供的关于 AI 发展史及相关综述的内容: 1. 《机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命》:涵盖了 AI 进化史的多个方面,包括前神经网络时代、Machine Learning 的跃迁、开启潘多拉的魔盒等,文章较长,约 22800 字,阅读前可先观看一段 Elon Musk 和 Jack Ma 在 WAIC 2019 关于人工智能的对谈视频。 2. 对于初学者: 微软的 AI 初学者课程《Introduction and History of AI》: AI for every one(吴恩达教程): 大语言模型原理介绍视频(李宏毅): 谷歌生成式 AI 课程: ChatGPT 入门: 如果您是新手学习 AI,可参考以下学习路径指南: 1. 了解 AI 基本概念:阅读「」熟悉术语和基础概念,浏览入门文章了解 AI 历史、应用和发展趋势。 2. 开始 AI 学习之旅:在「」中找到为初学者设计的课程,可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。
2024-09-16
AI发展史
AI 的发展历程大致如下: 1. 早期阶段(1950s 1960s):出现了专家系统、博弈论以及机器学习的初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示和自动推理得到发展。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术兴起。 早在 1945 年,Alan Turing 就考虑用计算机模拟人脑,设计了 ACE(Automatic Computing Engine 自动计算引擎),这被视为机器智能的起源。随着对大脑工作机制认知的增加,神经网络的算法和模型也不断进步。例如,CNN 的结构基于两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等许多应用中表现出色。每次对大脑工作机制的更多了解,都推动着神经网络的发展。
2024-09-07
AI发展史
AI 的发展历程大致如下: 1. 早期阶段(1950s 1960s):出现了专家系统、博弈论以及机器学习的初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示和自动推理得到发展。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等兴起。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等成为主流。 早在 1945 年,Alan Turing 就考虑用计算机模拟人脑,设计了 ACE(Automatic Computing Engine 自动计算引擎),这被视为机器智能的起源。随着对大脑工作机制认知的增加,神经网络的算法和模型也不断进步。例如,CNN 的结构基于两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等许多应用中表现出色。
2024-09-02
AI发展史
AI 的发展历程主要包括以下几个阶段: 1. 早期阶段(1950s 1960s):出现了专家系统、博弈论以及机器学习的初步理论。 2. 知识驱动时期(1970s 1980s):重点在于专家系统、知识表示和自动推理。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等得到发展。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等成为主流。 早在 1945 年,Alan Turing 就考虑用计算机模拟人脑,并设计了 ACE(Automatic Computing Engine 自动计算引擎)。这被视为机器智能的起源。 在神经网络方面,CNN 的结构基于两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等许多应用中表现出色。每次对大脑工作机制的更多认知,都会推动神经网络的算法和模型向前发展。
2024-09-02
ai的发展史
AI 的发展历程大致如下: 1. 早期阶段(1950s 1960s):包括专家系统、博弈论、机器学习初步理论等。 2. 知识驱动时期(1970s 1980s):以专家系统、知识表示、自动推理为主要特点。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术得到广泛应用。 人工智能作为一个领域始于二十世纪中叶,最初符号推理流行并带来重要进展,如专家系统。但因从专家提取知识并转化为计算机可读形式复杂且成本高,20 世纪 70 年代出现“人工智能寒冬”。随着计算资源变便宜、数据增多,神经网络方法在计算机视觉、语音理解等领域展现出色性能,过去十年“人工智能”常被用作“神经网络”的同义词。 此外,还有关于 AI 进化史的相关内容,如前神经网络时代、Machine Learning 的跃迁、开启潘多拉的魔盒;软件 2.0 的崛起,包括软件范式的转移和演化、Software 2.0 与 Bug 2.0;面向智能的架构,如 Infrastructure 3.0、如何组装智能、智能架构的先锋;一统江湖的模型,如 Transformer 的诞生、基础模型、AI 江湖的新机会;现实世界的 AI,如自动驾驶新前沿、机器人与智能代理;AI 进化的未来,如透视神经网络、千脑理论、人工智能何时能通用等。
2024-08-19
最近AGI机器人特别火,请帮我找出相关新闻
以下是一些与 AGI 机器人相关的新闻: :随着 OpenAI 聊天机器人 ChatGPT 的热潮持续,探讨其如何帮助创建用户体验调查问卷或其他调查问卷。 :给 25 个 AI 代理人动机和记忆,并将它们放在模拟城镇中,其行为被评价比人类角色扮演更“人类化”。 :ChemCrow 是一个 LLM 化学代理,能在合成、药物发现和材料设计等领域执行任务,并集成 13 个专家设计的工具以增强性能。 :OpenAI 发布 GPT4 被证明是生成 AI 的一小步,对 AGI 而言是一大步,自 2022 年 11 月发布以来吸引众多用户和媒体关注,此工作是对 ChatGPT 的首次全面审查。 :有人让 AutoGPT 查找最近一个月的开源相关新闻并汇总成 word 文件,还有人在相关项目基础上做了改进和增强的新项目,如 TeenageAGI、BabyAGIasi、TypeScript 版本的 AutoGPT 等。 :特斯拉训练机器人“Optimus”抓取物体,通过人类示范学习。还提到当训练比 GPT4 大 100 倍的模型时在图像识别、生成图像和视频等方面的预测。
2024-11-10
用Coze创建AI,打造自己的图像生成AI机器人
以下是使用 Coze 创建自己的图像生成 AI 机器人的步骤: 1. 注册 Coze 账号: 访问 Coze 官网,可选择中文版(https://www.coze.cn/,支持大模型:kimi、云雀)或英文版(https://coze.com/,支持大模型:chatgpt4)进行快速注册。 产品定位为新一代 AI 原生应用开发服务平台。 2. 创建机器人: 登录 Coze,可使用抖音或手机号登陆,登陆后选择“创建 Bot”,起一个响亮的名字。 工作空间选“个人空间”。 小技巧:“图标”AI 可以自动生成,先在“Bot 名称”用文字描述想要的图标,满意后再把“Bot 名称”改为简洁版名称。 3. 具体创建 AI Bot: 首先打开扣子的首页(https://www.coze.cn/home),直接点击左上角的创建 AI Bot 按钮。 直接在弹窗输入 Bot 的相关信息,完成创建后细化其功能。 设计人设与回复逻辑,根据功能需求设计提示词。 调整模型设置,比如基于聊天为主的需求,将对话轮数记录改为 20 轮。 选择插件,如英文名言警句(get_one_eng_word & get_many_eng_words)随机获取英语名言,Simple OCR(ocr)识别图片中的文字。 设置开场白和预置问题,预置问题有参考价值。 最后设置语音,若为英语陪练 AI Bot,选择亲切的英语音色。
2024-11-09
用 Coze 免费打造自己的图像生成 AI 机器人
以下是用 Coze 免费打造自己的图像生成 AI 机器人的步骤: 1. 注册 Coze 账号 访问 Coze 官网,快速注册,开启智能之旅。 Coze 中文名扣子,字节跳动出品。 中文版:https://www.coze.cn/(支持大模型:kimi、云雀)——本次教程使用中文版 Coze。 英文版:https://coze.com/(支持大模型:chatgpt4) 产品定位:新一代 AI 原生应用开发服务平台,Nextgeneration AI chatbot building platform。 2. 创建你的机器人 登录 Coze,可使用抖音或手机号登陆,登陆后选择“创建 Bot”,然后起一个响亮的名字。 登录页面、首页、创建 Bot 时,工作空间选“个人空间”即可。 小技巧:“图标”AI 可以自动生成,先在“Bot 名称”那里用文字描述你想要的图标,图标生成满意后,再把“Bot 名称”改为简洁版名称。 此外,在实际体验中: 测试 AI Bot 时,可能会出现回答不完整的情况,如部分信息未给出,这是因为 Coze 国内版刚发布不久,有些官方和第三方插件的 API 调用和返回结果不太稳定。但官方会尽快解决。 成功的回答是根据提示词和插件+工作流的组合,结果非常详细。若加上自己的知识库甚至定制化使用数据库功能,AI Bot 的使用场景会更丰富。 国外版有免费的 GPT4 大模型使用,插件和工作流功能更丰富稳定,还有更多自定义插件和工作流功能,能更灵活定制 AI Bot。 作者演示上述步骤后发布的 AI Bot,其 ID 是:7333630516673167394,有兴趣可在 Coze 平台上搜索这个 ID 来体验。
2024-11-09
微信机器人
以下是关于微信机器人的相关信息: 【入门级】教你用最简单的方式搭建微信机器人 测试和重新配置: 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复。若未成功,可检查 config.json 文件中的配置或跳到“第四章,第 3 步”重启服务。 可为 AI 赋予不一样的提示词,返回“第三章,第 7 步”更改设置。 进行任何更改后,需“返回首页 右上角 点击重启,重启一下服务器”。熟悉 Linux 操作也可通过重启进程的方式来重启服务。 然后,在“文件”的【终端】里,输入“nohup python3 app.py & tail f nohup.out”重新扫码登录。 若想退出机器人,在手机微信上找到桌面版已登录的信息,点击退出桌面版即可。 帮助:若遇到问题,可先查询社区知识库,或加“通往 AGI 之路”群,社区小伙伴们会尽力帮助。也可加 Stuart 个人微信询问。 零基础模板化搭建 AI 微信聊天机器人 纯 GPT 大模型能力的微信聊天机器人搭建 配置腾讯云轻量应用服务器 配置部署 COW 组件 在复制的 dockercompose.yml 文件中修改配置串联微信号和已创建好的 AI 机器人,配置参考来源:https://docs.linkai.tech/cow/quickstart/config 。 配置参数中,名称的全大写描述对应编排模板,如 open_ai_api_key 对应 OPEN_AI_API_KEY 等。私聊或群交流时最好加上前缀触发机器人回复,如配置的,群组里对应配置参数是 GROUP_CHAT_PREFIX,机器人只会回复群里包含@bot 的消息。GROUP_NAME_WHITE_LIST 用来配置哪些群组的消息需要自动回复。 【保姆级】基于 Hook 机制的微信 AI 机器人,无需服务器,运行更稳定,风险更小 本教程基于 Hook 机制,与之前的 COW 机器人方式不同。 优势:Hook 有相对更高的稳定性和安全性,更简单,易上手。 劣势:目前插件相对较少,且仅支持 Windows 系统。 此项目在 Windows 系统上运行,无需服务器,对小白更友好。能结合 FastGPT 使用,且对群发功能进行了优化和二开,目前在内测中。 此机器人功能:基于知识库的 AI 回复、支持积分系统、支持自动拉人、检测广告、自动群发,还有安全新闻定时推送、Kfc 文案、星座查询、天气查询等有趣小功能。教程以 Windows10 系统为例。
2024-11-07
微信机器人
以下是关于微信机器人的相关信息: 【入门级】教你用最简单的方式搭建微信机器人 测试和重新配置: 登录成功后,找另一个人私聊或者在群中@您,就可以看到机器人的正常回复。若未成功,可检查 config.json 文件中的配置或跳到“第四章,第 3 步”重启服务。 可为 AI 赋予不一样的提示词,返回“第三章,第 7 步”更改设置。 进行任何更改后,需“返回首页 右上角 点击重启,重启一下服务器”。熟悉 Linux 操作也可通过重启进程的方式来重启服务。 然后,在“文件”的【终端】里,输入“nohup python3 app.py & tail f nohup.out”重新扫码登录。 若想退出机器人,在手机微信上找到桌面版已登录的信息,点击退出桌面版即可。 帮助:若遇到问题,可先查询社区知识库,或加“通往 AGI 之路”群,社区小伙伴们会尽力帮助。也可加 Stuart 个人微信询问。 零基础模板化搭建 AI 微信聊天机器人 纯 GPT 大模型能力的微信聊天机器人搭建 配置腾讯云轻量应用服务器 配置部署 COW 组件 在复制的 dockercompose.yml 文件中修改配置串联微信号和已创建好的 AI 机器人,配置参考来源:https://docs.linkai.tech/cow/quickstart/config 。 配置参数中,名称的全大写描述对应编排模板,如 open_ai_api_key 对应 OPEN_AI_API_KEY 等。私聊或群交流时最好加上前缀触发机器人回复,如配置的,群组里对应配置参数是 GROUP_CHAT_PREFIX,机器人只会回复群里包含@bot 的消息。GROUP_NAME_WHITE_LIST 用来配置哪些群组的消息需要自动回复。 【保姆级】基于 Hook 机制的微信 AI 机器人,无需服务器,运行更稳定,风险更小 本教程基于 Hook 机制,与 COW 机器人方式不同。 优势:Hook 有相对更高的稳定性和安全性,更简单,易上手。 劣势:目前插件相对较少,且仅支持 Windows 系统。 此项目在 Windows 系统上运行,无需服务器,对小白更友好。能结合 FastGPT 使用,完善了群发功能,目前在内测中。 此机器人功能:基于知识库的 AI 回复、支持积分系统、支持自动拉人、检测广告、自动群发,还有安全新闻定时推送、Kfc 文案、星座查询、天气查询等有趣小功能。教程以 Windows10 系统为例。
2024-11-07
我需要一个能写生成文生视频prompt的机器人,这个机器人只负责生产宠物做饭视频的文字prompt,请学习文生视频prompt写作技巧,并给我写一个这样的机器人
以下是关于文生视频 prompt 写作技巧及为您生成的一个宠物做饭视频的文字 prompt 示例: 文生视频 prompt 写作技巧: 1. 明确视觉样式:要具体描述视频的视觉基调和风格,比如是想要现实的、电影的、动画的还是超现实的。对美学的描述越具体,生成的效果就越接近期望。 2. 考虑视觉风格创意:如电影感要注重戏剧性照明、镜头光晕和高对比度;逼真风格要追求自然光、清晰细节和逼真角色;动画风格可使用卡通、3D 动画或 2D 动画等术语;艺术风格可用印象派、极简主义或抽象等形容词来指导艺术方向。 宠物做饭视频的文字 prompt 示例:“创建一个 2D 动画、色彩鲜艳的视频,一只可爱的猫咪在厨房里熟练地烹饪美味的鱼餐,画面具有温馨的灯光和可爱的卡通风格。”
2024-11-06
从0到1学习大模型知识
以下是从 0 到 1 学习大模型知识的相关内容: 什么是大模型: 通俗来讲,大模型是输入大量语料,让计算机获得类似人类的“思考”能力,能进行文本生成、推理问答、对话、文档摘要等工作。可以用“上学参加工作”来类比大模型的训练和使用过程: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:用合适算法让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,正式干活,比如进行翻译、问答等,在大模型里称之为推导(infer)。在 LLM 中,Token 被视为模型处理和生成的文本单位,会对输入进行数字化形成词汇表。 大模型如何运作: 打个比方,“我今天吃了狮子头和蔬菜”这句话,在 transformer 中,会由 attention 层对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,这些补充信息会作为输入给到下一个 attention 层,最终哪些信息补充、保留、传递由模型自主学习。层与层之间就像人阅读文章时的连贯性注意力过程,大模型以词向量和 transformer 模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。这个过程像人脑阅读学习,记忆的不是逐字逐句,而是按相关性、重要程度结合历史经验,比如看到红色会觉得代表温暖、强烈。 大模型的整体架构: 从整体分层角度,大模型架构可分为以下几层: 1. 基础层:为大模型提供硬件支撑、数据支持,如 A100、数据服务器等。 2. 数据层:分为静态的知识库和动态的三方数据集,不是用于基层模型训练的数据基集,而是企业根据自身特性维护的垂域数据。 3. 模型层:包括 LLm(largelanguagemodel,如 GPT,一般使用 transformer 算法实现)或多模态模型(如文生图、图生图等,训练数据与 llm 不同,用图文或声音等多模态数据集)。 4. 平台层:如大模型的评测体系或 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:即应用层,是用户实际看到的地方。
2024-11-12
学习AICG的步骤
学习 AICG(AI 与计算机图形学)通常可以遵循以下步骤: 1. 基础知识储备:了解计算机图形学的基本概念,如几何建模、渲染、动画等,同时掌握一定的数学基础,包括线性代数、微积分等。 2. 学习编程语言:例如 Python,它在 AICG 领域应用广泛。 3. 熟悉相关框架和库:如 TensorFlow、PyTorch 等深度学习框架,以及 OpenCV 等计算机视觉库。 4. 掌握机器学习和深度学习知识:包括神经网络、监督学习、无监督学习等。 5. 研究 AICG 应用案例:通过实际案例了解 AICG 在图像生成、风格迁移、虚拟角色创建等方面的应用。 6. 实践项目:自己动手实现一些 AICG 项目,加深对知识的理解和应用能力。 7. 持续学习和跟进最新技术:关注领域内的最新研究成果和技术发展趋势。
2024-11-12
我想请教一些问题 1:目前有哪些AI教育类产品 2:目前有哪些AI辅助学习类产品 3:有哪些AI辅助学习的好用的方法
以下是关于您所提出问题的回答: 目前的 AI 教育类产品和 AI 辅助学习类产品有: 语言学习方面:Speak、Quazel、Lingostar 等是由 AI 驱动的语言老师,能够实时交流并给予发音或措辞反馈;Grammarly 可进行英语写作和语法纠错。 数学学习方面:Photomath、Mathly 可指导学生解决数学问题;Khan Academy 有自适应学习系统。 综合学习方面:Duolingo 是自适应学习平台,能为用户提供个性化学习内容和练习。 AI 辅助学习的好用方法包括: 英语学习:利用智能辅助工具如 Grammarly 改进写作和语法;通过语音识别应用如 Call Annie 练习口语和纠正发音;使用自适应学习平台如 Duolingo 获得个性化学习计划;借助智能对话机器人如 ChatGPT 进行会话练习。 数学学习:运用自适应学习系统如 Khan Academy 获取精准推荐;使用智能题库和作业辅助工具如 Photomath 获得问题解答和解题步骤;借助虚拟教学助手如 Socratic 解答问题、观看教学视频和获得答疑服务;参与交互式学习平台如 Wolfram Alpha 进行数学建模和问题求解。
2024-11-12
学习AI方案
以下是为您提供的学习 AI 的方案: 对于新手: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。同时,掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 与“AI+教育”前辈交流的结论: 1. 学习通常是功利导向的,只有能带来强烈付费意愿的学习才更有动力,比如在 K12 买课场景中,家长更在乎孩子能否通过学习直接提高分数。 2. “突破性新技术+垂直行业知识”的组合能为学习者带来更高的投入产出比。以程序员为例,在很多大行业中,懂行业知识的程序员缺口很大。 3. 在 AI 领域,让 AI 工程师懂行业,让行业专家懂 AI,学习的投入产出比可以很高,但前提是要找到 AI 在该行业的高价值应用场景。 4. 现阶段“AI 口嗨者众,AI 实干家寡”的主要原因是没有能带来足够正反馈的高价值应用场景。
2024-11-11
提示词学习
以下是关于提示词学习的相关内容: 提示词的知识体系: 可分为五个维度,从高到低依次是思维框架、方法论、语句、工具和场景。但对于初学者,舒适的学习顺序应是反过来的。 学习 Stable Diffusion 提示词的步骤: 1. 学习基本概念,包括了解其工作原理、模型架构,理解提示词如何影响生成结果,掌握提示词的组成部分。 2. 研究官方文档和教程,包括通读官方文档,研究开发团队和专家的分享。 3. 学习常见术语和范例,熟悉相关领域术语,研究优秀的图像标题和描述。 4. 掌握关键技巧,如组合词条精确描述效果,使用特定符号控制生成权重,处理抽象概念等。 5. 实践和反馈,尝试生成不同风格和主题的图像,对比结果并总结经验,在社区分享请教。 6. 创建提示词库,按主题、风格等维度建立,记录成功案例。 7. 持续跟进前沿,关注最新更新和趋势。 学习提示词运用的建议: 1. 理解提示词的作用,其为模型提供上下文和指示,影响输出质量。 2. 学习构建技巧,包括明确任务目标、给予背景信息和示例、使用清晰指令、明确特殊要求。 3. 参考优秀案例,可在领域社区、Github 等资源中寻找。 4. 实践、迭代、优化,多与模型互动,根据输出改进提示词。 5. 活用提示工程工具,如 Anthropic 的 Constitutional AI 等。 6. 跟上前沿研究,持续关注最新成果和方法论。
2024-11-11
小白学Ai的学习路径
以下是为小白提供的学习 AI 的路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2024-11-11