AI(人工智能)的发展有着悠久的历史,其起源最早可追溯到上世纪:
此后近 70 年,AI 的发展起起落落。其发展历程大致可分为以下几个阶段:
当前 AI 前沿技术点包括:
2022年11月30日,OpenAI发布基于GPT 3.5的ChatGPT,自此开始,一股AI浪潮席卷全球,但AI(人工智能,Artificial Intelligence)并不是近几年才有的新鲜事,他的起源,最早可以追溯到上世纪的1943年。1943年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950年,伟大的计算机先驱图灵最早提出了图灵测试,做为判别机器是否具备智能的标准(即在一个对外不可见的房间内放置一台可以与外界沟通的机器,如果外界交互的人无法区分房间里到底是真人还是机器,那么我们就说房间里的机器具备了智能,通过了图灵测试)。1956年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能Artificial Intelligence一词被正式提出,并做为一门学科被确立下来。此后接近70年的漫长时间里,AI的发展起起落落,两次掀起人类对AI毁灭人类世界的恐慌,热度拉满,但又最终以“不过如此”冷却收场。图1 AI发展史
就在过去几个月里,因为美联储的加息,科技公司的资本狂欢宣告结束,美国上市的SaaS公司股价基本都跌去了70%,裁员与紧缩是必要选项。但正当市场一片哀嚎的时候,Dall-E 2发布了,紧接着就是一大批炫酷的AI公司登场。这些事件在风投界引发了一股风潮,我们看到那些兜售着基于生成式AI(Generative AI)产品的公司,估值达到了数十亿美元,虽然收入还不到百万美元,也没有经过验证的商业模式。不久前,同样的故事在Web 3上也发生过!感觉我们又将进入一个全新的繁荣时代,但人工智能这次真的能带动科技产业复苏么?本文将带你领略一次人工智能领域波澜壮阔的发展史,从关键人物推动的学术进展、算法和理念的涌现、公司和产品的进步、还有脑科学对神经网络的迭代影响,这四个维度来深刻理解“机器之心的进化”。先忘掉那些花里胡哨的图片生产应用,我们一起来学点接近AI本质的东西。全文共分为六个章节:1.AI进化史-前神经网络时代、Machine Learning的跃迁、开启潘多拉的魔盒2.软件2.0的崛起-软件范式的转移和演化、Software 2.0与Bug 2.03.面向智能的架构- Infrastructure 3.0、如何组装智能、智能架构的先锋4.一统江湖的模型- Tran sformer的诞生、基础模型、AI江湖的新机会5.现实世界的AI -自动驾驶新前沿、机器人与智能代理6.AI进化的未来-透视神经网络、千脑理论、人工智能何时能通用?文章较长,累计22800字,请留出一小时左右的阅读时间,欢迎先收藏再阅读!文中每一个链接和引用都是有价值的,特别作为衍生阅读推荐给大家。
AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速