直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

AI发展史

回答

AI(人工智能)的发展有着悠久的历史,其起源最早可追溯到上世纪:

  1. 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定了基础。
  2. 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。
  3. 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科确立下来。

此后近 70 年,AI 的发展起起落落。其发展历程大致可分为以下几个阶段:

  1. 早期阶段(1950s - 1960s):包括专家系统、博弈论、机器学习初步理论。
  2. 知识驱动时期(1970s - 1980s):有专家系统、知识表示、自动推理。
  3. 统计学习时期(1990s - 2000s):出现机器学习算法,如决策树、支持向量机、贝叶斯方法等。
  4. 深度学习时期(2010s - 至今):深度神经网络、卷积神经网络、循环神经网络等得到广泛应用。

当前 AI 前沿技术点包括:

  1. 大模型,如 GPT、PaLM 等。
  2. 多模态 AI,如视觉 - 语言模型(CLIP、Stable Diffusion)、多模态融合。
  3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。
  4. 小样本学习,包括元学习、一次学习、提示学习等。
  5. 可解释 AI,涉及模型可解释性、因果推理、符号推理等。
  6. 机器人学,涵盖强化学习、运动规划、人机交互等。
  7. 量子 AI,包含量子机器学习、量子神经网络等。
  8. AI 芯片和硬件加速。
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

走入AI的世界

2022年11月30日,OpenAI发布基于GPT 3.5的ChatGPT,自此开始,一股AI浪潮席卷全球,但AI(人工智能,Artificial Intelligence)并不是近几年才有的新鲜事,他的起源,最早可以追溯到上世纪的1943年。1943年,心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950年,伟大的计算机先驱图灵最早提出了图灵测试,做为判别机器是否具备智能的标准(即在一个对外不可见的房间内放置一台可以与外界沟通的机器,如果外界交互的人无法区分房间里到底是真人还是机器,那么我们就说房间里的机器具备了智能,通过了图灵测试)。1956年,在美国一个小镇的达特茅斯学院中,马文·明斯基和约翰·麦凯西拉着香农大佬站台背书,共同发起召开了著名的达特茅斯会议,在这次会议上,人工智能Artificial Intelligence一词被正式提出,并做为一门学科被确立下来。此后接近70年的漫长时间里,AI的发展起起落落,两次掀起人类对AI毁灭人类世界的恐慌,热度拉满,但又最终以“不过如此”冷却收场。图1 AI发展史

机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命

就在过去几个月里,因为美联储的加息,科技公司的资本狂欢宣告结束,美国上市的SaaS公司股价基本都跌去了70%,裁员与紧缩是必要选项。但正当市场一片哀嚎的时候,Dall-E 2发布了,紧接着就是一大批炫酷的AI公司登场。这些事件在风投界引发了一股风潮,我们看到那些兜售着基于生成式AI(Generative AI)产品的公司,估值达到了数十亿美元,虽然收入还不到百万美元,也没有经过验证的商业模式。不久前,同样的故事在Web 3上也发生过!感觉我们又将进入一个全新的繁荣时代,但人工智能这次真的能带动科技产业复苏么?本文将带你领略一次人工智能领域波澜壮阔的发展史,从关键人物推动的学术进展、算法和理念的涌现、公司和产品的进步、还有脑科学对神经网络的迭代影响,这四个维度来深刻理解“机器之心的进化”。先忘掉那些花里胡哨的图片生产应用,我们一起来学点接近AI本质的东西。全文共分为六个章节:1.AI进化史-前神经网络时代、Machine Learning的跃迁、开启潘多拉的魔盒2.软件2.0的崛起-软件范式的转移和演化、Software 2.0与Bug 2.03.面向智能的架构- Infrastructure 3.0、如何组装智能、智能架构的先锋4.一统江湖的模型- Tran sformer的诞生、基础模型、AI江湖的新机会5.现实世界的AI -自动驾驶新前沿、机器人与智能代理6.AI进化的未来-透视神经网络、千脑理论、人工智能何时能通用?文章较长,累计22800字,请留出一小时左右的阅读时间,欢迎先收藏再阅读!文中每一个链接和引用都是有价值的,特别作为衍生阅读推荐给大家。

问:AI的技术历史和发展方向,目前最前沿的技术点有哪些

AI技术的发展历程和前沿技术点可以概括如下:[heading2]AI技术发展历程[content]1.早期阶段(1950s-1960s):专家系统、博弈论、机器学习初步理论2.知识驱动时期(1970s-1980s):专家系统、知识表示、自动推理3.统计学习时期(1990s-2000s):机器学习算法(决策树、支持向量机、贝叶斯方法等)4.深度学习时期(2010s-至今):深度神经网络、卷积神经网络、循环神经网络等[heading2]当前AI前沿技术点[content]1.大模型(Large Language Models):GPT、PaLM等2.多模态AI:视觉-语言模型(CLIP、Stable Diffusion)、多模态融合3.自监督学习:自监督预训练、对比学习、掩码语言模型等4.小样本学习:元学习、一次学习、提示学习等5.可解释AI:模型可解释性、因果推理、符号推理等6.机器人学:强化学习、运动规划、人机交互等7.量子AI:量子机器学习、量子神经网络等8.AI芯片和硬件加速

其他人在问
ai与新闻
以下是关于“AI 与新闻”的相关内容: 首届北京城市形象 AI 创作征集活动即将正式启幕,相关媒体报道的链接包括北京日报、京报网、百家、头条、微博、企鹅等。 2023 年 4 月创立至今,“Way to AGI(通往通用人工智能之路)”构建了庞大的知识库体系,涵盖各种技术介绍、AI 行业新闻分析、AI 应用实操,获得了大量浏览和用户交流。 橘子的新文章对国内外已有的 18 家 AI 搜索做了测评,分组包括豆包、秘塔 AI 等。 介绍了六个国家公众对新闻中生成人工智能的看法,公众认为其可能更新时效性更好、成本更低,但对可靠性和透明度持怀疑态度,认为新闻媒体使用应适当披露或标注。 Ethan Mollick 提出作为商学院教授对 AI 崛起给学术研究带来危机和机遇的看法,包括四个“狭义奇点”。
2024-12-22
AI能对医院医用耗材出入库数据做怎样的数据处理,方便耗材管理人员对相关数据进行分析
AI 在医院医用耗材出入库数据处理方面可以发挥以下作用,以方便耗材管理人员进行数据分析: 1. 预测需求:通过分析历史出入库数据、医院科室使用情况、季节变化等因素,预测未来某段时间内的耗材需求量,优化库存管理策略,降低成本。 2. 库存优化:实时监控库存水平,及时发现库存过高或过低的情况,提醒管理人员进行调整。 3. 数据分类与整合:对大量的出入库数据进行分类和整合,使其更易于分析和理解。 4. 异常检测:识别出入库数据中的异常情况,如突然的大量领用或长时间未领用等,及时发现潜在问题。 5. 成本分析:计算不同种类、不同批次耗材的采购成本和使用成本,为成本控制提供依据。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-22
画分镜头的ai工具推荐4个
以下为您推荐 4 个画分镜头的 AI 工具: 1. Pika:对于奇幻感较强的画面把控较好,自然度高,但真实环境画面易糊,更新的唇形同步功能便捷。 2. Pixverse:在高清化方面有优势,对偏风景和纪录、有特定物体移动的画面友好,但生成视频有帧率问题,处理人物时易出戏。 3. Runway:在真实影像质感方面最佳,战争片全景镜头处理出色,控件体验感好,但爱变色,光影不稳定。 4. SVD:整体表现略差,仅在风景片测试中表现较好。 在实际使用中,可根据不同工具对画面的处理能力进行组合使用,例如 Pixverse 擅长物体滑行运动,Runway 可辅助完成有手部特殊运动的画面,需要人物表情自然的画面可用 Pika 生成。
2024-12-22
画分镜头的ai
以下是关于画分镜头的 AI 相关内容: 在利用 AI 拆分镜时,完成前期设定和剧本生成对应的分镜内容后,GPT 虽有结构化的优势,但因分镜较细可能会丢失内容,需人工审核查缺补漏。制作分镜时要考虑视角,如第一人称视角还是第三人称视角,以及视角的切换,使读者更好地理解故事。 设计分镜时要注意详细的定义,例如从本子 311 到 314 的画面,通过视角的来回切换让故事走向更清晰。永远记住,剧本转化为影像时很多表达与文字不同,当前 AI 做不了长镜头,要做减法,分镜指令要明确,如“谁+干什么”“什么东西+在哪里”,不要用难以呈现画面的表述。制作分镜过程要按画面角度思考,以画面驱动文字,设计分镜表时要考虑人物视角、画面描述(可实现的动作、人物表情)。 用 AI 制作分镜时,AI 容易把段落当成一句话或把一个画面拆分成几个镜头,这需要人工干预检查景别、画面描述、前后镜关联。AI 拆分的分镜只能作为参考,需人工再看,否则出图会很痛苦,同时要注意前后镜的关系,避免画面割裂。
2024-12-22
画分镜头脚本的ai工具
以下为一些画分镜头脚本的 AI 工具及相关信息: 1. Claude:分镜提示词的结构为“我要做多长时间的视频+要出多少个分镜+每个分镜包含哪些内容+对输出格式有什么要求”。可将故事脚本改写成指定时长和格式的分镜脚本,例如 30 秒时长、包括序号、场景、景别等内容的广告片分镜脚本,并以 markdown 列表形式输出。其给出的分镜符合奔驰广告的特点,对于 30 秒的简短广告,10 个分镜较为合适,每个分镜平均 3 秒。景别是让 MJ 生图时的提示词内容之一,镜头时长设定了每个分镜的长度,画面内容可用于 MJ 生图,对话旁白可用于生成配音,音乐音效能为创作背景音提供思路。分镜脚本示例可参考: 2. GPTs:以的冰工厂赛道为例,分镜头脚本制作的参考 prompt 为“请帮我把一下(广告故事)设计成(30)秒的可执行分镜脚本,要求使用不同的景别进行画面切换,并给我(100 字)左右的详细画面描述,并每句都加入(高清,真实感,3D,blender)这些文字,整体节奏(顺畅紧张且有趣)”。 3. Anifusion:这是一款基于人工智能的在线工具,可通过输入文本描述生成漫画页面或动漫图像,还提供直观的布局工具、强大的画布编辑器、多种 AI 模型支持等功能。用户对创作的作品拥有完整的商业使用权,可用于独立漫画创作、快速原型设计、教育内容、营销材料等方面。其优点是非艺术家也能轻松创作漫画,基于浏览器无需额外安装软件,具有快速迭代和原型设计能力,并拥有创作的全部商业权利。
2024-12-22
我想要一个AIGC 图像审查领域的专家
以下是关于 AIGC 图像审查领域的相关信息: 如何判断一张图片是否 AI 生成: AI 技术自身带来造假难题,可通过一些网站如 ILLUMINARTY(https://app.illuminarty.ai/)对大量图片数据抓取和分析来判断画作属性,但存在测试中真实摄影作品被误判为 AI 作图的情况,这是因为鉴定 AI 的逻辑算法不能像人类一样综合考虑各种不符合逻辑的表现。 从不同角度看鉴别 AIGC 的需求: 技术出身的朋友多出于对 AI 产物底层逻辑的追溯兴趣,关心能否通过数据检测等手段实现鉴别并应用于创造收益。 产业领域的朋友面对 AI 技术冲击,关注其在工作流中的影响,以求应对可能的裁员风险。 法律背景的朋友认为鉴别 AIGC 对未来著作权法律判定有意义,首例 AIGC 侵权案件悬而未决,需判定 AI 作品中智力投入占比。 最近招聘信息:猿印教育招聘 AIGC 图像生成算法工程师/专家,工作地点在北京五道口附近。简历发送至:stephen.wang@yyinedu.com 。岗位职责包括开发针对性图像生成解决方案、负责模型部署和推理性能优化、推动团队技术水平提升等。任职要求为计算机相关专业本科及以上学历,具备扎实计算机基础知识,熟练掌握 Python 语言和主流深度学习框架,对相关理论和方法有深入理解,具有良好的学习、沟通和团队合作能力。
2024-12-22
说说AI发展史
AI(人工智能)的发展有着悠久的历史。其起源最早可追溯到 1943 年,当时心理学家麦卡洛克和数学家皮特斯提出了机器的神经元模型,为后续的神经网络奠定了基础。1950 年,计算机先驱图灵最早提出了图灵测试,作为判别机器是否具备智能的标准。1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开了著名的达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落,曾两次掀起人类对其毁灭人类世界的恐慌,热度拉满后又以“不过如此”冷却收场。过去的其他 AI 更多应用于完成诸如人脸识别这样的分类判断任务,而生成式 AI 的诞生让人们看到其可以像人一样创作交流,在写文章、画画、写歌等方面展现出惊人能力。 就在过去几个月里,尽管科技公司面临资本紧缩,但一系列生成式 AI 产品的出现引发了风投界的关注。从关键人物推动的学术进展、算法和理念的涌现、公司和产品的进步、脑科学对神经网络的迭代影响这四个维度,可以更深刻地理解“机器之心的进化”。相关文章较长,涵盖了 AI 进化史的多个方面,包括前神经网络时代、软件 2.0 的崛起、面向智能的架构、一统江湖的模型、现实世界的 AI 以及 AI 进化的未来等内容。
2024-12-18
Open AI的发展史
OpenAI 的发展历程如下: 2015 年成立。 2022 年 11 月 30 日,发布基于 GPT 3.5 的 ChatGPT,引发全球 AI 浪潮。 其发展可追溯到更早时期: 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为神经网络奠定基础。 1950 年,图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,人工智能一词被正式提出,并确立为一门学科。 此后近 70 年,AI 发展起起落落。 OpenAI 成立一年多后,其首席技术官对细节描述吝啬,当时员工工资占支出大头,研究方向多样但成果有限。 OpenAI 的崛起始于聘请研究员 Alec Radford。 此外,OpenAI 在其内部会议上分享了关于通用人工智能(AGI)的五个发展等级: 1. 聊天机器人(Chatbots):具备基本对话能力,依赖预设脚本和关键词匹配,用于客户服务和简单查询响应。 2. 推理者(Reasoners):具备人类推理水平,能解决复杂问题,如 ChatGPT,能根据上下文和文件提供详细分析和意见。 3. 智能体(Agents):不仅具备推理能力,还能执行全自动化业务,但目前许多产品执行任务后仍需人类参与。 4. 创新者(Innovators):能够协助人类完成新发明,如谷歌 DeepMind 的 AlphaFold 模型,可预测蛋白质结构,加速科学研究和新药发现。 5. 组织(Organizations):最高级别,能够自动执行组织的全部业务流程,如规划、执行、反馈、迭代、资源分配和管理等。
2024-12-04
AI发展史
AI(人工智能)的发展有着悠久的历史,其起源最早可追溯到上世纪: 1. 1943 年,心理学家麦卡洛克和数学家皮特斯提出机器的神经元模型,为后续的神经网络奠定基础。 2. 1950 年,计算机先驱图灵最早提出图灵测试,作为判别机器是否具备智能的标准。 3. 1956 年,在美国达特茅斯学院,马文·明斯基和约翰·麦凯西等人共同发起召开达特茅斯会议,“人工智能”一词被正式提出,并作为一门学科确立下来。 此后近 70 年,AI 的发展起起落落: 1. 早期阶段(1950s 1960s):有专家系统、博弈论、机器学习初步理论。 2. 知识驱动时期(1970s 1980s):包括专家系统、知识表示、自动推理。 3. 统计学习时期(1990s 2000s):出现机器学习算法如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等得到发展。 当前 AI 前沿技术点包括: 1. 大模型,如 GPT、PaLM 等。 2. 多模态 AI,如视觉 语言模型(CLIP、Stable Diffusion)、多模态融合。 3. 自监督学习,如自监督预训练、对比学习、掩码语言模型等。 4. 小样本学习,如元学习、一次学习、提示学习等。 5. 可解释 AI,包括模型可解释性、因果推理、符号推理等。 6. 机器人学,涵盖强化学习、运动规划、人机交互等。 7. 量子 AI,如量子机器学习、量子神经网络等。 8. AI 芯片和硬件加速。 过去的其他 AI 更多应用于完成人脸识别等分类判断任务,而生成式 AI 的诞生让人们看到其在写文章、画画、写歌等方面展现出类似人类的创作交流能力。
2024-11-11
AI的整个发展史,有没有AI相关综述,让我阅读一下
以下是为您提供的关于 AI 发展史及相关综述的内容: 1. 《机器之心的进化 / 理解 AI 驱动的软件 2.0 智能革命》:涵盖了 AI 进化史的多个方面,包括前神经网络时代、Machine Learning 的跃迁、开启潘多拉的魔盒等,文章较长,约 22800 字,阅读前可先观看一段 Elon Musk 和 Jack Ma 在 WAIC 2019 关于人工智能的对谈视频。 2. 对于初学者: 微软的 AI 初学者课程《Introduction and History of AI》: AI for every one(吴恩达教程): 大语言模型原理介绍视频(李宏毅): 谷歌生成式 AI 课程: ChatGPT 入门: 如果您是新手学习 AI,可参考以下学习路径指南: 1. 了解 AI 基本概念:阅读「」熟悉术语和基础概念,浏览入门文章了解 AI 历史、应用和发展趋势。 2. 开始 AI 学习之旅:在「」中找到为初学者设计的课程,可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获取证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。
2024-09-16
AI发展史
AI 的发展历程大致如下: 1. 早期阶段(1950s 1960s):出现了专家系统、博弈论以及机器学习的初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示和自动推理得到发展。 3. 统计学习时期(1990s 2000s):出现了机器学习算法,如决策树、支持向量机、贝叶斯方法等。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等技术兴起。 早在 1945 年,Alan Turing 就考虑用计算机模拟人脑,设计了 ACE(Automatic Computing Engine 自动计算引擎),这被视为机器智能的起源。随着对大脑工作机制认知的增加,神经网络的算法和模型也不断进步。例如,CNN 的结构基于两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等许多应用中表现出色。每次对大脑工作机制的更多了解,都推动着神经网络的发展。
2024-09-07
AI发展史
AI 的发展历程大致如下: 1. 早期阶段(1950s 1960s):出现了专家系统、博弈论以及机器学习的初步理论。 2. 知识驱动时期(1970s 1980s):专家系统、知识表示和自动推理得到发展。 3. 统计学习时期(1990s 2000s):机器学习算法如决策树、支持向量机、贝叶斯方法等兴起。 4. 深度学习时期(2010s 至今):深度神经网络、卷积神经网络、循环神经网络等成为主流。 早在 1945 年,Alan Turing 就考虑用计算机模拟人脑,设计了 ACE(Automatic Computing Engine 自动计算引擎),这被视为机器智能的起源。随着对大脑工作机制认知的增加,神经网络的算法和模型也不断进步。例如,CNN 的结构基于两类细胞的级联模型,在计算上更高效、快速,在自然语言处理和图像识别等许多应用中表现出色。
2024-09-02