直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

产品市场契合度(PMF)框架案例

回答

以下是一些产品市场契合度(PMF)框架的案例:

  • HubSpot:在 2006 年,小企业面临高成本的营销渠道。HubSpot 意识到可以利用互联网的特性,提供内容、SEO 和电子邮件管理工具。他们创造了“入站营销”术语,并通过市场教育推动了小企业界的营销革命。
  • Square:解决了小企业无法接受信用卡支付的问题。他们将智能手机转变为移动信用卡终端,通过免费提供硬件和软件,赢得了早期采纳者的支持,最终成为新的标准。
  • Uber:重新想象出租车体验,创造了共享汽车市场。他们不仅要说服普通人成为司机,还需应对出租车工会、法规等挑战。其他人对困难的厌恶为 Uber 提供了更多市场机会。

这些案例表明,通过改变固有认知,找到新的解决方案,可以实现产品市场契合度,并在市场中获得成功。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

产品市场契合度(PMF)框架 | 红杉

2006年,营销主要由广告、邮件和电话营销组成。这使得小企业处于不利地位,因为这些都是高成本渠道。布莱恩·哈利根和达默什·沙阿意识到有一种新的方式:小公司可以利用快速成熟的互联网的特性——博客、社交媒体、SEO、电子邮件通讯——以传统渠道一小部分的成本达到观众。[HubSpot](https://www.hubspot.com/)的一套内容、SEO和电子邮件管理工具为客户解决了这个问题。但是,为了让客户相信他们的方法并开始采用他们的产品,HubSpot需要在客户心中明确新的方式——使他们意识到旧的方式已破损并可以被更好的东西所替代。他们通过为他们的新方式创造一个术语——“入站营销”——甚至写了一本关于它的书来实现这一点。他们在市场教育方面如此有效,以至于这一想法获得了认可,并在小企业界引发了一场营销革命,推动HubSpot达到产品市场契合,甚至更远。

产品市场契合度(PMF)框架 | 红杉

当Block(原名叫[Square](https://squareup.com/))首次推出时,他们要解决的困难现实是众所周知并且被普遍接受的:“仅限现金”。对于许多小企业或任何农贸市场来说,他们没有办法接受信用卡支付。消费者只能辛苦去寻找自动取款机,而商家则经常错失销售机会。杰克·多尔西和吉姆·麦克尔维的独到见解是,正在变得无处不在的智能手机,实际上可以有效地转变为移动信用卡终端。Square意识到这个所谓的生活固有事实实际上是一个它们可以解决的难题。但是,要想获得成功,就需要让世界看到它不再需要忍受这一痛点,并且足够信任Square的解决方案来采纳他们的新方式。为了激发这种顿悟并赢得早期采纳者的支持,他们会宣传这一产品,Square早期决定免费向商家提供硬件和软件,并稍后再找出商业模式。最终,Square成为了一个新标准。

产品市场契合度(PMF)框架 | 红杉

你的新颖方法可能会替代现有市场(如Salesforce将CRM迁移到云端)或可能创造一个新市场(如Uber将出租车体验重新想象为共享汽车市场)。无论哪种方式,你在“改变固有认知”路径上可能会面临较少的竞争,因为改变现状的困难已经让其他创始人望而却步。为了成功,Uber不仅必须说服成千上万的普通人载着陌生人四处驾驶,而且还必须与出租车工会、当地法规和劳动法律打交道。其他人对这种困难的天然厌恶意味着你可能会获得更多的空白市场机会。

其他人在问
现在有哪些GenAI原生应用验证了PMF?
目前,一些 GenAI 原生应用已展现出产品市场契合度(PMF)的早期成功迹象。例如,ChatGPT 成为增长最快的应用,在学生和开发者中具有很强的产品市场契合度;Midjourney 成为集体创意的灵感来源,据报道仅 11 人的团队就实现了数亿美元的收入;Character 推动了 AI 娱乐和伴侣领域的发展,创造了用户平均在应用中花费两小时的消费者“社交”应用。然而,尽管有这些成功案例,仍有许多 AI 公司尚未实现产品市场契合度(PMF)或拥有可持续的竞争优势,整个 AI 生态系统的繁荣也并非完全可持续。
2024-08-30
智能体搭建案例
以下为您提供两个智能体搭建案例: 案例一: 智能体名称:市场分析报告 智能体简介:品牌营销公司在用的生成智能体,输入行业/类目关键词自动检索关联信息并生成报告。数据化呈现更具真实性,附带信息来源网址便于源信息校正。可帮助品牌主/营销人员减少信息收集时间,聚焦决策判断。 应用场景: 目标人群:企业管理层(做发展策略评估)、投资者(评估投资机会)、创业者(评估项目可行性)、营销人员(做营销计划依据)。 当前痛点:信息收集需要长时间;报告的真实性是否可验证;现有大模型做的市场报告太过概念化,不能做有效参考。 应用价值:减少信息收集时间、真实可验证、聚焦决策判断。 智能体主要功能:根据用户的要求或指定的行业、产品,搜索网络信息,生成一份完整的市场调研报告,用数据支撑,并附引用链接。 案例二: 智能体开发平台:字节扣子和腾讯元器。 概念定义:智能体(Agent)简单理解就是 AI 机器人小助手,参照移动互联网,类似 APP 应用的概念。AI 大模型是技术,面向用户提供服务的是产品,很多公司开始关注 AI 应用层的产品机会。 C 端案例:社交方向,用户注册后先捏一个自己的 Agent,然后让自己的 Agent 和其他人的 Agent 聊天,两个 Agent 聊到一起后再真人介入;还有借 Onlyfans 入局打造个性化聊天的创业公司。 B 端案例:帮助 B 端商家搭建 Agent。 智能体开发平台介绍:字节于 2 月 1 日正式推出 AI 聊天机器人构建平台 Coze 的国内版“扣子”,主要用于开发下一代 AI 聊天机器人。国内还有很多智能体开发平台,如 Dify.AI,但个人比较常用的还是扣子。
2024-12-20
Ai视频镜头提示词,及案例
以下是一些 AI 视频镜头的提示词及案例: 一、视频镜头 1. 浅焦镜头(Shallow focus shot) 提示词:一个老奶奶手拿照片面对观众,镜头从照片聚焦到老奶奶脸上,营造出温馨和怀旧的氛围。 2. 窥视镜头(Spy shot) 提示词:镜头在一个隐蔽的位置拍摄。一位头发发白的老奶奶坐在窗前双手捧着一张老照片,面带思念地看着照片,场景温馨。 3. 摇晃镜头(Handheld shot) 提示词:镜头摇晃地跟随一个在战斗中的士兵,画面展示战场上的混乱、飞扬的尘土和四处奔跑的战友,增加紧张和真实感。 4. 穿梭镜头(Hyperlapse shot) 提示词:镜头穿过一条隧道,通过隧道外面是美丽的雪山。 5. 跟随镜头(Tracking shot) 提示词:镜头紧跟一辆在赛道上高速行驶和漂移的跑车。 6. 车载镜头(Carmounted shot) 提示词:镜头从驾驶员或汽车前部的视角出发,展示前方的道路和沿途的建筑物。 7. 动作镜头 提示词:镜头快速捕捉一个男人在激烈的打斗中差点摔倒,增强紧张感和动态性。 8. 无人机视角(Drone perspective shot) 提示词:无人机视角展示一个人站在高山顶峰,俯瞰壮丽景色,远处是连绵的山脉和云海,营造广阔和宏伟的氛围。 9. 低视角镜头 提示词:镜头从楼梯低处仰视一个天空和建筑,增强仰视感和宏伟感 提示词:相机在地上拍摄一个清晨正在跑步的人,背景远处虚焦。 10. 仰拍镜头(Lowangle shot) 提示词:镜头从树底向上拍摄,展示高大的树干和繁茂的树冠。 11. 推镜头(Dolly in) 提示词:镜头从远处向前推进,打开城堡的大门。 12. 旋转变焦镜头 提示词:镜头在变焦的同时快速旋转,展示一个人在旋转木马上。 13. 时间流逝镜头(Timelapse shot) 提示词:镜头固定不动,长时间拍摄并加速播放,展示城市从白天到夜晚的变化。 14. 背光镜头 提示词:镜头逆光拍摄,一个男人站在夕阳下,背光照亮他的轮廓,面部隐在阴影中。 15. 失焦镜头 提示词:镜头失焦拍摄城市的霓虹灯,灯光模糊,呈现出梦幻的效果。 16. 平行镜头(Side dolly shot) 提示词:镜头与骑自行车的少年平行移动,跟随他的骑行路径,保持在相同的水平线上。 17. 镜头推拉变焦 提示词:镜头同时进行推拉和变焦,展示一个人在惊讶地看着远方。 18. 虚实结合镜头 提示词:镜头将真实场景和虚拟场景结合,以 X 光效果拍摄骨骼,以真实场景展示一个手拿着一把钥匙,钥匙的轮廓清晰,背景虚化。 19. 反射镜面镜头(Reflection shot) 提示词:反射镜头,通过浴室镜子反射展示一个人在洗脸的画面 20. 黑白镜头 提示词:黑白镜头,展示一个老街区的复古场景,增强怀旧感。 21. 特写镜头(Closeup shot) 提示词:特写镜头展示一双男性眼睛。 二、全新 AI 整活计划第一期:平行宇宙通勤指南 1. 一致性多镜头提示词 Prompt:女孩后退,拿着斧头的骷髅朝镜头走近。镜头切换,近景正面拍摄女孩的上半身,她满脸惊恐发出尖叫。 基础参数:镜头固定,16:9,10s 视频链接: 2. 一致性多镜头提示词 Prompt:远景拍摄,一个男人转身朝画面左侧走去。镜头切换,近景拍摄男人的上半身,他一脸忧愁。 基础参数:镜头固定,16:9,10s 视频链接: 3. 一致性多镜头提示词 Prompt:穿黄色外套的长发白人女人和卷发黑色外套的男人对视微笑。镜头切换,近景拍摄黄色外套的长发女人微笑的脸。镜头切换,近景拍摄卷发黑外套男人微笑的脸。 基础参数:镜头固定,16:9,10s 视频链接:
2024-12-19
智能客服的实践案例有哪些?
以下是一些智能客服的实践案例: 在销售方面,有“销售:话术总结优缺点”,涉及产品特点、服务优势、目标客户需求和痛点等方面。 详情: 入库时间:2023/10/30 在销售方面,还有“销售:定制销售解决方案”,涵盖企业产品和服务内容、客户需求和参数等内容。 详情: 入库时间:2023/10/30 在客服方面,有“客服:定制客服话术”,包含产品知识、使用方法等 13 个关键词库。 详情: 入库时间:2023/10/30 腾讯运营在智能客服方面的应用: ChatGPT 承担客服功能,通过告知其具体客服身份,要求其解答用户问题并进行私域流量转化。 ChatGPT 能够理解社区用户的评论和问题,并生成合适的回复,管理社区互动,模拟运营人的语言风格,与用户进行更自然的互动。 ChatGPT 可以监测舆情和热点,从多个来源抓取互联网上的热门话题、新闻和社交媒体动态,并对抓取到的文本数据进行深度分析。 其他相关案例:
2024-12-17
AI应用在测试领域的案例
以下是 AI 应用在测试领域的一些案例: 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 工具和平台: Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 总结:AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。但请注意,内容由 AI 大模型生成,请仔细甄别。
2024-12-13
RAG 案例
以下是为您提供的关于 RAG 案例的相关内容: 在商业化问答场景中,存在大模型根据知识库回复不准确的情况,如回答牛头不对马嘴、未依据正确内容回答等错误场景,这凸显了优化大模型根据知识库回答准确性的重要性,而在 AI 领域中,此优化过程称为 RAG。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务,如问答系统。 在案例研究中: 案例 B 中,用户查询特定研究论文中的“表格 8”及所列因变量,ChatDOC 能有效检索整个表格,包括标题和内容,准确响应查询,而 Baseline 模型未检索到真正的“表格 8”。 OpenAI 在提升 RAG 准确率方面,从 45%开始,尝试多种方法,如假设性文档嵌入和精调嵌入等效果不理想,通过调整信息块大小、嵌入不同内容部分、Reranking、对不同类别问题特别处理、提示工程、查询扩展等方法,最终达到 98%的准确率,强调了模型精调和 RAG 结合使用的潜力。
2024-12-12
现在系统中有一些案例,这些案例包括一些PDF\PPT\WORD等文件,如何引入AI对这些案例进行解析,方便用户智能搜索、对文本中的内容进行全文提问
要引入 AI 对包括 PDF、PPT、WORD 等文件的案例进行解析,以方便用户智能搜索和对文本内容进行全文提问,可以参考以下方法: 1. 对于法律文本阅读场景: 操作动作:选择某一份或者若干份文档上传,AI 完成解析,然后根据需要了解的内容进行提问。 Prompt 指令词示例:“图纸是谁设计的?”“谁负责承担本项目的设计、建设?”“贷款期限是多少?”“谁承担律师费?”“请概括原告的诉讼请求和事实理由?”“根据民事答辩状,被告张三一方还有更好的答辩建议吗?” 拼接模板:根据以下材料内容回答我的问题【每个材料内容都以数字序号+文件名开头】。你需要尽可能的参考材料内容:【文档 1 内容】+【文档 2 内容】+...+【文档 n 内容】+ 我的问题是:参考上述 Prompt 指令词。 2. 对于 AI 产品案例和投稿中的自媒体场景: 例如“创作:社群的每日资讯”“创作:写科普内容”“分发:内容分发”“沟通:小团队与甲方沟通”等案例,涵盖了品牌推广、科普创作、内容分发、团队沟通等方面。 3. 对于 AI 产品案例和投稿中的工作场景: 包括企业运营、教育、游戏/媒体、零售/电商、金融/保险等七大行业的商业化应用,如企业日常办公文档撰写、教育资源平等获取、游戏剧情生成、电商舆情监测、金融理财顾问等方面。
2024-12-10
输出12个精选prompt框架
以下是 12 种精选的 Prompt 框架: 1. Key Result(关键结果):明确想要的具体效果,通过试验并调整。包括改进输入、改进答案和重新生成等方法。 2. Evolve(试验并改进):三种改进方法自由组合,如从答案不足之处改进背景、目标与关键结果,在后续对话中指正 ChatGPT 答案缺点,或在 Prompt 不变情况下多次生成结果优中选优。 3. CONTEXT(上下文背景):为对话设定舞台。 4. OBJECTIVE(目的):描述目标。 5. ACTION(行动):解释所需的动作。 6. SCENARIO(方案):描述场景。 7. TASK(任务):描述任务。 8. ICIO 框架:相关链接 9. CRISPE 框架:相关链接 10. BROKE 框架:作者陈财猫,相关链接 11. PATFU 泡芙提示词框架:作者口袋君,包括清晰表述需要解决的问题、问题所在领域及需要扮演的角色、解决问题需要执行的具体任务。 12. Format(格式):详细定义输出的格式和限制条件,以及记录提示词版本并根据输出结果对提示词迭代。
2024-12-16
Prompts提示词有哪些写作框架?
以下是一些常见的 Prompts 提示词写作框架: 1. 情境:先描述所处的情境,明确要完成的任务,阐述采取的行动,最后说明期望得到的结果。 2. 假设情景:鼓励探讨假设性场景,例如“假设全球变暖持续恶化,我们需要采取哪些措施应对?” 3. 数据:鼓励使用统计数据或数据支持主张,比如“在关于电动汽车的文章中提供销售数据和环境影响数据。” 4. 个性化:根据用户偏好或特点要求个性化,像“请根据用户对喜剧电影的喜好推荐几部好看的电影。” 5. 语气:指定所需语气,如正式、随意、信息性、说服性,例如“请用正式语气编写一篇关于气候变化的文章。” 6. 格式:定义格式或结构,如论文、要点、大纲、对话,比如“请为我提供一个关于健康饮食的要点清单。” 7. 限制:指定约束条件,如字数或字符数限制,例如“请提供一个关于太阳能的 100 字简介。” 8. 引用:要求包含引用或来源以支持信息,比如“请在关于全球变暖的文章中引用权威研究。” 9. 语言:如果与提示不同,请指明回应的语言,例如“请用法语回答关于巴黎旅游景点的问题。” 10. 反驳:要求解决潜在的反驳论点,比如“针对抵制疫苗接种的观点提出反驳。” 11. 术语:指定要使用或避免的行业特定或技术术语,例如“请用通俗易懂的语言解释区块链技术。” 您可以根据具体需求选择适合的框架来编写提示词。如果您觉得这些框架过于复杂,还可以结合自己的生活或工作场景,想一个能帮助简单自动化的场景,比如自动给班级里的每个孩子起个昵称、自动排版微信群经常发的运营小文案、自动帮您安排周一到周日的减脂餐、帮您列一个清晰的学习计划等。
2024-12-09
生成文章摘要及框架的提示词
以下是关于生成文章摘要及框架的提示词相关内容: 办公通用场景: 总结助手:请帮我总结以下文章,将以下文本总结为 100 个单词,使其易于阅读和理解。摘要应简明扼要,并抓住文本的要点。避免使用复杂的句子结构或技术术语。 周报生成器:根据日常工作内容,提取要点并适当扩充,以生成周报。 相关链接: Chain of Density:为给定文章生成越来越精简且信息丰富的摘要,重复两个步骤 5 次。步骤 1 找出 1 3 项先前摘要中遗漏的信息实体“informative entity”,步骤 2 生成新的更紧凑的摘要,涵盖先前所有信息实体及缺失实体。回复格式为 JSON,包含“Missing_Entities”和“Denser_Summary”两个键值。 利用 AI 打造爆款公众号文章:关键在于提供清晰且具指导性的提示词,好的提示词能让 AI 更准确理解需求并生成符合预期的内容。可从基础提示词进阶到更详细、具创意的提示词,为 AI 设定文章语气、风格和重点,最终产出内容可能需微调以符合预期和公众号风格。
2024-12-05
智能体是什么?设计框架及关键技术是什么?如何从通用大模型搭建一款智能体
智能体是建立在大模型之上的具有特定功能的系统。 其特点包括: 1. 强大的学习能力:能通过大量数据学习,理解和处理语言、图像等多种信息。 2. 灵活性:适应不同任务和环境。 3. 泛化能力:将学到的知识泛化到新情境,解决未见过的类似问题。 智能体的应用领域广泛,如: 1. 自动驾驶:感知周围环境并做出驾驶决策。 2. 家居自动化:根据环境和用户行为自动调节设备。 3. 游戏 AI:游戏中的对手角色和智能行为系统。 4. 金融交易:根据市场数据做出交易决策。 5. 客服聊天机器人:通过自然语言处理提供自动化客户支持。 6. 机器人:各类机器人中的智能控制系统。 设计和实现一个智能体通常涉及以下步骤: 1. 定义目标:明确需要实现的目标或任务。 2. 感知系统:设计传感器系统采集环境数据。 3. 决策机制:定义决策算法,根据感知数据和目标做出决策。 4. 行动系统:设计执行器或输出设备执行决策。 5. 学习与优化:若为学习型智能体,设计学习算法以改进。 从通用大模型搭建一款智能体,可参考以下流程: 本智能体的实现包含 3 个工作流和 6 个图像流,整体包含 171 个节点。采用单 Agent 管理多工作流策略,流程包括: 1. 信息聚合与数据挖掘:通过高度集成的数据采集机制,全面收集产品关键信息。 2. 卖点提炼与优化:运用先进的大模型分析信息,提炼具有市场竞争力和独特性的卖点。 3. 买点转化与策略应用:将卖点转化为消费者视角的买点,增强产品吸引力。 4. 视觉化信息呈现:设计直观且具有冲击力的卡片展示,确保信息传达的有效性和视觉吸引力。 5. 文案与脚本调整:根据目标受众偏好和媒体渠道,动态调整文案或脚本,实现内容的最佳适配。 6. 流程结果存储与分析:将处理结果系统化地存储到飞书,以供未来策略优化和决策支持。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-04
18种提示词框架
以下是 18 种提示词框架的相关介绍: 1. ICIP 框架:包括指令(Instruction,必须)、背景信息(Context,选填)、输入数据(Input Data,选填)和输出指示器(Output Indicator,选填)四个部分。 2. BROKE 框架:着重于背景(Background)、角色定义(Role)、目标设定(Objectives)、关键成果展示(Key Result)以及持续的试验与优化(Evolve)五个方面。 3. CRISPE 框架:分为上下文(Context)、角色(Role)、说明(Instruction)、主题(Subject)、预设(Preset)和例外(Exception)六个部分。 4. 情境框架:基础且简单,易于入手。 提示词工程师是专门负责为大语言模型设计、优化和实施 Prompt 的技术角色。他们不仅要编写 Prompt,还需进行测试和优化以确保输出质量。善于发现需求、解析需求并写成专业的 Prompt 以解决问题。 标识符如、<>等,以及属性词如 Role、Profile、Initialization 等,有助于控制内容层级和标识语义结构。 结构化提示词框架可视为提示词的标准格式,在不了解如何开始设计提示词时可作为通用标准使用,其在行业内应用广泛且成熟度较高。 您可以在 AGI 的相关板块看到优秀的结构化 Prompt 示例。如果觉得某些例子复杂,可结合自身生活或工作场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等,选择一个适合的提示词框架开启首次编写。
2024-11-29
AI换脸技术系统框架
以下是关于 AI 换脸技术的系统框架: 1. 本地解决方案 所需环境:需要 Python 环境以及安装视频解码器等多个依赖软件。 开源地址:https://github.com/facefusion/facefusion 操作步骤: 点击快捷工具中顶部的“JupyterLab”,打开工具。 点击顶部的“+”号选项卡,新打开一个终端窗口。 点击终端区域,启动一个终端的选项卡。 在终端窗口中输入以下命令: 查看文件列表,输入“ls”并按回车,显示当前位置所在目录下的文件列表。 进入“facefusion”目录,输入“cd facefusion”并按回车,进入程序目录。 启动“facefusion”,输入“python./run.py executionproviders cuda cpu”启动程序(注意:后面的参数“executionproviders cuda cpu”非常重要,如果不加“cuda”,则默认不使用 GPU 能力,推理将非常慢)。 注意事项: 由于“facefusion”的运行推理计算速度非常依赖 GPU,如果本地计算机没有 GPU 或者 GPU 显存较小,执行速度将会非常缓慢。 2. 云服务解决方案 可选平台:如阿里云的 PAI 和 AutoDL(注:这种方案需要产生一定的费用)。 以 AutoDL 为例: 官网:https://www.autodl.com/home 注册完成后,在算力市场中,选择能接受价格的算力服务器,建议选取 GPU 配置更高的算力设备。 在算法社区查找“facefusion”镜像,点击右侧合适的镜像,点击右下角的“创建实例”按钮,创建并启动实例。 在“facefusion”软件界面上,上传准备好的图片、视频后,在右侧可以看到预览效果。点击下方的“开始”按钮,执行换脸处理。执行完成后,在输出的位置会出现处理后的视频,输出窗口的右上角有一个下载按钮,点击可导出变量后的视频到本地。
2024-11-28