直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

产品市场契合度(PMF)框架案例

回答

以下是一些产品市场契合度(PMF)框架的案例:

  • HubSpot:在 2006 年,小企业面临高成本的营销渠道。HubSpot 意识到可以利用互联网的特性,提供内容、SEO 和电子邮件管理工具。他们创造了“入站营销”术语,并通过市场教育推动了小企业界的营销革命。
  • Square:解决了小企业无法接受信用卡支付的问题。他们将智能手机转变为移动信用卡终端,通过免费提供硬件和软件,赢得了早期采纳者的支持,最终成为新的标准。
  • Uber:重新想象出租车体验,创造了共享汽车市场。他们不仅要说服普通人成为司机,还需应对出租车工会、法规等挑战。其他人对困难的厌恶为 Uber 提供了更多市场机会。

这些案例表明,通过改变固有认知,找到新的解决方案,可以实现产品市场契合度,并在市场中获得成功。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

产品市场契合度(PMF)框架 | 红杉

2006年,营销主要由广告、邮件和电话营销组成。这使得小企业处于不利地位,因为这些都是高成本渠道。布莱恩·哈利根和达默什·沙阿意识到有一种新的方式:小公司可以利用快速成熟的互联网的特性——博客、社交媒体、SEO、电子邮件通讯——以传统渠道一小部分的成本达到观众。[HubSpot](https://www.hubspot.com/)的一套内容、SEO和电子邮件管理工具为客户解决了这个问题。但是,为了让客户相信他们的方法并开始采用他们的产品,HubSpot需要在客户心中明确新的方式——使他们意识到旧的方式已破损并可以被更好的东西所替代。他们通过为他们的新方式创造一个术语——“入站营销”——甚至写了一本关于它的书来实现这一点。他们在市场教育方面如此有效,以至于这一想法获得了认可,并在小企业界引发了一场营销革命,推动HubSpot达到产品市场契合,甚至更远。

产品市场契合度(PMF)框架 | 红杉

当Block(原名叫[Square](https://squareup.com/))首次推出时,他们要解决的困难现实是众所周知并且被普遍接受的:“仅限现金”。对于许多小企业或任何农贸市场来说,他们没有办法接受信用卡支付。消费者只能辛苦去寻找自动取款机,而商家则经常错失销售机会。杰克·多尔西和吉姆·麦克尔维的独到见解是,正在变得无处不在的智能手机,实际上可以有效地转变为移动信用卡终端。Square意识到这个所谓的生活固有事实实际上是一个它们可以解决的难题。但是,要想获得成功,就需要让世界看到它不再需要忍受这一痛点,并且足够信任Square的解决方案来采纳他们的新方式。为了激发这种顿悟并赢得早期采纳者的支持,他们会宣传这一产品,Square早期决定免费向商家提供硬件和软件,并稍后再找出商业模式。最终,Square成为了一个新标准。

产品市场契合度(PMF)框架 | 红杉

你的新颖方法可能会替代现有市场(如Salesforce将CRM迁移到云端)或可能创造一个新市场(如Uber将出租车体验重新想象为共享汽车市场)。无论哪种方式,你在“改变固有认知”路径上可能会面临较少的竞争,因为改变现状的困难已经让其他创始人望而却步。为了成功,Uber不仅必须说服成千上万的普通人载着陌生人四处驾驶,而且还必须与出租车工会、当地法规和劳动法律打交道。其他人对这种困难的天然厌恶意味着你可能会获得更多的空白市场机会。

其他人在问
现在有哪些GenAI原生应用验证了PMF?
目前,一些 GenAI 原生应用已展现出产品市场契合度(PMF)的早期成功迹象。例如,ChatGPT 成为增长最快的应用,在学生和开发者中具有很强的产品市场契合度;Midjourney 成为集体创意的灵感来源,据报道仅 11 人的团队就实现了数亿美元的收入;Character 推动了 AI 娱乐和伴侣领域的发展,创造了用户平均在应用中花费两小时的消费者“社交”应用。然而,尽管有这些成功案例,仍有许多 AI 公司尚未实现产品市场契合度(PMF)或拥有可持续的竞争优势,整个 AI 生态系统的繁荣也并非完全可持续。
2024-08-30
coze web sdk 的具体测试的案例
以下是关于 Coze Web SDK 具体测试的案例: 1. 提示词母体测试: 测试平台包括海外版 Coze 和国内版 Coze。 目的是测试提示词母体模板是否能按规定指令进行生成。 测试模型有 Claude3.5 Sonnet等。 进行了现实主义人物角色、虚幻主义人物角色等方面的测试。 测试感受是基线达到,国内外模型都能按要求生成拟人化提示词,但效果不一,Claude 生成质量最好。 2. 分步构建和测试 Agent 功能: 进入 Coze 后,点击「个人空间工作流创建工作流」打开弹窗。 根据弹窗要求自定义工作流信息,确认后完成新建。 左侧「选择节点」模块中,根据子任务需要实际用到插件、大模型、代码等。 编辑面板中的开始节点和结束节点分别对应分解子任务流程图中的原文输入和结果输出环节。 按照流程图在编辑面板中拖入对应的 LLM 大模型、插件、代码节点即可完成工作流框架搭建。
2024-11-15
AI制作视频的案例
以下是一些 AI 制作视频的案例和相关信息: 1. 把小说做成视频的制作流程: 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 2. 制作视频的工具推荐: 最佳动画工具:用于在视频中为人脸制作动画的 最佳语音克隆: 现在,生成一个完全由人工智能生成的角色的视频,阅读完全由人工智能编写的脚本,用人工智能制作的声音说话,由人工智能制作动画,这简直是微不足道的。但要注意深度伪造是一个巨大的问题,这些系统需要合乎道德地使用。 最近还发布了第一个商用文本到视频工具 Runway v2。它创建了 4 秒的短剪辑,更像是对未来发展的展示,但如果你想了解这个领域的未来发展,值得一看。 3. 开箱即用的解决方案 Invideo AI 脚本生成+视频匹配: 产品特点:能够在数十秒时间内轻松实现 Prompt 转视频,并且支持通过编辑器进行后期更改。未来可以使用这类产品快速、低成本地进行视频画面制作。官网地址:https://ai.invideo.io 功能介绍:在官方教程中,建议对视频平台、主旨内容、视频长度、语气、脚本风格进行描述。上传视频后,还会再次询问视频内容倾向。如果对生成的视频不满意,可以重新选择内容倾向进行编辑,也可以修改脚本、搜索并替换视频片段(区别于 Pika labs、Runway 的 AI 生成视频,Invideo 的原理是 AI 生成脚本并匹配视频素材)。在视频生成后,仍可以通过 Prompt 修改视频内容,免费账户无法去除视频上的水印。 实践案例:输入 Prompt“K 公司刚研制出了一款新品乳液,采用了天然草本精华,使用后肤色洁白透亮,并且不再担心冬天气候干燥带来的皮肤干裂困扰,请帮这款新品制作一个 30s 的宣传片”,选择 Youtube 平台非常快速地生成了该视频,标题为“Embrace Winter with K's Herbal Emulsion 用 K's 草本乳液拥抱冬天”,实际视频为 27s。
2024-11-15
我想要了解AI在高校基础医学教学中的应用案例
以下是一些 AI 在高校基础医学教学中的应用案例: 教学:帮助学生做好组会准备,使用了 Claude + Gamma.app,Claude 能节省绝大部分时间。 医疗:蛋白质结构预测和蛋白质合成,用于生成漂亮图片的 AI 可帮助科学家研究并设计新的蛋白质。 做调研:用特定 prompt ,2 小时帮同学干完 3 篇调研报告。 做调研:用 ChatGPT 做调研。 医疗:健康生物制药的研究,AI 在抗癌、抗衰老、早期疾病防治等研究应用中起重要作用。 此外,为了在医疗保健中产生真正的改变,AI 应像人类一样学习,例如成为顶尖医疗人才需要多年密集信息输入、正规学校教育和学徒实践,AI 也应通过合理的模型训练方式而非仅依靠大量数据来提升。 对于中学生学习 AI ,有以下建议: 从编程语言如 Python 、JavaScript 入手,学习编程语法、数据结构、算法等基础知识。 尝试使用 ChatGPT 、Midjourney 等 AI 生成工具,探索百度的“文心智能体平台”、Coze 智能体平台等教育平台。 学习 AI 基础知识,包括基本概念、发展历程、主要技术及在各领域的应用案例。 参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试解决实际问题。 关注 AI 发展的前沿动态,思考其对未来社会的影响。
2024-11-07
我记得你有发布过google人工智能落地的案例
以下是为您整合的相关内容: Google 最近发布了 185 个全球企业生成式 AI 应用案例,涵盖客户服务、员工管理、代码开发、数据分析、安全管理和创意领域。案例展示了 AI 如何优化客户体验、提升员工效率、加速代码处理、改善数据分析、增强安全性及简化创意生产。详情可参考:《》 Coze 汽车售后服务知识库 Bot 旨在提升服务顾问和维修技师的专业水平和维修效率。该 Bot 通过提供标准化解决方案,辅助车辆故障分析和检查,弥补专业知识不足和技术支持文档标准化问题。主要目标是提升服务质量,减少对技师经验的依赖,为汽车售后服务提供智能化支持。详情可参考:《》
2024-11-06
agent案例
以下是为您提供的关于 Agent 的相关案例和信息: 四种 Agent 设计范式: Reflection(反思):类似于 AI 的自我纠错和迭代。例如让用 Reflection 构建好的 AI 系统写代码,AI 会把代码加上检查正确性和修改的话术再返回给自己,然后反复进行,完成自我迭代。 Tool Use(工具使用):大语言模型调用插件,极大拓展了 LLM 的边界能力。 智能体的类型: 简单反应型智能体(Reactive Agents):根据当前感知输入直接采取行动,不维护内部状态和考虑历史信息。例如温控器。 基于模型的智能体(Modelbased Agents):维护内部状态,对当前和历史感知输入进行建模,能推理未来状态变化并采取行动。例如自动驾驶汽车。 目标导向型智能体(Goalbased Agents):具有明确目标,能根据目标评估行动方案并选择最优行动。例如机器人导航系统。 效用型智能体(Utilitybased Agents):不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动。例如金融交易智能体。 学习型智能体(Learning Agents):能够通过与环境交互不断改进性能,学习模型、行为策略和目标函数。例如强化学习智能体。 从产品角度思考 Agent 设计: Agent 可以是一个历史新闻探索向导,身份为历史新闻探索向导,性格知识渊博、温暖亲切、富有同情心,角色是主导新闻解析和历史背景分析。为使角色更生动,可设计简短背景故事。 写好角色个性包括:编写背景故事明确起源、经历和动机;定义性格特点和说话方式风格;设计对话风格;明确核心功能和附加功能。
2024-11-05
AI制作音乐的工具和案例
以下是一些 AI 制作音乐的工具和相关案例: :无需昂贵的录音设备即可进行多轨录音。 :生成歌词、旋律、鼓点等,并且能够像任何专业 DAW 一样进行编辑和混音。 :AI 驱动的音乐制作平台,使用 AI 创作歌词、节拍和人声,然后直接从 Cassette 进行混音和发布。 :人工智能创作情感背景音乐。 :简化的音乐创作工具,帮助您为视频和播客创作音乐。 :为直播的游戏玩家提供自适应 AI 音乐。 :高质量音乐和音效,所有内容都包含版权。 :世界上第一个动态音乐引擎。 (被 Shutterstock 收购):为内容创作者提供的 AI 音乐创作工具。 :您的虚拟音乐工作室。 :即时制作音乐,与世界分享。 :智能乐谱。 :由一群艺术家、研究人员、设计师和程序员组成的团队。 (被 Apple 收购):音乐帮助品牌与受众建立更深层次的连接。 :下一代音乐制作人。 :数字宇宙的音乐解决方案,Soundtracks、AI Studio、Music Maker JAM 的制作者。 :AI 音乐创作和制作。 :自由定制高质量免版权费音乐。 :一个云平台,让音乐人和粉丝在全球范围内创作音乐、协作和互动。 :使用嵌入式软件、信号处理和 AI 帮助艺术家录制、混音和母带处理他们的现场表演。 :开源音乐生成工具。 :旨在通过 AI 赋能真实艺术家的伦理音频 AI 插件、工具和社区,而非取代他们。 :使用 AI 创作音乐和语音。 :与 DAW 集成的生成音乐工具,100%免版权费。 :为创意媒体提供的伦理音乐 AI。 :AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 :通过音乐赋予你新的创作和表达方式。 :使用 AI 改变你的歌唱声音。 :为你的创造力和生产力提供 AI 音乐。 :使用 AI 生成声音、音效、音乐、样本、氛围等。 案例方面,Manglemoose 最近展示了由他们最新开发的音乐生成器制作的视频案例,该工具的名称尚未公布。bGPT 是一种具有下一个字节预测功能的模型,它几乎完美地复制了符号音乐数据的转换过程,在将 ABC 符号转换为 MIDI 格式时实现了每字节 0.0011 位的低错误率。此外,bGPT 在模拟 CPU 行为方面表现出卓越的能力,执行各种操作的准确度超过 99.99%。
2024-10-31
常用的结构化提示词框架有哪些?
以下是一些常用的结构化提示词框架: 1. 基础的结构化编写 Prompt 框架: Role: Profile: author:作者 version:版本 language:中文 description: Goals: 1. 2. Constrains: Skills: Workflows: 1. 2. 2. CRISPE 框架(Capacity and Role,Insight,Statement,Personality,Experiment) 3. BROKE 框架(Background,Role,Objectives,Key Results,Evolve) 4. ICIO 框架: Instruction(指令):明确定义 AI 需要执行的任务,遵循简洁明了、具体详细、行动导向、单一任务等原则。 Context(背景信息):提供任务的相关背景,包括任务目的、目标受众、相关背景、限制条件、角色扮演等。 Input Data(输入数据):为 AI 提供执行任务所需的具体信息或数据。 Output Indicator(输出引导):指导 AI 如何构建和呈现输出结果,包括格式要求、语气和风格、长度限制、结构指引、特殊要求、评估标准等。
2024-11-14
利用 AI 生成培训框架
以下是为您生成的培训框架相关内容: 一、AI 在教育培训中的应用 1. 数字教师 借助大型语言模型,人工智能生成的角色可以作为数字教师,如让牛顿亲自授课《牛顿运动定律》,让白居易为您讲述《长恨歌》背后的故事。 数字教师可以实现一对一辅导,不受情绪左右,提高学生参与感。 能够根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,实现因材施教,提高学习效率和成果,缓解教育资源不平等问题。 2. 数字陪伴 人工智能生成的虚拟角色可以作为孩子的玩伴,来自他人的赞美等社会奖励,促进儿童成长,提高学习成绩。 二、AI 相关技术原理与概念 1. 概念 生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词 AI:人工智能。 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习:参照人脑有神经网络和神经元,因有很多层所以叫深度,神经网络可用于多种学习方式。 生成式 AI:可以生成文本、图片、音频、视频等内容形式。 LLM:大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-10-29
我计划编写一本关于生成式人工智能的书籍,但是在开始前,我需要确定一个合适的大纲框架来组织我的思路。这个框架应该包括那些部分,以及如何将各个部分连接起来,以便读者能够理解掌握AIGC的概念和应用
以下是为您编写关于生成式人工智能书籍提供的大纲框架建议: 一、引言 介绍编写本书的目的和背景,引导读者进入生成式人工智能的世界。 二、基础概念 1. 什么是生成式人工智能(AIGC) 定义和特点 与传统人工智能的区别 2. 相关技术名词 AI(人工智能) 机器学习(包括监督学习、无监督学习、强化学习) 深度学习(神经网络、神经元) 生成式 AI(可生成文本、图片、音频、视频等内容形式) LLM(大语言模型) 三、AIGC 的应用领域 1. 文字生成(如使用大型语言模型生成文章、故事、对话等) 2. 图像生成(如使用 Stable Diffusion、DALLE 等模型生成艺术作品、照片等) 3. 视频生成(如使用 Runway、KLING 等模型生成动画、短视频等) 四、AIGC 与其他内容生成方式的关系 1. AIGC 与 UGC(用户生成内容) 区别与联系 各自的优势和适用场景 2. AIGC 与 PGC(专业生成内容) 区别与联系 相互的影响和融合 五、技术原理 1. Transformer 模型 自注意力机制 处理序列数据的优势 2. 技术里程碑(如谷歌团队发表的《Attention is All You Need》论文) 六、实际案例分析 展示不同领域中成功的 AIGC 应用案例,分析其实现过程和效果。 七、挑战与展望 1. 面临的挑战(如数据隐私、伦理问题等) 2. 未来发展趋势和前景 八、结论 总结全书重点内容,对 AIGC 的未来发展进行展望。 各个部分之间可以通过逻辑递进、案例引用、对比分析等方式进行连接,使读者能够逐步深入理解掌握 AIGC 的概念和应用。
2024-10-23
什么是LangGPT框架
LangGPT 是由云中江树开发的一款开源提示词框架。它旨在解决传统提示词在系统性、灵活性和用户友好性方面的不足,更好地挖掘和利用大模型的潜力。 随着 GPT4 等新一代模型的发布,提示词的重要性日益凸显,其编写过程逐渐成为 AI 时代的一种编程语言,而 LangGPT 提示词框架就是为了应对高效编写高质量提示词这一需求而研发的。 云中江树早在 2023 年 3 月就提出了结构化构建提示词的方法,并于 5.4 青年节开源发布,很快收藏破千,成为 GitHub 开源社区全球趋势热榜前十项目,还撰写了学术论文开源发表。 LangGPT 提出的结构化提示词已被百度、智谱、字节、华为等国内主流大模型智能体平台使用,当前已发展成为国内最具影响力的高质量提示词工程师学习交流社群。其愿景是让人人都能写出高质量提示词,为大众提供一套可操作、可复现的提示词方法论、工具和交流社群。 使用框架时,可以换着不同的预设角度去描述同样一个物体。例如,去年有人用 LangGPT 的框架,模拟一个能以善解人意的方式讲解任何学科概念的老师进行输出。
2024-10-21
12种Prompt框架
以下是 12 种 Prompt 框架: 1. Key Result(关键结果):说明想要的具体效果,试验并调整。包括改进输入(从答案不足之处着手改进背景、目标与关键结果)、改进答案(在后续对话中指正 ChatGPT 答案缺点)、重新生成(在 Prompt 不变情况下多次生成结果,优中选优)。 2. Evolve(试验并改进):三种改进方法自由组合。 3. APE 框架:未提供具体说明。 4. COAST 框架:未提供具体说明。 5. CONTEXT(上下文背景):为对话设定舞台。 6. OBJECTIVE(目的):描述目标。 7. ACTION(行动):解释所需的动作。 8. SCENARIO(方案):描述场景。 9. TASK(任务):描述任务。 10. ICIO 框架:相关链接 。 11. CRISPE 框架:相关链接 。 12. BROKE 框架:作者陈财猫,相关链接 。 此外还有: 1. 框架集合:右侧附件做成了海报。 2. Instruction(指令):即希望 AI 执行的具体任务,比如翻译或者写一段文字。 3. Context(背景信息):给 AI 更多背景信息引导模型做出更贴合需求的回复。 4. Input Data(输入数据):告知模型需要处理的数据。 5. Output Indicator(输出引导):告知模型要输出的类型或风格。 6. Capacity and Role(能力和角色):ChatGPT 应扮演的角色。 7. Insight(见解):提供请求的背后见解、背景和上下文。 8. Statement(声明):要求 ChatGPT 做什么。 9. Personality(个性):希望 ChatGPT 以何种风格、个性或方式回应。 10. Experiment(实验):请求 ChatGPT 为您回复多个示例。 其他框架: 1. ACTION(行动):描述想做什么。 2. RESULT(结果):描述所需的结果。 3. EXAMPLE(示例):举一个例子来说明观点。 4. ROSES 框架:未提供具体说明。 5. ROLE(角色):指定 ChatGPT 的角色。 6. OBJECTIVE(目的):陈述目标或目标。 7. SCENARIO(方案):描述情况。 8. EXPECTED SOLUTION(解决方案):定义所需的结果。 9. STEPS(步骤):要求达到解决方案所需的措施。 10. RACE 框架:未提供具体说明。 11. PATFU 泡芙提示词框架:作者口袋君。 12. Problem(问题):清晰地表述需要解决的问题。 13. Aera(领域):问题所在领域以及需要扮演的角色。 14. Task(任务):解决问题需要执行的具体任务。
2024-10-21
知识库都有哪些提示词框架
以下是一些常见的提示词框架: ICIO 框架:包括 Instruction(指令)、Context(背景信息)、Input Data(输入数据)、Output Indicator(输出引导)。 CRISPE 框架:涵盖 Capacity and Role(能力和角色)、Insight(见解)、Statement(声明)、Personality(个性)、Experiment(实验)。 BROKE 框架:包含 Background(背景)、Role(角色)、Objectives(目标)、Key Result(关键结果)。 TRACE 框架:有 TASK(任务)、REQUEST(请求)、ACTION(行动)、CONTEXT(上下文)、EXAMPLE(示例)。 ERA 框架:包括 EXPECTATION(期望)、ROLE(角色)、ACTION(行动)。 CARE 框架:由 CONTEXT(上下文)、ACTION(行动)、RESULT(结果)、EXAMPLE(示例)组成。 ROSES 框架:包含 ROLE(角色)、OBJECTIVE(目的)、SCENARIO(方案)。 Evolve 框架:包括试验并改进,通过改进输入、改进答案、重新生成等方法。 APE 框架。 COAST 框架:包含 CONTEXT(上下文背景)、OBJECTIVE(目的)、ACTION(行动)、SCENARIO(方案)、TASK(任务)。 TAG 框架:包括 TASK(任务)、ACTION(行动)、GOAL(目标)。 RISE 框架。
2024-10-17