Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

我是一个小学生,给我解释一下什么是AI

Answer

AI 是一门令人兴奋的科学,它研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。简单来说,就是让计算机或机器能像我们人类一样思考和学习的技术。

在小学课堂上,可以用学生能理解的语言来解释 AI。比如,先和学生互动,听听他们口中的 AI,再引出我们的概念。可以告诉学生,AI 就像一个聪明的机器人,它可以通过学习和分析大量的数据,来完成各种任务,例如识别图像、语音识别、翻译等。

虽然计算机已经很先进了,但有些任务我们并不知道明确的解法,例如从一个人的照片中来判断他/她的年龄。而 AI 对这种类型的任务感兴趣,它可以通过学习和分析大量的照片数据,来学会如何判断一个人的年龄。

总之,AI 是一种非常酷的技术,它可以帮助我们解决很多难题,让我们的生活变得更加便捷和有趣。

Content generated by AI large model, please carefully verify (powered by aily)

References

当AI走进小学课堂(全套课程设计)

设计思路:要和三年级的孩子对话,要用学生能理解的语言,旨在激发学生的兴趣,引起学生的好奇心即可。在课堂上,先和学生互动,先听听他们口中的AI,再引出我们的概念。内容:大家好,今天我们要来聊聊一个非常酷的话题——人工智能,简称AI。你们可能在电视上、电脑游戏里或者是电影中见过AI。那么,人工智能到底是什么呢?简单地说,就是让计算机或机器能像我们人类一样思考和学习的技术。

人工智能简介和历史

人工智能(Artificial Intelligence)是一门令人兴奋的科学,它研究我们如何使计算机表现出智能行为,例如做一些人类所擅长的事情。最初,查尔斯·巴贝奇(Charles Babbage)发明了计算机,用于按照一套明确定义的程序(即算法)来对数字进行运算。现代计算机虽然比19世纪提出的原始计算机模型要先进得多,但仍然遵循着相同的受控计算理念。因此,如果我们知道实现某些目标所需的每一个步骤及其顺序,就有可能编写出程序,使计算机按照我们的想法去做这些事。✅ “根据照片判断一个人的年龄”是一件无法明确编程的任务,因为我们并不知道当我们在做这件事时,是如何经过某些清晰的步骤,从而在脑海中得到一个数字的。然而,对于有些任务,我们并不能知道明确的解法。例如从一个人的照片中来判断他/她的年龄。我们之所以能做这件事,是因为我们见过了很多不同年龄的人,但我们无法明确自己的大脑具体是通过哪些步骤来完成这项任务的,所以也无法编写明确的程序让计算机来完成。这种类型的任务正是人工智能(简称AI)感兴趣的。

元子:小白30min快速体验AI工具

写这篇分享的初衷是,五一趁着节假日回家看望爹妈时,我那“无线电”专业、当年手把手给我启蒙电脑网络协议和编程的爸爸提出了一个需求——“给我和你妈科普一下啥叫AI”,短视频里讲的不太靠谱。当我的父亲跟我说这句话的时候,我当真被震惊了一下:1.此前,我已经将WayToAGI的网址发送给了他,并向他大力推荐2.我已经为他配置好网络,注册好了谷歌的邮箱账号3.我的父亲是个持续学习的人,他还没退休,而他的工作和计算机、网络都有紧密的关系所以何至于此,他会问出这样一个在我看来分明已经解决过的问题?当然,这里面有很多原因,社会学的、个人习惯的、甚至是我和父亲交流模式上的。但也因此,我有些恍然地意识到,那些我们看来“有手就行”的AI工具初级尝试,其实已经拦住了很多人;而因为没有自己亲手的尝试,以至于他们对“AI到底能帮我做什么”都是基于猜想的,在快速碰壁后,就此打住了继续探索。

Others are asking
什么是AI
AI(Artificial Intelligence,人工智能)是一门令人兴奋的科学,它研究如何使计算机表现出智能行为,例如做一些人类所擅长的事情。 对于AI的理解,对于不具备理工科背景的文科生来说可能较困难,可将其当成一个黑箱,只需要知道它是某种能模仿人类思维、理解自然语言并输出自然语言的东西即可。其生态位是一种似人而非人的存在,技术再发展,这一生态位也不会改变。 从技术层面看,最初计算机由查尔斯·巴贝奇发明,用于按照明确的程序进行数字运算,现代计算机虽更先进,但仍遵循相同的受控计算理念。然而,对于像根据照片判断一个人的年龄这类任务,我们无法明确其解法,也无法编写明确程序让计算机完成,这类任务正是AI所感兴趣的。 在应用方面,生成式AI(GenAI)是一种基于深度学习技术,利用机器学习算法从已有数据中学习并生成新数据或内容的AI应用。典型的GenAI包括OpenAI推出的语言模型ChatGPT、GPT4、图像模型DALLE以及百度推出的文心一言、阿里云推出的通义千问等。AIGC则指利用GenAI创建的内容,包括图像、视频、音频、文本和三维模型等。国内主要在相关法律框架下对AIGC行业进行监管。
2025-02-07
音乐制作AI
以下是一些人工智能音频初创公司,专注于音乐创作与制作: :前身为“Definite Technologies”,开发使用 AI 处理/生成声音的 VST/AU/AUv3 插件。 :自适应 AI 音乐平台,通过高质量音频样本进行实时细胞组成。 :基于 AI 的音乐助手,包括歌词写作助手。 :实时音乐、音频和视频创作平台。 :为创意媒体应用提供合成歌声。 :数字宇宙的音乐解决方案,Soundtracks、AI Studio、Music Maker JAM 的制作者。 :AI 音乐创作和制作。 :自由定制高质量免版权费音乐。 :一个云平台,让音乐人和粉丝在全球范围内创作音乐、协作和互动。 :使用嵌入式软件、信号处理和 AI 帮助艺术家录制、混音和母带处理他们的现场表演。 :开源音乐生成工具。 :旨在通过 AI 赋能真实艺术家的伦理音频 AI 插件、工具和社区,而非取代他们。 :使用 AI 创作音乐和语音。 :与 DAW 集成的生成音乐工具,100%免版权费。 :为创意媒体提供的伦理音乐 AI。 :AI 音乐创作平台和探索声音宇宙的个人音乐制作人。 :通过音乐赋予你新的创作和表达方式。 :使用 AI 改变你的歌唱声音。 :为你的创造力和生产力提供 AI 音乐。 :使用 AI 生成声音、音效、音乐、样本、氛围等。 :带有 AI 助手并支持本地 VST 插件的网页 DAW。 :Audacity®音频编辑器的网页版。 (被 Apple 收购):我们的音乐帮助品牌与受众建立更深层次的连接。 :下一代音乐制作人。 :由 AI 驱动的软件引擎,可以生成音乐。它可以对手势、动作、代码或其他声音作出反应。 :全球最大的音乐教育平台。 :用于创作歌曲和音频录制的应用程序。 :提供无缝录音室体验的一体化在线协作平台。 :专业音频、语音、声音和音乐的扩展服务。 :视频编辑的音频解决方案。 :由 AI 驱动的音乐工作室。 :通过直观的软件/硬件生态系统为音乐演奏者提供世界级声音的民主化访问。 :AI 音频插件和社区,弥合 AI 研究与创意之间的差距。 :为音乐人、制作人和内容创作者提供 AI 驱动的混音服务。 :为创作者提供的在线音乐软件:音乐母带处理、数字音乐发行、分期付款插件、免费样本包和协作工具。
2025-02-07
有哪些好用的做ppt的ai工具
以下是一些好用的做 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,可通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式,如 GIF 和视频,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀团队推出,通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供自动布局、图像选择和文本优化等智能设计功能,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 5. 爱设计 6. 闪击 7. Process ON 8. WPS AI
2025-02-07
普通人如何在AI迅猛发展的浪潮中避免被淘汰
在 AI 迅猛发展的浪潮中,普通人避免被淘汰可以从以下几个方面努力: 1. 积极学习和掌握 AI 相关技能,如 AI 编程。编程门槛因 AI 而降低,未来编程技能可能会像 Office 软件一样普及,成为职场基本素养。能够驾驭 AI 编程工具并用于解决实际问题、创造价值的人更易脱颖而出。 2. 注重培养运用 AI 工具解决问题的能力,而非仅仅依赖工具生成的结果。真正的价值在于借助工具实现创新、提升效率。 3. 关注 AGI 对社会和个人的影响,思考在 AGI 世界中个体如何生存、创造价值,并探索新的分配方式。 4. 以发展的眼光看待 AI 的进步,不能因当前 AI 的不足而忽视其快速发展的趋势。AI 的“效用函数”和计算力在不断提升,可能在 5 年内就使行业发生巨大变化,十几年内可能对人类产生全面替代,因此要积极应对,不能逃避或沾沾自喜。
2025-02-07
请给我推荐一个能够阅读网页链接内部信息的AI模型
以下为您推荐能够阅读网页链接内部信息的 AI 模型相关内容: 有一款 AI 浏览器插件,在产品化开发阶段,需要考虑如何稳定获取网页内容、如何选择适合的 AI 大模型 API 服务以及如何构建生产级提示词等问题。 在获取网页内容方面,由于大模型对话产品的外链解析方式容易遭到平台反爬机制制裁,通过用户浏览器以浏览器插件形式本地提取网页内容是一种稳定、经济的解决方案。比如 AI Share Card 插件,可以获取网页元素清单。开发时,您可以拿着初版提示词,询问 AI 来设计获取相关元素的 js 代码。 对于大模型 API,需要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。根据 BigModel 官网给出的请求示例,需要传递 Model 类型、系统提示词、用户提示词、top_p、temperature 等关键参数。如果缺少参数设定经验,可以先询问 AI 相关设定的合适值,再逐步调试效果。 同时需要注意,使用 AI 写东西时,它可能会“产生幻觉”生成错误内容,需要检查所有内容。而且 AI 不会真正解释自己,可能给出编造的答案,使用时要对其输出负责。
2025-02-07
有没有能够阅读网页链接内部信息的AI模型?
目前存在能够阅读网页链接内部信息的相关技术和工具。例如,有一些 AI 浏览器插件可以实现这一功能。 在实现过程中,需要考虑以下几个关键方面: 1. 稳定获取网页内容:在初版提示词实验中,获取网页内容依赖大模型对话产品的外链解析能力,但易受平台反爬机制制裁。转换思路,通过用户浏览器以插件形式本地提取网页内容是一种稳定且经济的解决方案。开发时需确定需要插件获取的网页元素,可拿着初版提示词询问 AI 来设计获取相关元素的 js 代码。 2. 选择适合的 AI 大模型 API 服务:需要综合考虑多种因素来选择合适的服务。 3. 构建生产级提示词:对于大模型 API,要利用插件预先获取的网页内容变量、提示词和 API 请求参数,拼搭出完整的 API 提示请求,精确引导 API 返回想要的生成结果。同时,要根据不同模型的特点和要求设置相关参数,也可先询问 AI 相关参数的设定经验再进行调试。 此外,在初版提示词的开发中,将设计要求拆分为“设计规范”和“内容结构”,再细分为独立模块,并结合“内容结构”进行要求提示,这种提示词组织方式具有模型通用性、提示简易性和生成稳定性等显著优势。
2025-02-07
帮我用最简单的方法解释一下时间序列模型
时间序列模型是用于分析和处理随时间变化的数据的一类模型。 例如,在评估 GPT4V 对时间序列和视频内容的理解时,会考虑其对现实世界中随时间展开的事件的理解能力,像时间预测、排序、定位、推理和基于时间的理解等。 在视频生成方面,如 Video LDM 模型,先训练图像生成器,再微调添加时间维度以生成视频。 总的来说,时间序列模型旨在理解和预测数据在时间上的变化规律和趋势。
2025-01-23
解释一下RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 在实际应用中,如本地部署大模型以及搭建个人知识库时,利用大模型搭建知识库就是 RAG 技术的应用。RAG 的应用可抽象为文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出这 5 个过程。在产品视角下,RAG 常见应用于知识问答系统,其核心流程是根据用户提问从私有知识中检索相关内容,与提问一起提交给大模型生成回答。
2025-01-16
解释一下RAG
RAG(RetrievalAugmented Generation)即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。 大模型存在一些缺点,如无法记住所有知识(尤其是长尾知识)、知识容易过时且不好更新、输出难以解释和验证、容易泄露隐私训练数据、规模大导致训练和运行成本高。而 RAG 具有诸多优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,且对原有知识无影响。 3. 数据库内容明确、结构化,加上模型的理解能力,能降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型的训练成本。 在实际应用中,如本地部署大模型以及搭建个人知识库时,利用大模型搭建知识库就是 RAG 技术的应用。RAG 的应用可抽象为文档加载、文本分割、存储(包括嵌入和向量数据存储)、检索、输出这 5 个过程。在产品视角下,RAG 常见应用于知识问答系统,其核心流程是根据用户提问从私有知识中检索相关内容,与提问一起提交给大模型生成回答。
2025-01-16
请解释一下AI智能体的概念及功能
AI 智能体是指类似于 AI 机器人小助手的存在。简单理解,参照移动互联网,它类似 APP 应用的概念。AI 大模型是技术,而面向用户提供服务的产品形式就是智能体,所以很多公司关注 AI 应用层的产品机会。 在 C 端,比如社交方向,用户注册后先创建自己的智能体,然后让其与他人的智能体聊天,聊到一起后真人再介入,这是一种有趣的场景;还有借 Onlyfans 入局打造个性化聊天的创业公司。在 B 端,如果字节扣子和腾讯元器是面向普通人的低代码平台,类似 APP 时代的个人开发者,那还有帮助 B 端商家搭建智能体的机会,类似 APP 时代专业做 APP 的。 目前有不少大厂推出自己的 AI 智能体平台,如字节的扣子、阿里的魔搭社区等。AI 智能体拥有各项能力,能帮我们做特定的事情。它包含了自己的知识库、工作流,还可以调用外部工具,再结合大模型的自然语言理解能力,就可以完成比较复杂的工作。AI 智能体的出现是为了解决像 GPT 或者文心一言大模型存在的胡编乱造、时效性、无法满足个性化需求等问题,结合自身业务场景和需求,定制出适合自己的智能体来解决问题。 例如,扣子(Coze)是字节跳动旗下的新一代一站式 AI Bot 开发平台,无论用户是否具备编程基础,都能在该平台上迅速构建基于 AI 模型的各类问答 Bot,开发完成后还可将其发布到各种社交平台和通讯软件上供用户交互聊天。创建智能体通常包括起名称、写介绍、使用 AI 创建头像等简单步骤。
2024-12-17
帮我解释一下AI和人工智能、机器学习的关系
AI 即人工智能,是一个广泛的概念,旨在让计算机模拟人类智能。 机器学习是人工智能的一个重要分支。它指的是计算机通过寻找数据中的规律进行学习,包括监督学习、无监督学习和强化学习等方式。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习处理的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习则是从反馈中学习,以最大化奖励或最小化损失,类似于训练小狗。 深度学习是一种参照人脑神经网络和神经元的方法,由于具有很多层所以称为深度。神经网络可用于监督学习、无监督学习和强化学习。 生成式 AI 能够生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI ,生成图像的扩散模型不属于大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解,像上下文理解、情感分析、文本分类等,但不擅长文本生成。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2024-10-15
帮我解释一下transformer
Transformer 的工作流程如下: 1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,例如将“ I ”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有能捕获序列顺序的结构,如递归或卷积,所以给每个词位置加上位置编码,让模型知晓词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分,一是多头注意力机制(MultiHead Attention),用于捕捉单词间的依赖关系;二是前馈神经网络(FeedForward NN),对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器同样由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布,例如生成“我”“是”等单词的概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 注意力机制是 Transformer 最关键的创新,允许模型捕获长距离依赖关系。多头注意力可并行计算,因此高效。残差连接和层归一化有助于优化网络。整体上,Transformer 无递归和卷积结构,计算并行化程度高,更适合并行加速。 Transformer 是一个大参数(千亿级别)的回归方程,其底层是 function loss 损失函数。它是在一定 prompt condition 情况下,repeat 曾经出现过的数据内容,实现“生成”能力。回归方程的 Function loss 拟合 A to B mapping 关系,实现数据集的压缩与还原。 在公众传播层面,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型,如 ChatGPT;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC;AGI 指通用人工智能。公众传播一般会混用上述名词,但底层是 Transformer 结构。 大语言模型是一个 perfect memory,repeat 曾经出现的内容。它与 Alpha Go 有差异,Alpha Go 是一个增强学习模型,学习结果会调整模型自身参数,有推理能力,但大语言模型在推理这块很弱。Transformer 决定 LLM 是一个生成式模型。
2024-10-12
可以推荐给小学生的ai工具
以下是为小学生推荐的一些 AI 工具: 1. 聊天对话类:Kimi、智谱清言等。 2. 图像类:Midjourney 等。 对于小学生来说,使用 AI 工具时需要在家长或老师的指导下进行,并且要注意合理控制使用时间,避免过度依赖。同时,也要关注工具的使用规则和安全问题。
2025-02-04
如何引导小学生使用ai工具
以下是引导小学生使用 AI 工具的一些方法和示例: 1. 特色课程合作:可以像某小学一样,邀请专业的 AIGC 专家与学校合作。让大学生走进小学课堂,为小学生讲解 AI 工具,带他们试玩用 AI 工具设计的桌游,让小学生初步认识人工智能并尝试使用一些 AI 工具。 2. 课程内容设计: 设计 Q&A 环节,例如: 询问学生最喜欢哪一个 AI 应用及原因,引导他们思考技术对生活的影响和背后的原理,强调科技的多样性和创新。 探讨 AI 能否替代人类的艺术家或者作家,鼓励学生思考人类创造力与机器效率的关系,倡导对技术的负责任使用。 想象是否想要一个 AI 机器人朋友及希望它帮忙做什么,讨论与机器人交友和人类交友的不同,倡导理解技术的辅助角色。 思考如果 AI 可以帮忙完成家庭作业,希望它完成哪部分及原因,鼓励分享作业中的挑战,探讨 AI 的帮助和依赖的风险,强调将 AI 作为学习工具增强理解和效率。 3. 主课融入:在英语课等主课中逐步融入 AIGC 工具。对于初中以上的学生,开始时由老师带着使用,学生提出 prompt,老师做引导。例如在研究学校食堂食物浪费问题时,老师带着学生与 ChatGPT 对话获取信息,让 ChatGPT 为学生生成能懂的单词解释和例句,并用 AI 工具加工生词,生成题目、游戏或文章帮助复习单词。在英语辩论课上,尝试让学生自主使用 AIGC 工具做准备。
2025-02-04
有哪些设计小学生手抄报比较好用的ai?要求能按照主题或具体要求生成图片,并根据意见修改生成的图片
以下是一些设计小学生手抄报比较好用的 AI 工具及相关流程: 国内的 AIGC 绘图平台无界 AI 可以帮助您快速制作海报底图并完成主题海报排版。虽然其他 AIGC 绘图软件在操作步骤上不完全相同,但思路基本一致。 需求场景: 当您想在朋友圈、微博、Twitter 等平台发布内容时,纯文字可能点赞较少。 百度图片质量差、易撞图。 相册中的照片可能不太理想。 大致流程: 1. 主题与文案:确定海报主题后,可借助 ChatGPT 等文本类 AI 工具协助完成文案。 2. 风格与布局:选择想要的风格意向,背景不必空白,根据文案和风格灵活调整画面布局。 3. 生成与筛选:使用无界 AI,输入关键词,生成并挑选一张满意的海报底图。 4. 配文与排版:将上述素材进行合理排版,得到成品。排版同样可以参考 AIGC 海报成果。
2025-01-15
想开发一套针对小学生的AI寒假训练营,教一些简单的代码之类的 你可以给我推荐一些让小朋友体验的AI工具吗
目前针对小学生的 AI 工具,以下几种可能较为适合他们体验: 1. Scratch:这是一款图形化编程工具,通过拖拽积木块的方式就能创建程序,非常直观易懂,有助于培养孩子的逻辑思维和创造力。 2. Code.org:提供了丰富的编程课程和项目,包括简单的代码编写,界面友好,适合初学者。 3. Tynker:具有趣味性的编程学习平台,有很多小游戏和项目可以让孩子在玩中学习编程知识。 需要注意的是,在让小朋友使用这些工具时,要给予适当的指导和监督,确保他们能够正确理解和使用。
2025-01-11
推荐一些适合零基础的小学生、初中生学习的实用的Ai课程
以下是为零基础的小学生、初中生推荐的实用 AI 课程: 1. 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念,了解人工智能及其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 在「」中,有一系列为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 野菩萨的 AIGC 资深课也是不错的选择,这门课程由工信部下属单位【人民邮电出版社】开设,是市面上为数不多的值得推荐的 AI 课程之一,也是全网技术更新最快的课程。课程内容涵盖 AI 绘画、视听语言和 ChatGPT 等多个体系的知识。预习周课程包括 AI 绘画电脑配置要求、高效 AIGC 创意者的数字人工具包、SD 插件安装方法、画静为动的 AIGC 视频制作讲解等。基础操作课涵盖 AI 绘画通识课、AI 摄影虚拟的真实、AI 电影 穿越的大门等内容。核心范式课程涉及词汇的纸牌屋、核心范式应用、控制随机性等方面。SD WebUi 体系课程包括 SD 基础部署、SD 文生图、图生图、局部重绘等。ChatGPT 体系课程有 ChatGPT 基础、核心 文风、格式、思维模型等内容。ComfyUI 与 AI 动画课程包含部署和基本概念、基础工作流搭建、动画工作流搭建等。应对 SORA 的视听语言课程涉及通识 欢迎参加电影的葬礼、影像赏析、基础戏剧影视文学等。 4. 如果想要免费获得这门课程,可以来参与 video battle,这是唯一一个获胜者就可以拥有课程的机会。每期的 video battle 的评委野菩萨老师都非常严格,需要寓意深度审美并存。冠军奖励:4980 课程一份;亚军奖励:3980 课程一份;季军奖励:1980 课程一份;入围奖励:598 野神殿门票一张。 在学习过程中,您可以根据自己的兴趣选择特定的模块深入学习,一定要掌握提示词的技巧,它上手容易且很有用。理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。同时,与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。
2025-01-08
小学生科创AI自学路线及网址、详细教程
以下是为小学生提供的科创 AI 自学路线及相关资源: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 目前暂时没有专门针对小学生科创 AI 自学的网址和详细教程,但您可以在 B 站找丰富的 AI 软件入门课程自学,也可从包图网下载工程文件学习。
2025-01-06
新手入门该看这个知识库里的哪些文章/视频,给我列一个学习 路径
以下是为新手入门提供的学习路径: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,进行实践巩固知识,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并分享自己实践后的成果。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 此外,对于 WayToAGI 知识库的使用: 1. 如果觉得视频太多很晕,可以从 Agent 板块开始,比如链接: ,从下往上看,一个一个点进去,都有视频。共学都有视频,都是手把手从注册开始的教学,不会就多看几遍,基本保障一个工具能调通、一个 Agent 能搭好。如果觉得内容多,可以先挑听过的工具开始。 2. 看了一些视频之后,如果想看理论或应用,可以找到导航,想看哪里点哪里。比如链接: 。 3. 还可以从常见工具开始体验,比如: 工具入门篇(AI Tools):数据工具多维表格小白之旅,文章链接: ,适用人群为 Excel 重度使用者、手动数据处理使用者、文件工作者,可满足 80%数据处理需求。 工具入门篇(AI Code):编程工具Cursor 的小白试用反馈,文章链接: ,适用人群为 0 编程经验、觉得编程离我们很遥远的小白,可降低技术壁垒。 工具入门篇(AI Music):音乐工具Suno 的小白探索笔记,文章链接: ,适用人群为 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白,可参与音乐制作。
2025-02-07
我们是做小红书笔记的,目前有没有哪个软件可以把我们上千篇以往人工写的笔记,投喂给它,训练出一个能按照以往风格来写笔记的呢?比如扣子或者钉钉,可以吗
目前市面上常见的软件中,豆包暂时未获取到扣子或钉钉有此功能的相关信息。不过,像一些专门的自然语言处理和机器学习平台,如 OpenAI 的 GPT 系列、百度的文心一言等,在一定的技术支持和合规操作下,有可能实现您的需求。但需要注意的是,将大量以往的笔记用于训练模型可能涉及到数据隐私和版权等问题,需要谨慎处理。
2025-02-07
我们是做小红书笔记的,目前有没有哪个软件可以把我们上千篇以往人工写的笔记,投喂给它,训练出一个能按照以往风格来写笔记的呢
目前市面上还没有专门针对小红书笔记且能完全满足您需求的成熟软件。一般来说,使用现有的自然语言处理模型进行这样的训练存在诸多限制和法律风险。小红书对于内容的原创性和合规性有严格要求,使用以往的笔记进行训练可能违反平台规定。但您可以通过学习和借鉴以往笔记的写作风格、结构和主题,人工创作出新的优质笔记。
2025-02-07
推荐一个做PP T的ai工具
以下是为您推荐的一些做 PPT 的 AI 工具: 1. Gamma:这是一个在线 PPT 制作网站,允许用户通过输入文本和想法提示快速生成幻灯片。它支持嵌入多媒体格式,如 GIF 和视频,以增强演示文稿的吸引力。网址:https://gamma.app/ 2. 美图 AI PPT:由知名图像编辑软件“美图秀秀”的开发团队推出。允许用户通过输入简单的文本描述来生成专业的 PPT 设计,包含丰富的模板库和设计元素,用户可根据需求选择不同风格和主题的模板,适用于多种场合。网址:https://www.xdesign.com/ppt/ 3. Mindshow:一款 AI 驱动的 PPT 辅助工具,提供一系列智能设计功能,如自动布局、图像选择和文本优化等,还可能包括互动元素和动画效果。网址:https://www.mindshow.fun/ 4. 讯飞智文:由科大讯飞推出的 AI 辅助文档编辑工具,利用科大讯飞在语音识别和自然语言处理领域的技术优势,提供智能文本生成、语音输入、文档格式化等功能。网址:https://zhiwen.xfyun.cn/ 5. 爱设计 PPT:在国内 AI 辅助制作 PPT 的产品中表现出色,拥有强大的团队,能敏锐把握市场机遇,已确立市场领先地位。
2025-02-07
如何做一个AI智能体,能具备某个人的思考能力和方法,比如马斯克,金枪大叔或者毛泽东。
要创建一个具备像马斯克等人思考能力和方法的 AI 智能体并非易事,以下是一些相关的要点和思路: xAI 的使命在于探索宇宙本质与智能体。从宇宙尺度看,意识进化存在狭窄窗口,计算机若不能解决至少一个基本问题,不能称之为 AGI。 对于使命陈述,短期内致力于更好地理解深度学习技术,工作中应始终记住构建与理解并重,追求科学是基础。 主要目标是创建能帮助更好理解宇宙的聪明智能体,相关数学研究可能为对基本物理或其他现实的思考开辟新方式,带来有趣视角,对现有问题产生启发,但目前多为推测性,尚无具体结论。 但需要注意的是,完全复制某个人的思考能力和方法在当前技术水平下是极具挑战性的,甚至可能无法实现。
2025-02-07