Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有什么制作分析报表工作的AI

Answer

有很多AI工具可以帮助制作和分析报表,这些工具利用数据分析、机器学习和自然语言处理等技术,为用户提供高效、智能的报表生成和数据分析功能。以下是一些流行的AI驱动的报表分析工具:

1. Tableau

网址: Tableau

特点:

  • 强大的数据可视化工具,支持多种数据源。
  • 通过Tableau's Ask Data功能,用户可以用自然语言查询数据,生成可视化报表。
  • 提供详细的分析和交互式仪表盘,便于数据探索和洞察。

2. Microsoft Power BI

网址: Power BI

特点:

  • 结合了数据准备、数据发现和交互式仪表盘的功能。
  • 使用AI增强的数据分析功能,如Power BI Q&A,用户可以用自然语言查询数据。
  • 提供丰富的可视化选项和报告定制功能。

3. Google Data Studio

网址: Google Data Studio

特点:

  • 免费的在线数据可视化和报表生成工具。
  • 与Google生态系统无缝集成,支持多种数据源。
  • 提供实时数据更新和交互式仪表盘。

4. Sisense

网址: Sisense

特点:

  • 结合数据分析和商业智能功能的综合平台。
  • 使用AI驱动的分析功能,如Sisense AI Explainer,自动生成数据洞察和解释。
  • 支持复杂的数据建模和自定义报表。

5. Looker (Google Cloud)

网址: Looker

特点:

  • 数据分析和商业智能平台,支持自定义报表和数据探索。
  • 与Google Cloud AI功能集成,提供高级分析和预测功能。
  • 支持实时数据连接和互动式仪表盘。

6. Qlik Sense

网址: Qlik Sense

特点:

  • 提供自助式数据分析和报表生成工具。
  • 使用Qlik’s Associative Engine,用户可以自由探索数据并发现关系。
  • 提供AI驱动的洞察和建议,帮助用户更好地理解数据。

7. IBM Cognos Analytics

网址: IBM Cognos Analytics

特点:

  • 强大的商业智能和报表工具,支持大规模数据分析。
  • 提供AI驱动的数据发现和可视化功能。
  • 提供自然语言查询和自动生成的分析报告。

8. ThoughtSpot

网址: ThoughtSpot

特点:

  • 通过搜索驱动的数据分析,用户可以用自然语言查询数据。
  • 提供自动生成的图表和报表,用户可以快速获得数据洞察。
  • 支持复杂的分析和自定义报表。

9. Zoho Analytics

网址: Zoho Analytics

特点:

  • 提供数据可视化和分析的综合平台。
  • 使用Zia,Zoho的AI助手,自动生成报表和数据洞察。
  • 支持多种数据源和互动式仪表盘。

10. DataRobot

网址: DataRobot

特点:

  • 提供自动化机器学习平台,帮助用户构建和部署预测模型。
  • 提供AI驱动的报表和数据分析功能。
  • 支持数据准备、模型训练和结果解释,帮助用户做出数据驱动的决策。

如何选择适合的工具

  1. 数据源和集成:选择支持你主要数据源的工具,并且能与现有系统无缝集成。
  2. 易用性:根据团队的技术水平选择易于使用和上手的工具。
  3. 功能需求:确定你需要的核心功能,如数据可视化、自然语言查询、AI驱动的分析等。
  4. 预算:考虑工具的成本,包括初始购买、订阅费用和潜在的培训成本。
  5. 支持和培训:选择提供良好客户支持和丰富学习资源的工具,以便快速解决问题和提升使用技能。

这些AI工具可以显著提高报表制作和数据分析的效率,帮助你快速获得数据洞察,做出更明智的决策。

Content generated by AI large model, please carefully verify (powered by aily)

References

如何使用 AI 来做事:一份带有观点的指南

[我上周写了关于代码解释器的文章](https://www.oneusefulthing.org/p/what-ai-can-do-with-a-toolbox-getting)。它是一种GPT-4模式,允许您将文件上传到AI,允许AI编写和运行代码,并允许您下载AI提供的结果。它可用于执行程序、运行数据分析(尽管您需要充分了解统计数据和数据才能检查其工作),并创建各种文件、[网页](https://twitter.com/prkeshari/status/1678155933606637568?s=20)甚至[游戏](https://twitter.com/icreatelife/status/1678184683702566922?s=20)。尽管自它发布以来,关于未经培训的人使用它进行分析的风险有很多争论,但许多测试代码解释器的专家都留下了深刻的印象,[以至于一篇论文表明,它需要改变我们培训数据科学家的方式。](https://twitter.com/emollick/status/1678615507128164354?s=20)如果您想了解更多关于如何使用它的详细信息,请访问我之前的帖子。

金融服务业将比你想象得更快地接纳生成式 AI

报告:生成式AI可以帮助自动创建文本、图表、图形等内容,并根据不同的示例调整此类报告,而无需手动将数据和分析整合到外部和内部报告中(例如,董事会材料、投资者报告、周报表)。会计和税务:会计和税务团队需要花时间咨询规则并了解如何应用它们。生成式AI可以帮助综合、总结,并就税法和潜在的扣除项提出可能的答案。采购和应付账款:生成式AI可以帮助自动生成和调整合同、采购订单和发票以及提醒。也就是说,需要注意的是,生成式AI在这里的输出当前仍有局限性,特别是在需要判断或精确答案的领域,这常常是财务团队所需的。生成式AI模型在计算方面持续改进,但目前尚不能完全依赖于其准确性,或者至少需要人工审查。随着模型的快速改进、额外的训练数据和与数学模块的整合能力,它的使用将展现新的可能性。–Seema Amble挑战在这五个趋势中,新进入者和现有参与者在将生成式AI的未来变为现实时面临两个主要的挑战。

金融服务业将比你想象得更快地接纳生成式 AI

除了能够帮助回答财务问题外,LLMs还可以帮助金融服务团队改进自己的内部流程,简化财务团队的日常工作流程。尽管金融的几乎每个其他方面都取得了进展,但现代财务团队的日常工作流程仍然依赖于像Excel、电子邮件和需要人工输入的商业智能工具这样的手动流程。由于缺乏数据科学资源,基本任务尚未被自动化,CFO及其直接报告人因此在繁琐的记录和报告任务上花费太多时间,而他们应该专注于[金字塔顶端](https://a16z.com/2020/04/15/new-cfo-tools/)的战略决策。总体而言,生成式AI可以帮助这些团队从更多的数据源中获取数据,并自动化突出趋势、生成预测和报告的过程。以下是一些例子:预测:生成式AI可以帮助编写Excel、SQL和BI工具中的公式和查询,从而实现分析的自动化。此外,这些工具可以帮助发现模式,并从更广泛、更复杂的数据集中为预测建议输入(例如,考虑宏观经济因素),并建议如何更容易地适应这些模型,以便为公司决策提供依据。

Others are asking
现在市面上的AI大模型
以下是关于市面上的 AI 大模型的相关知识: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑有神经网络和神经元的方法(因层数多而称为深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,不依赖于循环神经网络或卷积神经网络。
2025-02-20
学习ai步骤
以下是学习 AI 的步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 此外,借助 AI 学习编程的关键在于打通学习与反馈循环,比如从 Hello World 起点开始,验证环境、建立信心、理解基本概念,打通“理解→实践→问题解决→加深理解”的学习循环。使用流行语言和框架(如 React、Next.js、TailwindCSS),先运行再优化,小步迭代,一次解决一个小功能。借助 AI 生成代码后请求注释或解释,帮助理解代码。遇到问题三步走:复现、精确描述、回滚。AI 是强大的工具,但仍需人工主导,掌握每次可运行的小成果才能实现持续提升。
2025-02-20
学习ai步骤
以下是学习 AI 的步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库查看大家实践后的作品、文章分享,并进行自己实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 对于中学生学习 AI,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 此外,借助 AI 学习编程的关键在于打通学习与反馈循环,比如从 Hello World 起点开始,验证环境、建立信心、理解基本概念,打通“理解→实践→问题解决→加深理解”的学习循环。使用流行语言和框架(如 React、Next.js、TailwindCSS),先运行再优化,小步迭代,一次解决一个小功能。借助 AI 生成代码后请求注释或解释,帮助理解代码。遇到问题三步走:复现、精确描述、回滚。AI 是强大的工具,但仍需人工主导,掌握每次可运行的小成果才能实现持续提升。
2025-02-20
在日常工作中,AI可以做什么 ?
在日常工作中,AI 具有广泛的应用,主要包括以下方面: 1. 医疗保健: 医学影像分析,辅助诊断疾病。 加速药物研发,识别潜在药物候选物和设计新治疗方法。 提供个性化医疗方案。 控制手术机器人,提高手术精度和安全性。 2. 金融服务: 风控和反欺诈,降低金融机构风险。 评估借款人信用风险,辅助贷款决策。 分析市场数据,辅助投资决策。 提供 24/7 客户服务,回答常见问题。 3. 零售和电子商务: 分析客户数据,推荐可能感兴趣的产品。 改善搜索结果,提供个性化购物体验。 动态调整产品价格。 提供聊天机器人服务,解决客户问题。 4. 制造业: 预测机器故障,避免停机。 检测产品缺陷,提高产品质量。 优化供应链,提高效率和降低成本。 控制工业机器人,提高生产效率。 5. 交通运输: 智能推荐路线,预测交通拥堵。 此外,AI 还能在工作中帮助人们从单调重复的任务中解放出来,例如输入数据、填写文件等,让人们有更多时间从事专业训练相关的工作。同时,流媒体服务利用 AI 推荐节目和影片,导航软件利用 AI 规划最佳路线等,这些都是 AI 在日常生活中的应用实例。
2025-02-20
我是ai小白,该如何学习ai。并利用ai赚钱
以下是为 AI 小白提供的学习 AI 并利用其赚钱的建议: 一、学习 AI 1. 了解基本概念 阅读「」,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始学习之旅 参考「」中的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试 理论学习后进行实践,巩固知识。 尝试使用各种产品制作作品,并在知识库分享实践成果。 5. 体验 AI 产品 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 二、利用 AI 赚钱 目前利用 AI 赚钱的方式多样,例如: 1. 开发 AI 相关应用或服务,满足特定市场需求。 2. 利用 AI 提升工作效率,在现有工作中创造更多价值从而获得更高收入。 3. 为企业提供 AI 咨询和解决方案服务。 但要注意,成功利用 AI 赚钱需要深入的知识和技能积累,以及对市场需求的敏锐洞察。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其中作者分享了适合纯小白的学习模式,即输入→模仿→自发创造。同时,学习资源大多免费开源,可减轻学习成本。另外,《【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)》中也有关于 AI 技术原理和相关概念的详细介绍,有助于建立知识框架。
2025-02-20
AI 阅读
以下是为您整理的关于 AI 阅读的相关内容: 1. 1 月 19 日的 Xiaohu.AI 日报中提到: AWPortrait 1.3 人像模型更新,优化了棚拍质感、皮肤肌理,增强户外场景优化,提高对面部表情的识别。 Meta AI 的自奖励语言模型采用新型训练方法,自生成训练数据,在 AlpacaEval 2.0 排行榜上表现优异。 微软推出为学生设计的 AI 阅读教练工具,能创造 AI 生成故事,通过语音转文本 AI 分析阅读流利性。 Stefano Rivera 的 AI 交互式“MR 木偶秀”利用多种 AI 工具,包括 3D 渲染、场景构建、音乐和语音技术。 KREA AI 实时生图有新功能,提供文本到图像、背景去除和橡皮擦工具,可实时生成图像提高创作便捷性。 推荐开源知识库程序 Outline,其特点为美观、实时协作、功能丰富,支持 Markdown、即时搜索、与 Slack 集成等。 2. GPT1 到 Deepseek R1 所有公开论文《The 2025 AI Engineer Reading List》中提到:挑选了 50 篇涉及人工智能工程 10 个领域(LLMs、基准、提示、RAG、代理、CodeGen、视觉、语音、扩散、微调)的论文/模型/博客。如果从零开始,可以从此处入手。该系列中所有演讲者的精选文章为 2024 年做了总结,因开办论文俱乐部的文章,多次被要求为从零开始的人推荐阅读清单。这里为人工智能工程师策划了“必读书目”。
2025-02-20
一键生成报表
以下是关于一键生成报表的相关内容: Claude 官方提示词中有多种与生成相关的任务,如公司内情员从冗长报告中提炼关键信息并总结成备忘录,网站大师根据用户需求一键生成单页网站,Excel 公式大神根据用户描述创建 Excel 公式。 使用 Coze 做智能报表助手的实现过程:用户上传 Excel 后,通过工作流获取 Excel 连接,下载并读取数据。最初打算将解析的 Excel 数据以单元格形式存到 bot 数据库,后因大模型计算能力差改为将 Excel 转换为数据表,使用大模型将用户问题转换为 SQL,准确率高。Coze 不能动态创建表,所以自行写服务创建表并插入数据,存表名到 Coze 数据库,根据表名动态执行 SQL 拿到数据。再根据数据库表字段信息,使用大模型为用户生成 3 个推荐报表,限制数据 100 条。拿到 SQL 后执行查询,用大模型转换为绘制 Echarts 图表的参数,自行写插件绘制清晰度高的图表。 背景:市面上报表工具上手难,此智能报表助手上传 Excel 就会自动生成可能需要的报表,若不想要推荐的可自行输入需求生成。功能演示包括上传 Excel、解析数据生成报表、查看大图、删除图表、添加图表分析等。体验地址:https://www.coze.cn/s/i6VHgvVf/
2025-02-15
一、学习内容 1. AI工具的操作:了解并掌握至少一种AI工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 2. AI工具在本职工作的应用:思考并提出AI工具如何帮助你更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 3. AI工具在非本职工作的潜力推演:探索AI工具如何在你的非本职工作领域发挥作用,比如在公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面。提出这些工具如何被有效利用,以及它们可能带来的改
以下是关于学习 AI 的相关内容: 一、AI 工具的操作 要了解并掌握至少一种 AI 工具的基本操作,如智能代码、流程管理、智能报表、数据分析、图像识别、文字生成等。 二、AI 工具在本职工作的应用 思考并提出 AI 工具如何帮助更高效地完成本职工作,包括但不限于提高工作效率、优化工作流程、节约成本、提升交付质量等。 三、AI 工具在非本职工作的潜力推演 探索 AI 工具在非本职工作领域,如公司管理、团队领导、跨部门合作、团队发展以及市场研究等方面的作用,思考如何有效利用这些工具以及它们可能带来的改变。 四、学习路径 1. 对于不会代码的学习者: 20 分钟上手 Python+AI,在 AI 的帮助下可以完成很多基础的编程工作。若想深入,需体系化了解编程及 AI,至少熟悉 Python 基础,包括基本语法(如变量命名、缩进等)、数据类型(如字符串、整数、浮点数、列表、元组、字典等)、控制流(如条件语句、循环语句)、函数(定义和调用函数、参数和返回值、作用域和命名空间)、模块和包(导入模块、使用包)、面向对象编程(类和对象、属性和方法、继承和多态)、异常处理(理解异常、异常处理)、文件操作(文件读写、文件与路径操作)。 2. 新手学习 AI: 了解 AI 基本概念,建议阅读「」部分,熟悉术语和基础概念,浏览入门文章。 开始 AI 学习之旅,在「」中找到为初学者设计的课程,推荐李宏毅老师的课程,也可通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习并获证书。 选择感兴趣的模块深入学习,掌握提示词技巧。 实践和尝试,理论学习后通过实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 五、工具推荐 1. Kimi 智能助手:ChatGPT 的国产平替,上手体验好,适合新手入门学习和体验 AI。不用科学网、不用付费、支持实时联网,是国内最早支持 20 万字无损上下文的 AI,对长文理解做得好,能一次搜索几十个数据来源,无广告,能定向指定搜索源(如小红书、学术搜索)。 PC 端: 移动端(Android/ios): 2. 飞书:汇集各类 AI 优质知识库、AI 工具使用实践的效率工具,助力人人成为效率高手。
2025-02-07
推荐帮我制作财务报表的AI
以下是为您推荐的可用于制作财务报表的 AI 相关信息: 1. 生成式 AI 可以帮助金融服务团队改进内部流程,简化财务团队的日常工作流程。它能够从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。例如: 预测方面:帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化,发现模式,为预测建议输入并适应模型。 报告方面:自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析。 会计和税务方面:综合、总结并就税法和潜在扣除项提出可能答案。 采购和应付账款方面:自动生成和调整合同、采购订单和发票以及提醒。 2. 利用 AI 撰写专业区域经济报告时,可通过以下步骤: 信息收集:利用 AI 搜索与权威网站结合获取关键数据,AI 可辅助提取结构化表格数据或编写抓取程序。 内容拆分:针对报告需求将内容拆分,避免 AI 单次处理任务过长。 数据处理:借助传统工具如 Excel,结合 AI 指导高效操作数据筛选与图表生成。 分析与撰写:通过整理数据,利用 AI 辅助分析后撰写报告初稿,可指定风格并校验数据与结论准确性。但需注意,AI 仅作辅助,最终内容需人工主导校验,避免误导性结论。
2025-01-04
哪些AL能完成根据财务报表生成财务分析,
目前有多种 AI 工具和技术可以辅助完成根据财务报表生成财务分析的任务。一些常见的包括专门的财务分析软件,这些软件通常结合了机器学习和自然语言处理技术,能够对财务报表中的数据进行提取、分析和解读,并生成相应的报告和分析结果。此外,一些大型的企业资源规划(ERP)系统也可能具备一定的财务分析功能,利用其内置的算法和模型来处理财务数据。但具体选择哪种 AI 工具,还需要根据您的具体需求、预算和技术能力来决定。
2024-12-30
可以对数据进行分析,生成报表的AI工具或网站
以下是一些可以对数据进行分析并生成报表的 AI 工具或网站: 1. 在金融服务领域,生成式 AI 能够帮助金融服务团队从更多数据源获取数据,并自动化突出趋势、生成预测和报告的过程。例如,它可以帮助编写 Excel、SQL 和 BI 工具中的公式和查询以实现分析自动化,自动创建文本、图表、图形等报告内容,还能在会计和税务、采购和应付账款等方面提供帮助。 2. 对于撰写专业区域经济报告,可利用 AI 搜索与权威网站结合获取关键数据,将报告内容拆分处理,借助传统工具如 Excel 结合 AI 指导操作数据筛选与图表生成,利用 AI 辅助分析后撰写报告初稿,但最终内容需人工主导校验。 3. 一些具体的工具和网站包括: PandasAI:将 Pandas DataFrame 转换为“聊天机器人”,用户可以以自然语言提问,它会以自然语言、表格或图表形式回答,目前仅支持 GPT 模型,需自备 OpenAI API key。网址:https://github.com/gventuri/pandasai DataSquirrel:自动进行数据清理并可视化执行过程,帮助用户在无需公式、宏或代码的情况下快速将原始数据转化为可使用的分析/报告,平台符合 GDPR/PDPA 标准。网址:https://datasquirrel.ai/
2024-12-25
有没有关于使用coze制作在线客服的案例或教程
以下是关于使用 Coze 制作在线客服的案例和教程: 画小二:通过 Coze 定制开发插件案例,包括创建智能体、添加插件等,还可发布到微信成为专职客服技能,并有手把手的会员教程和 AIGC 商业案例实操课海报。 扣子案例合集:包含保姆级教程,如如何用扣子搭建一个免费好用的“图片转表格”AI 客服等。 Agent 相关比赛中的 Coze 相关教程:包括不同分享人的主题分享及流程安排,如大聪明、大圣、艾木、罗文、Itao 的分享,均有回放地址可供查看。
2025-02-21
如何制作数字分身
以下是一些制作数字分身的方法和相关信息: 可以在一些网站如 Elevenlabs.io、speechify.com、Heygen 等自助购买服务,以低成本制作自己的数字人分身。 当 Coze 接入飞书后,将自己的知识数据上传到 Coze,基于个人知识库开发 bot,并将其部署到个人订阅号上,这个 bot 可以作为数字分身与粉丝互动。 通过整合知识库,并结合提示词进行情感或行为上的描述,可以创建一个 bot,形成自己的数字分身。
2025-02-20
有Ai短视频制作相关的免费教程吗
以下是一些关于 AI 短视频制作的免费教程资源: B 站 up 主 Nally 的课程,免费且每节 15 分钟。 二十四节气相关教程和关键词已开源,可直接复制使用。 以下是一些 AI 视频制作相关的工具和教程: 视频模型:Sora (https://waytoagi.feishu.cn/wiki/S5zGwt5JHiezbgk5YGic0408nBc) 工具教程:Hedra (https://waytoagi.feishu.cn/wiki/PvBwwvN36iFob7kqZktcCzZFnxd) 应用教程:视频转绘 (https://waytoagi.feishu.cn/wiki/ZjKpwSd5hiy6ZhkiBVHcOBb6n9r) 应用教程:视频拆解 (https://waytoagi.feishu.cn/wiki/WeKMwHRTmiVpYjkVdYpcFjqun6b) 应用教程:图片精修 (https://waytoagi.feishu.cn/wiki/CfJLwknV1i8nyRkPaArcslWrnle) 以下是几个视频 AIGC 工具: Opusclip:利用长视频剪成短视频 Raskai:短视频素材直接翻译至多语种 invideoAI:输入想法>自动生成脚本和分镜描述>生成视频>人工二编>合成长视频 descript:屏幕/播客录制>PPT 方式做视频 veed.io:自动翻译自动字幕 clipchamp:微软的 AI 版剪映 typeframes:类似 invideoAI,内容呈现文本主体比重更多 google vids 在制作视频方面,以下是一些推荐: 最佳动画工具:用于在视频中为人脸制作动画的 DiD (https://www.did.com/)。用于从文本创建视频的 Runway v2 (https://app.runwayml.com/) 最佳语音克隆:ElevenLabs (https://beta.elevenlabs.io/speechsynthesis) 需要注意的是,深度伪造是一个巨大的问题,这些系统需要合乎道德地使用。
2025-02-19
有Ai短视频制作相关的免费教程吗
以下是一些关于 AI 短视频制作的免费教程资源: B 站 up 主 Nally 的课程,免费且每节 15 分钟。 二十四节气相关教程和关键词已开源,可直接复制使用。 以下是一些 AI 视频制作相关的工具和教程: 视频模型:Sora (https://waytoagi.feishu.cn/wiki/S5zGwt5JHiezbgk5YGic0408nBc) 工具教程:Hedra (https://waytoagi.feishu.cn/wiki/PvBwwvN36iFob7kqZktcCzZFnxd) 应用教程:视频转绘 (https://waytoagi.feishu.cn/wiki/ZjKpwSd5hiy6ZhkiBVHcOBb6n9r) 应用教程:视频拆解 (https://waytoagi.feishu.cn/wiki/WeKMwHRTmiVpYjkVdYpcFjqun6b) 应用教程:图片精修 (https://waytoagi.feishu.cn/wiki/CfJLwknV1i8nyRkPaArcslWrnle) 以下是几个视频 AIGC 工具: Opusclip:利用长视频剪成短视频 Raskai:短视频素材直接翻译至多语种 invideoAI:输入想法>自动生成脚本和分镜描述>生成视频>人工二编>合成长视频 descript:屏幕/播客录制>PPT 方式做视频 veed.io:自动翻译自动字幕 clipchamp:微软的 AI 版剪映 typeframes:类似 invideoAI,内容呈现文本主体比重更多 google vids 在制作视频方面,以下是一些推荐: 最佳动画工具:用于在视频中为人脸制作动画的 DiD (https://www.did.com/)。用于从文本创建视频的 Runway v2 (https://app.runwayml.com/) 最佳语音克隆:ElevenLabs (https://beta.elevenlabs.io/speechsynthesis) 需要注意的是,深度伪造是一个巨大的问题,这些系统需要合乎道德地使用。
2025-02-19
怎么制作科普视频
制作科普视频可以参考以下步骤和方法: 一、想出点子 1. 最佳免费选项: 2. 付费选项:4.0,但由于与互联网连接,必应可能更好 3. 尽管(或者事实上,由于)它所有的限制和怪异,人工智能是产生想法的完美选择。您通常需要有很多想法才能有好的想法,而人工智能擅长数量。有了正确的提示,您也可以强迫它非常有创意。在创意模式下让 Bing 查找您最喜欢的、不寻常的想法生成技术,如 Brian Eno 的倾斜策略或 Mashall McLuhan 的四种策略,并应用它们。或者要求一些奇怪的东西,比如受随机专利启发的想法,或者您最喜欢的超级英雄。 二、制作视频 1. 最佳动画工具:用于在视频中为人脸制作动画的 2. 最佳语音克隆: 3. 现在,生成一个完全由人工智能生成的角色的视频,阅读完全由人工智能编写的脚本,用人工智能制作的声音说话,由人工智能制作动画,这简直是微不足道的。但要注意深度伪造是一个巨大的问题,这些系统需要合乎道德地使用。 4. 最近还发布了第一个商用文本到视频工具 Runway v2。它创建了 4 秒的短剪辑,更像是对未来发展的展示,但如果您想了解这个领域的未来发展,值得一看。 三、创作科普内容 1. 该场景对应的关键词库(13 个):目标用户、科普内容、生活问题、医疗类型、科普文章、病情症状、通俗性、专业名词、背景资质、权威领域、执业范围、证言人、内容形式。 2. 提问模板(3 个): 第一步,分析不同目标用户对于科普内容的需求(具体解决生活中的什么问题) 第二步,针对某一类人群所偏好的科普内容主题,进行内容撰写。 第三步,根据平台和内容形式进行改写。 四、用 AI 把小说做成视频 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-02-18
动漫制作中如何使用ai辅助工作
在动漫制作中使用 AI 辅助工作,大致流程如下: 1. 面临时间和金钱的双重压力,需找到适合的制作捷径。AI 目前主要是辅助工具,负责搞定图和片,其他部分仍依赖人工。 2. 效率至关重要。和视频相关的所有内容、资料都记录在飞书文档里。 3. 分工方面,有人负责前期的内容构思和脚本编写,有人主要负责图片、视频生成和视频剪辑。 4. Midjourney 提示词围绕皮克斯、迪士尼、3D 风格来写,例如:"a small white Chiense dragon,anthropomorphic,Smile with surprise,wearing a school uniform,looking at a blurry gift box in the foreground,super closeup shot,camera focus on his face,3D render,Unreal Engine,Pixar 3D style,blurry classroom scene,bright sunshinear 16:9niji 6",重点是"a small white Chiense dragon,anthropomorphic,3D render,Unreal Engine,Pixar 3D style",尺寸比例 16:9,模型选择 niji 6,其他根据需求调整。 5. 动画制作主要使用 Runway,因其控制笔刷有优势。
2025-02-18
情绪分析
以下是关于情绪分析的相关信息: 中文数据集: RenCECPs:由 Fuji Ren 提供,标注的博客语料库,在文档级、段落级和句子级标注了 emotion 和 sentiment,包含 1500 个博客、11000 段落和 35000 句子。 weibo_senti_100k:带情感标注的新浪微博,正负向评论约各 5 万条。 BDCI2018 汽车行业用户观点主题及情感识别:汽车论坛中对汽车的评论,标注了汽车的多个主题及情感标签,情感分为中立、正向、负向 3 类。 微调(Finetuning)案例研究:假设想要了解特定推文的正面或负面程度,对模型进行微调后,可通过在 logprobs=2 完成请求上设置来取回第一个完成令牌的对数概率,正类别的概率越高,相对情绪就越高。 品牌舆论传播相关的关键词库包含情感分析,涉及舆论传播、数据分析、主题、事件等 25 个关键词。
2025-02-19
AI数据分析
以下是关于 AI 数据分析的相关内容: ChatGPT 助力数据分析: 本文重点介绍了 AI 与数据分析结合的应用,通过实际案例与相关技巧,描述了 ChatGPT 如何助力数据分析。 实现了两种方式支持多维数据分析: SQL 分析:分析平台自身使用情况,输入一句话可分析用户配置图表相关数据。用户描述想分析的内容,后台连接 DB,附带表结构信息让 AI 输出 SQL 语句,校验为 SELECT 类型后执行返回结果数据,再传给 GPT 分析,最后输出分析结论和建议并返回前端页面渲染图表。 个性化分析:平台支持上传数据,可提供数据信息辅助分析,前端解析文件后传给 GPT 分析,后续步骤与 SQL 分析一致。 分析完成后展示结果数据的图表和分析结论,图表支持折线图和柱状图可随意切换。 生成式 AI 季度数据报告 2024 月 1 3 月: 作者包括郎瀚威 Will、张蔚 WeitoAGI、江志桐 Clara 等。 报告涵盖总体流量概览、分类榜单、文字相关(个人生产力、营销、教育、社交)、创意相关(图像、视频)、音频大类、代码大类、Agent、B2B 垂类等方面。 涉及数据准备、分类标准图谱准备、赛道分析、竞争分析等内容。
2025-02-18
我的毕业论文是AIGC的陶寺遗址空间可视分析技术研究,请问有何思路
对于您的毕业论文主题“AIGC 的陶寺遗址空间可视分析技术研究”,以下是一些可能的思路供您参考: 首先,深入了解陶寺遗址的相关背景和特点,包括其历史、文化、地理等方面的信息,这将为后续的分析提供基础。 其次,研究 AIGC 技术在空间可视分析方面的应用现状和前沿成果,了解相关的算法、模型和工具。 然后,考虑如何收集和整理陶寺遗址的空间数据,例如通过实地测量、卫星图像、考古记录等方式获取数据,并对数据进行预处理和清洗。 接着,运用合适的 AIGC 技术和算法,对陶寺遗址的空间数据进行可视化呈现,例如创建三维模型、绘制地图、生成动态图像等,以直观展示遗址的空间特征和关系。 在可视化的基础上,进行深入的分析,例如探究遗址的布局规律、空间结构、功能分区等,挖掘潜在的历史和文化信息。 最后,对研究结果进行评估和验证,确保其准确性和可靠性,并提出进一步的改进和优化方向。 希望这些思路能对您有所帮助,祝您顺利完成毕业论文!
2025-02-18
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
分析化验单的AI
以下是关于分析化验单的 AI 和专利审查方面的 AI 的相关信息: 分析化验单的 AI: 目前没有直接针对分析化验单的具体内容,但在教育领域,AI 已展现出强大的能力。例如,借助大模型可以生成个性化学习和定制化作业,教师拥有 AI 就拥有了源源不断的真题库,学生也拥有了源源不断的错题练习库。 专利审查方面的 AI: 近年来,AI 在专利审查领域得到广泛应用,通过自动化和智能化手段,帮助专利审查员更高效地处理大量专利申请、检索相关文献、评估专利性和创新性等任务。以下是一些具体的应用和平台: 1. 专利检索与分类:AI 可通过自然语言处理和机器学习算法,自动识别和分类专利文献。示例平台如 Google Patents、IBM Watson for IP。 2. 专利分析和评估:AI 能够分析专利文本,评估专利的新颖性和创造性,预测专利的授权可能性。示例平台如 TurboPatent、PatentBot。 3. 自动化专利申请:AI 可以帮助自动生成专利申请文件,减少人工编写和审查时间。示例平台如 Specifio、PatentPal。 4. 专利图像和图表分析:AI 能分析专利申请中的图像和图表,帮助识别和分类技术内容。示例平台如 Aulive、AIpowered image recognition tools。 5. 专利趋势分析和预测:AI 可以分析大量专利数据,识别技术发展趋势和竞争情报,帮助企业和研究机构制定战略决策。示例平台如 Innography、PatSnap。 具体使用这些平台的步骤如下: 1. 注册和登录:在对应的平台上注册账户并登录。 2. 上传专利文献:上传待审查的专利文献或输入检索关键词。 3. 选择分析功能:根据需要选择专利检索、分析、评估或生成功能。 4. 查看结果和报告:查看 AI 生成的检索结果、分析报告和评估结果。 5. 进一步处理:根据分析结果进行进一步的人工审查和处理,或者直接生成专利申请文件。 需要注意的是,以上内容由 AI 大模型生成,请仔细甄别。
2025-02-17
能分析医学化验单的AI有哪些?
以下是一些能够分析医学化验单的 AI 工具: 1. Scite.ai:这是一个为研究人员、学者和行业专业人员打造的创新平台,提供引用声明搜索、自定义仪表板和参考检查等工具,能简化学术工作。 2. Scholarcy:一款科研神器,能从文档中提取结构化数据,并通过知识归纳引擎生成文章概要,包含关键概念、摘要、学术亮点、学术总结、比较分析、局限等板块的内容。 3. ChatGPT:强大的自然语言处理模型,可以提供有关医学课题的修改意见。您可以向它提供您的文章,并提出您的问题和需求,它将尽力为您提供帮助。 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-02-17