直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

NLP 是什么意思

回答

神经网络、反向传播和嵌入是自然语言处理(NLP)的基础概念,以下资源可帮助你理解这些概念以及机器学习和 AI 的基础知识:

  1. 课程
    • Stanford CS229:这是 Andrew Ng 的机器学习入门课程,内容涵盖了机器学习的基础知识。
    • Stanford CS224N:这是 Chris Manning 的深度学习自然语言处理(NLP)课程,通过第一代 LLM 介绍了 NLP 的基础知识。

这些课程提供了深度学习和 NLP 的基础理解,适合初学者和希望深入了解该领域的人。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

入门经典必读

[Stanford CS229](https://www.youtube.com/playlist?list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU):Andrew Ng的机器学习入门课程,覆盖了机器学习的基础知识。[Stanford CS224N](https://www.youtube.com/playlist?list=PLoROMvodv4rOSH4v6133s9LFPRHjEmbmJ):Chris Manning的深度学习自然语言处理(NLP)课程,通过第一代LLM介绍涵盖了NLP基础知识。

其他人在问
NLP是什么
自然语言处理(Natural Language Processing,NLP)是研究人与计算机之间使用自然语言进行有效通信的领域。它希望机器能具备像人一样的语言理解能力。 “自然语言”是人类发展过程中形成的信息交流方式,包括各种语种。“处理”包含对自然语言的形、音、义等信息进行理解、转化、生成等操作和加工,如对字、词、句、篇章的输入、输出、识别、分析、理解、生成等。 NLP 的用途广泛,如文字校对、信息检索、机器翻译、问答系统、聊天机器人、文章摘要、舆情监测、情绪分析等都涉及到相关技术。 其技术原理按照内容构成的层次,可分成 5 个层次: 1. 词法分析:找到词汇的各个词素,获取语言学信息。 2. 句法分析:分析句子和短语的结构,找出词、短语等的相互关系及在句中的作用。 3. 语义分析:确定词义、结构意义及其结合意义,明确语言所表达的真正含义或概念。 4. 篇章分析:分析篇章结构,识别不同部分之间的语义联系,结合内外部信息整体理解篇章。 5. 内容生成 在人工智能学科下,自然语言处理(NLP)包含了自然语言理解(NLU)和自然语言生成(NLG)。 1. NLP:涉及各种技术和方法,使计算机能够分析、理解和生成人类语言,实现人机交互的自然化。 2. NLU:专注于让计算机理解人类语言的含义,能够识别文本中的情感、意图和实体,并转化为结构化信息。 3. NLG:专注于让计算机生成人类可以理解的语言,将结构化数据转化为自然语言文本,能根据不同需求和场景生成不同风格和语气的文本。 在深度学习和自然语言处理(NLP)中,Embedding 是一种特征工程方法,用于将高维度的数据(如单词、短语、句子等)转换为低维度的向量,目的是降低数据的抽象和复杂性,帮助模型理解语义关系。例如在电影推荐系统和文本分类中都有应用。
2024-11-18
你是ai领域专家,我是新手小白,给我一些入门nlp的系统性建议
以下是给您的入门 NLP 的系统性建议: 自然语言处理(NLP)是人工智能领域的重要分支,其起源早于“人工智能”概念的诞生,艾伦·图灵在开创性论文《计算机器与智能》中提出的“图灵测试”是该领域被广泛认可的起点。这个概念涵盖了自然语言理解(NLU)和自然语言生成(NLG)两大核心领域。 对于新手入门 NLP,首先要理解 NLP 的基本概念和发展历程,了解其在人工智能中的重要地位。深入学习“图灵测试”的理念,体会让计算机与人类自然流畅对话的目标。 重点掌握 NLU,学会让机器准确理解人类语言的复杂性和微妙之处。同时关注 NLG,研究如何让机器生成流畅、自然、符合语境的人类语言。 通过实际案例和项目实践,加深对 NLP 核心领域的理解和应用能力。
2024-11-18
nlp入门建议
以下是关于 NLP 入门的建议: NLP(自然语言处理)是人工智能领域中重要的分支,其起源早于“人工智能”概念的诞生,艾伦·图灵在其开创性论文中提出的“图灵测试”是重要起点。 NLP 包含了自然语言理解(NLU)和自然语言生成(NLG): 1. NLP:涉及各种技术和方法,使计算机能够分析、理解和生成人类语言,目标是实现人机交互的自然化。 2. NLU:专注于让计算机理解人类语言的含义,能够识别文本中的情感、意图和实体,并转化为计算机可理解的结构化信息。 3. NLG:专注于让计算机生成人类可以理解的语言,将结构化数据转化为自然语言文本,能根据不同需求和场景生成不同风格和语气的文本。 如果想学习更多人工智能知识,欢迎持续关注相关内容。
2024-11-18
sft是什么意思
“SFT”可能有多种含义。在音乐领域,它可能指某种特定的音乐风格,如“Swift”指快速和敏捷的音乐风格,常用于表现快速和敏捷的情感,如 Taylor Swift 的《Shake It Off》;“Swirling”指旋转和流动的音乐风格;“Swooning”指陶醉和倾倒的音乐风格;“Syllabic”指音节和节奏的音乐风格;“Symbiotic”指共生和互助的音乐风格。 在语音处理方面,“SFT”可能指短时傅里叶变换(Shorttime Fourier Transform,STFT)。语音通常是短时平稳信号,在进行傅里叶变换前一般要进行分帧,取音频的小片段进行短时傅里叶变换。其结果是一个复数,包括幅度和相位信息。能量频谱是振幅频谱的平方,通过对频域信号进行逆傅里叶变换可恢复时域信号。离散傅里叶变换计算复杂度高,可采用快速傅里叶变换简化。在实际应用中,对语音信号分帧加窗处理,视为短时傅里叶变换。
2024-11-17
WAY TO AGI中AGI是什么意思?
AGI 指通用人工智能,也叫强人工智能。通常在其出现时会是奇点科技大爆炸的时刻,科技将推动文明呈指数级增长。虽然通往通用人工智能的道路可能还漫长,但它已如海风般逐渐临近。例如科幻作家刘慈欣所说“未来已来,像盛夏的大雨,在我们还不及撑开伞时就扑面而来”(很多人早就失业了)。
2024-11-15
AGI是什么意思?
AGI 即通用人工智能(Artificial General Intelligence),指能够像人类一样思考、学习和执行多种任务的人工智能系统。它可以做任何人类可以做的事。 Deepmind 的研究团队在去年十一月发表的论文《Levels of AGI》中,给 AGI 的定义提出了六个原则,其中最重要的一点是“关注能力,而非过程”,即应关注 AGI 能完成什么,而非它如何完成任务。AGI 的定义应包括多个级别,每个级别都有明确的度量标准和基准。 还有一个常见且较合理和可验证的定义:AGI 是一种自主系统,在大多数具有经济价值的工作中超越了人类的能力。例如 Sam Altman 常说的,用自动化来贡献 GDP。Andrej Karpathy 今年初在其博客上发表的《Selfdriving as a case study for AGI》(虽很快删除),全文用自动化的交通服务来类比 AGI 和它的经济价值。
2024-11-13
sd中的采样是什么意思
在 Stable Diffusion 中,采样(Sampling)指的是去噪过程。稳定扩散从随机高斯噪声起步,通过一步步降噪逐渐接近符合提示的图像。每一步都会产生一个新的样本图像,这种方法被称为采样器(Sampler)或采样(Sampling)。 不同的采样器具有不同的特点和效果,例如: Euler a 可以以较少的步数产生很大的多样性,不同的步数可能有不同的结果。 Euler 是最简单、最快的。 DDIM 收敛快,但效率相对较低,需要很多 step 才能获得好的结果,适合在重绘时候使用。 LMS 是 Euler 的衍生,使用一种相关但稍有不同的方法,大概 30 step 可以得到稳定结果。 PLMS 是 Euler 的衍生,可以更好地处理神经网络结构中的奇异性。 DPM2 旨在改进 DDIM,减少步骤以获得良好的结果,但速度较慢。 UniPC 效果较好且速度非常快,对平面、卡通的表现较好,推荐使用。 采样步数(Sampling Steps)也很重要,随着步数增多,可以得到对目标更小、更精确的图像,但增加步数会增加生成图像所需的时间,且增加步数的边际收益递减,一般开到 20 30 步。在实际应用中,如何选择采样器和设置采样步数可以按照模型作者的推荐进行。
2024-11-09
AGI是什么意思
AGI 指的是通用人工智能(Artificial General Intelligence),它是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。做任何人类可以做的事,涵盖了广泛的认知技能和能力,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等。在 2000 年代初,“通用人工智能”这一名词开始流行,以强调从“狭义 AI”到更广泛的智能概念的追求。但目前 AGI 还未取得巨大进展。
2024-11-02
boosting 模型是什么意思
Boosting 模型是一种集成学习方法,主要包括以下两种常见类型: 1. Bagging(Bootstrap Aggregating):通过多次有放回抽样生成多个数据集,训练多个相同类型的模型(如决策树、多项式等),对于回归任务将多个模型的预测结果取平均,对于分类任务通过多数投票来决定最终的分类结果,以减少机器学习模型的方差,提高泛化能力。其核心步骤包括从原始数据集中有放回地抽取多个子集,每个子集用于训练一个独立的模型,最后集成这些模型的结果。 2. AdaBoost(Adaptive Boosting):主要用于分类问题,也可用于回归问题。它通过组合多个弱学习器(通常是决策树桩)来构建一个强学习器,以提高模型的预测性能。弱学习器的准确率仅略高于随机猜测,例如在二分类问题中可能略高于 50%。在 AdaBoost 中,强学习器通常是具有高准确率、能很好泛化到新数据的复杂模型,如深度神经网络或支持向量机,能够捕捉数据中的复杂模式。 此外,在 Coze 上,GLM 模型和 MoonShot 模型因对结构化提示词的良好理解适合处理精确输入和输出任务,豆包系列模型在角色扮演和工具调用方面表现出色,将这三种模型结合在工作流或多 Agent 中可实现优势互补。
2024-10-21