Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

nlp入门建议

Answer

以下是关于 NLP 入门的建议:

NLP(自然语言处理)是人工智能领域中重要的分支,其起源早于“人工智能”概念的诞生,艾伦·图灵在其开创性论文中提出的“图灵测试”是重要起点。

NLP 包含了自然语言理解(NLU)和自然语言生成(NLG):

  1. NLP:涉及各种技术和方法,使计算机能够分析、理解和生成人类语言,目标是实现人机交互的自然化。
  2. NLU:专注于让计算机理解人类语言的含义,能够识别文本中的情感、意图和实体,并转化为计算机可理解的结构化信息。
  3. NLG:专注于让计算机生成人类可以理解的语言,将结构化数据转化为自然语言文本,能根据不同需求和场景生成不同风格和语气的文本。

如果想学习更多人工智能知识,欢迎持续关注相关内容。

Content generated by AI large model, please carefully verify (powered by aily)

References

几个故事告诉你 NLP、NLU、NLG 分别是什么

最后,我们来总结一下这些“小故事”,从图灵奠定自然语言处理的根基,到SHRDLU实现了理解、生成自然语言,大约过去了20年时间,在这短短20年里,科技突飞猛进的速度让我们瞠目结舌(虽然现在的你可能觉得当时的技术很原始)。虽然现在的自然语言处理已经被归到人工智能学科下,但我们仍能看清楚这三者之间的关系,即:自然语言处理(NLP)中包含了自然语言理解(NLU)和自然语言生成(NLG)。如下图所示:而这三者分别干的事情如下:1.NLP:它涉及各种技术和方法,使计算机能够分析、理解和生成人类语言,例如文本和语音。NLP的目标是让计算机像人类一样理解和使用语言,从而实现人机交互的自然化。2.NLU:专注于让计算机理解人类语言的含义。NLU系统试图理解句子和词语背后的含义,而不是仅仅处理单个词语。NLU能够识别文本中的情感、意图和实体,并将其转化为计算机可以理解的结构化信息。3.NLG:专注于让计算机生成人类可以理解的语言。NLG系统将结构化数据转化为自然语言文本,例如新闻报道、产品描述、聊天机器人回复等。NLG能够根据不同的需求和场景,生成不同风格和语气的文本。好了,讲了这么多,不知道今天有没有把这三个概念学会?如果想学习更多人工智能知识,欢迎关注我。谢谢。以上。

Basic Usage 基本用法

In Cursor’s AI input boxes,such as in Cmd K,Chat,or Terminal Cmd K,you can use @ symbols by typing @.A popup menu will appear with a list of suggestions,and it will automatically filter to only show the most relevant suggestions based on your input.在Cursor的AI输入框中,例如Cmd K、Chat或终端Cmd K,您可以通过键入@来使用@符号。将出现一个带有建议列表的弹出菜单,它将自动过滤以仅显示基于您输入的最相关建议。[heading3][heading3]Keyboard Shortcuts键盘快捷键[content]You can navigate through the list of suggestions using the up/down arrow keys.You can hit Enter to select a suggestion.If the suggestion is a category,such as Files,the suggestions will be filtered to only show the most relevant items within that category.您可以使用向上/向下箭头键浏览建议列表。您可以按Enter键选择建议。如果建议是一个类别,例如Files(文件),则建议将被筛选为仅显示该类别中最相关的项目。[heading3]

几个故事告诉你 NLP、NLU、NLG 分别是什么

自然语言处理(NLP)如今已经成为人工智能领域中不可或缺的重要分支。然而,令人惊讶的是,NLP的起源甚至早于"人工智能"概念的诞生(达特茅斯会议)。在这个领域中,最广为人知且被普遍认可的起点,要追溯到艾伦·图灵在其开创性论文《计算机器与智能》中提出的"图灵测试"。他提出的核心理念是:让计算机能够与人类进行如此自然、流畅的对话,以至于人类无法分辨对方是机器还是真人。这个看似简单的概念实际上涵盖了自然语言处理的两大核心领域:自然语言理解(NLU)和自然语言生成(NLG)。前者要求机器能够准确理解人类语言的复杂性和微妙之处,而后者则需要机器能够生成流畅、自然、符合语境的人类语言。

Others are asking
我想要学习nlp的知识,请告诉我该如何入门
以下是学习 NLP 入门的一些建议: 1. 理解基本概念: 明确自然语言处理(NLP)包含自然语言理解(NLU)和自然语言生成(NLG)。 了解 NLP 涉及各种技术和方法,目标是让计算机像人类一样理解和使用语言,实现人机交互自然化。 认识到 NLU 专注于让计算机理解人类语言含义,能够识别文本中的情感、意图和实体等,并转化为结构化信息。 知道 NLG 专注于让计算机生成人类可理解的语言,能根据需求和场景生成不同风格和语气的文本。 2. 学习相关课程: 可以学习如“和 Cursor AI 一起学 Python 编程”中关于 Python 基础语法与文本处理,以及利用 Python 进行自然语言处理的课程。 掌握 Python 的基本语法和结构,能够进行简单的文本数据处理。 3. 深入学习技术: 了解机器学习是人工智能的子领域,核心是让计算机通过数据学习提高性能。 明白深度学习是机器学习的子领域,尝试模拟人脑工作方式,创建人工神经网络处理数据。 认识到大语言模型是深度学习在自然语言处理领域的应用,像 ChatGPT、文心一言等,被训练来理解和生成人类语言。 希望以上建议对您学习 NLP 入门有所帮助。
2025-01-26
NLP是什么
自然语言处理(Natural Language Processing,NLP)是研究人与计算机之间使用自然语言进行有效通信的领域。它希望机器能具备像人一样的语言理解能力。 “自然语言”是人类发展过程中形成的信息交流方式,包括各种语种。“处理”包含对自然语言的形、音、义等信息进行理解、转化、生成等操作和加工,如对字、词、句、篇章的输入、输出、识别、分析、理解、生成等。 NLP 的用途广泛,如文字校对、信息检索、机器翻译、问答系统、聊天机器人、文章摘要、舆情监测、情绪分析等都涉及到相关技术。 其技术原理按照内容构成的层次,可分成 5 个层次: 1. 词法分析:找到词汇的各个词素,获取语言学信息。 2. 句法分析:分析句子和短语的结构,找出词、短语等的相互关系及在句中的作用。 3. 语义分析:确定词义、结构意义及其结合意义,明确语言所表达的真正含义或概念。 4. 篇章分析:分析篇章结构,识别不同部分之间的语义联系,结合内外部信息整体理解篇章。 5. 内容生成 在人工智能学科下,自然语言处理(NLP)包含了自然语言理解(NLU)和自然语言生成(NLG)。 1. NLP:涉及各种技术和方法,使计算机能够分析、理解和生成人类语言,实现人机交互的自然化。 2. NLU:专注于让计算机理解人类语言的含义,能够识别文本中的情感、意图和实体,并转化为结构化信息。 3. NLG:专注于让计算机生成人类可以理解的语言,将结构化数据转化为自然语言文本,能根据不同需求和场景生成不同风格和语气的文本。 在深度学习和自然语言处理(NLP)中,Embedding 是一种特征工程方法,用于将高维度的数据(如单词、短语、句子等)转换为低维度的向量,目的是降低数据的抽象和复杂性,帮助模型理解语义关系。例如在电影推荐系统和文本分类中都有应用。
2024-11-18
你是ai领域专家,我是新手小白,给我一些入门nlp的系统性建议
以下是给您的入门 NLP 的系统性建议: 自然语言处理(NLP)是人工智能领域的重要分支,其起源早于“人工智能”概念的诞生,艾伦·图灵在开创性论文《计算机器与智能》中提出的“图灵测试”是该领域被广泛认可的起点。这个概念涵盖了自然语言理解(NLU)和自然语言生成(NLG)两大核心领域。 对于新手入门 NLP,首先要理解 NLP 的基本概念和发展历程,了解其在人工智能中的重要地位。深入学习“图灵测试”的理念,体会让计算机与人类自然流畅对话的目标。 重点掌握 NLU,学会让机器准确理解人类语言的复杂性和微妙之处。同时关注 NLG,研究如何让机器生成流畅、自然、符合语境的人类语言。 通过实际案例和项目实践,加深对 NLP 核心领域的理解和应用能力。
2024-11-18
NLP 是什么意思
神经网络、反向传播和嵌入是自然语言处理(NLP)的基础概念,以下资源可帮助你理解这些概念以及机器学习和 AI 的基础知识: 1. 课程: :这是 Andrew Ng 的机器学习入门课程,内容涵盖了机器学习的基础知识。 :这是 Chris Manning 的深度学习自然语言处理(NLP)课程,通过第一代 LLM 介绍了 NLP 的基础知识。 这些课程提供了深度学习和 NLP 的基础理解,适合初学者和希望深入了解该领域的人。
2024-05-23
我是行政专员,零基础入门AI,如果帮忙自己提供工作效率和质量
对于行政专员零基础入门 AI 以提升工作效率和质量,以下是一些建议: 1. 了解 AI 的应用场景:AI 在很多领域都有显著的成果,如交通监控、银行账户欺诈检测、核融合控制、新药发现以及应对气候变化的技术等。它有潜力在您的工作中发挥作用,例如自动化一些重复性的任务。 2. 建立 AI 工作流:目前大多数人零碎地使用 AI 工具,未将其系统应用到工作场景中,导致整体效率提升不明显甚至下降。要避免像小明那样在挑选和切换工具上浪费时间,应建立一套完整、适合自己的 AI 工作方法论和流程。 3. 系统学习和实践:深入学习如何将 AI 工具与行政工作相结合,通过不断实践找到最适合自己工作的方法和工具。
2025-01-30
零基础怎么入门AI工具,行政专员一个
对于零基础的行政专员入门 AI 工具,以下是一些建议: 1. 明确学习目标:确定您希望通过 AI 工具解决哪些行政工作中的问题或提高哪些方面的效率。 2. 学习基础知识:了解 AI 的基本概念,例如机器学习、深度学习、自然语言处理等。可以通过在线课程、科普文章和视频来学习。 3. 选择适合的工具:根据行政工作的需求,选择一些易于上手的 AI 工具,如自动化文档处理工具、智能客服工具等。 4. 参加培训课程:报名参加专门针对零基础的 AI 入门培训课程,这些课程通常会有系统的教学和实践指导。 5. 实践操作:在实际工作中尝试使用所选的 AI 工具,积累经验。 6. 加入学习社区:参与 AI 学习的社区或论坛,与其他学习者交流经验,获取更多的学习资源和建议。 7. 持续学习和更新知识:AI 领域发展迅速,要保持学习的热情,不断跟进新的技术和工具。
2025-01-30
我是一个ai新手 我该如何开始入门
对于 AI 新手入门,建议您采取以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往 AGI 之路」的布鲁姆分类法,设计自己的学习路径。
2025-01-30
我应该怎么入门ai提示词,从哪个开始学习,有课程指路吗
以下是入门 AI 提示词的建议: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品,在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 国内大语言模型工具好用,学习可以从提示词开始。提示词的结构可以参考主体(什么东西)+动作(干啥了)+场景+镜头(怎么拍),例如“母亲很疲惫看着孩子”。 希望以上内容对您有所帮助。
2025-01-28
AI 入门
以下是关于 AI 入门的一些建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛(比如图像、音乐、视频等),根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 疯狂向 AI 提问: 每天问 Kimi 们 100 个问题,您可以参考公众号文章:。 7. 对于不会代码的朋友: 可以参考“写给不会代码的你:20 分钟上手 Python+AI”,在接下来的 20 分钟内,循序渐进地完成一个简单程序、一个爬虫应用(抓取公众号文章)、一个 AI 应用(为公众号文章生成概述)。
2025-01-26
如果我想让一个agent的回复的观点更鲜明,而非对一连串的侧面做分析,然后给出分散的建议, 如何做到?
要让一个智能体(agent)的回复观点更鲜明,而非分散地分析侧面和给出建议,您可以考虑以下几个方法: 1. 明确任务设定:在与智能体交互之前,清晰准确地定义任务目标和期望的回复形式,强调需要鲜明的观点表达。 2. 优化训练数据:确保用于训练智能体的数据集包含观点鲜明的示例,让智能体学习到这种表达模式。 3. 调整提示词:精心设计提示词,明确要求智能体给出直接、明确且鲜明的观点,避免模糊或宽泛的指令。 4. 引入奖励机制:在训练过程中,对观点鲜明的回复给予更高的奖励,激励智能体朝着这个方向优化。 5. 后处理和筛选:对智能体的初步回复进行后处理,筛选出观点鲜明的部分,或者对不够鲜明的部分进行修改和优化。
2025-01-26
openai中学生写作的建议
以下是 OpenAI 针对中学生写作的一些建议: 1. 写作过程分为五个阶段:前期调研、框架构建、论证深化、反馈改进和调整格式。 2. 包含 12 条具体建议,如快速了解主题、创建反向大纲、寻求反馈和规范引用等技巧。 3. 强调将 AI 作为思维的催化剂,而非替代品。 4. 获得更好结果的六种策略: 写清楚说明:包括在问题中包含细节以获取更相关的答案、要求模型采用一个角色、使用分隔符清晰地表示输入的不同部分、指定完成任务所需的步骤、提供示例、指定期望的输出长度。 提供参考文本:指示模型使用参考文本回答、指示模型使用参考文本中的引用来回答。 将复杂任务拆分成更简单的子任务。 给 GPT 时间「思考」。 使用外部工具。 系统地测试更改。
2025-01-10
小红书配图建议的 Agent
以下是为您提供的关于小红书配图建议的相关内容: 彬子在基于 ComfyUI 做油管封面的分享中提到,他是 ComfyUI 新人,之前更多使用 Coze 做 Agent,涉及绘图功能会调用 Coze 的图像流。Glif 提供的云端 ComfyUI 带来更多图像玩法,Coze 的工作流和 ComfyUI 的图像流代表了 Agent 内部两个子领域的领先水平,但大多数同学专注其一领域精进,好处是能做出落地的 Agent,短板是依赖平台或社区弥补。例如,熟悉 Coze 的同学开发助理类 Bot 便捷但出图自由度不高,熟悉 ComfyUI 的同学能完成高水平图像、视频流但流程中 Agent 含量不高。只要从擅长的阵地多迈出一步,就能更好把控在一个 Agent 中如何设计和运用各种节点。 彬子还在 2024 AI 年度小记中提到,其小红书主页为 ,发小红书除记录外希望找到更多探索的朋友,会有企业人员咨询或求助,但当时个人面向企业挣钱难,大企业决策链长,小企业信息化和文档沉淀不足。7 8 月小红书更新进入瓶颈,后参与 WaytoAGI 社区的 Coze 活动。 此外,还有教程“11_小暑”,作者为三思,可复制版本:https://mp.weixin.qq.com/s/mqT00X85iCR27KFiZazUoQ ,访问 ,并推荐特别适合做夏日的 lora—夏日白莲/咖菲猫咪,https://www.liblib.art/modelinfo/c7990c5616054e28825a44378637d71c?from=personal_page ,但这套效果不稳定,需更新调整关键词和参数。
2025-01-08
给人工智能伦理建设提出建议,在内容和体系方面都可以
以下是为人工智能伦理建设提出的一些建议: 在内容方面: 1. 关注算法的可解释性,使人工智能的决策过程能够被理解和解释。 2. 研究方法以评估、表征和减少数据集中及人工智能系统中的偏差。 3. 确保人工智能系统的安全性和鲁棒性,包括进行保证、验证、校验、安全和控制等方面的工作。 4. 重视隐私和安全,包括用于训练和推理人工智能系统的数据集,以及相关的软件和硬件。 5. 研究人工智能系统在科学发现和社会挑战方面的应用。 6. 考虑人工智能系统对社会、伦理、安全、教育、劳动力和安全等方面的影响,特别是对社会中不同群体,尤其是历史上被边缘化的群体的社会影响。 7. 进行定性和定量的未来能力、应用和影响的预测。 在体系方面: 1. 开展教育项目,支持在 K12、社区学院、本科、研究生、博士后、成人学习和再培训等阶段培养与人工智能系统相关的多样化劳动力。 2. 提高对人工智能系统的伦理、社会、安全和安全影响的认识。 3. 促进对人工智能原理和方法的广泛理解,以培养能够使用人工智能产品并适应其带来的社会和经济变化的劳动力和公众。 4. 针对不同的行业应用,如智能制造、智能家居、智慧城市、科学智算等,制定相应的标准,规范技术要求和应用场景。 5. 制定安全标准,规范人工智能全生命周期的安全要求,包括基础安全、数据、算法和模型安全、网络技术和系统安全、安全管理和服务、安全测试评估、安全标注、内容标识、产品和应用安全等。 6. 制定治理标准,规范人工智能的技术研发和运营服务等要求,包括人工智能的鲁棒性、可靠性、可追溯性的技术要求与评测方法,以及全生命周期的伦理治理要求,如伦理风险评估、公平性、可解释性等伦理治理技术要求与评测方法,还有伦理审查等标准。
2025-01-02
那如果想通过AI赚钱,有什么建议
以下是通过 AI 赚钱的一些建议: 1. 学习 AI 技术,从事相关高薪工作,如成为数据科学家、机器学习工程师等,在金融、医疗、制造业等行业应用 AI 技能,增加就业机会和职业发展可能性。 2. 利用 AI 工具进行创作,例如使用以下工具: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 等。 图片处理:DallE、Leonardo、BlueWillow、Midjourney 等。 版权写作:Rytr、Copy AI、Wordtune、Writesonic 等。 设计:Canva、Clipdrop、Designify、Microsoft Designer 等。 网站搭建:10Web、Framer、Hostinger、Landingsite 等。 视频处理:Klap、Opus、Invideo、Heygen 等。 音频处理:Murf、LovoAI、Resemble、Eleven Labs 等。 SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope 等。 Logo 设计:Looka、LogoAI、Brandmark、Logomaster 等。 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 等。 自动化工具:Make、Zapier、Bardeen、Postman 等。 3. 进行 Agent 应用开发,熟悉业务,结合 AI 能力打磨产品,形成自己的护城河。 4. 通过 Key 商、写书、卖课、接项目、做镜像站等方式赚钱。 需要注意的是,是否能通过 AI 赚钱取决于很多因素,比如个人的学习能力、实际应用能力、对市场和商业的理解等等。仅仅学会一些基础知识可能还不足以在竞争激烈的市场中脱颖而出,需要持续学习和实践。
2024-12-21
我的英文水平是CET4,想要在一年内达到雅思7分。请以一位专业的英文老师角度给与建议。请将建议以简洁的表达以及每日计划的形式体现出来
对于您想要在一年内从 CET4 水平提升到雅思 7 分的目标,以下是一些简洁的建议和每日计划: 建议: 1. 扩充词汇量:雅思对词汇的要求较高,建议每天背诵一定量的雅思核心词汇。 2. 提升听力水平:多听雅思真题听力,尝试精听和泛听结合。 3. 加强阅读训练:每天进行雅思阅读练习,提高阅读速度和理解能力。 4. 注重写作练习:定期写作并请专业老师批改,学习优秀范文的结构和思路。 5. 口语练习:找语伴或参加英语角,多说多练,纠正发音和语法错误。 每日计划: 早上: 背诵 30 个雅思词汇。 听 30 分钟雅思听力真题,并做笔记。 中午: 利用午休时间阅读一篇雅思阅读文章。 晚上: 写一篇雅思作文,并对照范文进行修改。 进行 30 分钟的口语练习,可以通过模仿、对话等方式。 周末: 做一套完整的雅思模拟试题,包括听力、阅读、写作和口语。 总结本周的学习情况,找出薄弱环节,加强练习。 需要注意的是,学习计划要根据个人实际情况进行调整,保持坚持和耐心,祝您成功!
2024-12-17