Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何自动编写测试用例

Answer

AI 自动编写测试用例可以通过以下几种方式实现:

  1. 基于规则的测试生成:
    • 测试用例生成工具:
      • Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。
      • Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。
    • 模式识别:
      • Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。
      • Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。
  2. 基于机器学习的测试生成:
    • 深度学习模型:
      • DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。
      • DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。
    • 强化学习:
      • RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。
      • A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。
  3. 基于自然语言处理(NLP)的测试生成:
    • 文档驱动测试生成:
      • Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。
      • Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。
    • 自动化测试脚本生成:
      • Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。
      • Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。
  4. 基于模型的测试生成:
    • 状态模型:
      • GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。
      • Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。
    • 场景模拟:
      • Model-based Testing (MBT):基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。
      • Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。

实践中的应用示例:

  1. Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。
  2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。
  3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。

总结:AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。

请注意,以上内容由 AI 大模型生成,请仔细甄别。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:AI 做测试用例

AI生成测试用例是一项非常有价值的功能,可以显著提高测试覆盖率、减少人工编写测试用例的时间和成本。以下是一些具体方法和工具,展示AI如何生成测试用例:[heading3]1.基于规则的测试生成[heading4]a.测试用例生成工具[content]Randoop:基于代码路径和规则生成测试用例,适用于Java应用程序。Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET应用。[heading4]b.模式识别[content]Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。Infer:Facebook开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。[heading3]2.基于机器学习的测试生成[heading4]a.深度学习模型[content]DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。[heading4]b.强化学习[content]RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。[heading3]3.基于自然语言处理(NLP)的测试生成[heading4]a.文档驱动测试生成[content]Testim:AI驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。Test.ai:利用NLP技术从需求文档中提取测试用例,确保测试覆盖业务需求。[heading4]b.自动化测试脚本生成[content]Selenium IDE+NLP:结合NLP技术扩展Selenium IDE,从自然语言描述中生成自动化测试脚本。Cucumber:使用Gherkin语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。

问:AI 做测试用例

GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。[heading4]b.场景模拟[content]Model-based Testing(MBT):基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。[heading3]5.实践中的应用示例[content]1.Web应用测试:使用**Testim**分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。2.移动应用测试:利用**Test.ai**从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。3.复杂系统测试:采用**GraphWalker**基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。[heading3]工具和平台[content]Testim:AI驱动的自动化测试平台,生成和管理测试用例。Test.ai:基于NLP技术的测试用例生成工具,适用于移动应用和Web应用。DeepTest:利用深度学习生成自动驾驶系统测试用例。GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。

问:AI 做测试用例

AI在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用AI工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。内容由AI大模型生成,请仔细甄别

Others are asking
基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。这个应该怎样使用呢
很抱歉,目前没有关于 Randoop 工具使用方法的相关内容。您可以通过以下途径获取更详细的信息: 1. 官方文档:访问 Randoop 的官方网站,查找其提供的详细使用说明和教程。 2. 技术论坛:在相关的技术论坛上搜索关于 Randoop 使用的讨论和经验分享。 3. 开源社区:参与开源社区中关于 Randoop 的交流,向其他开发者请教。
2025-04-08
如何使用AI创建测试用例
AI 生成测试用例可以通过以下多种方法实现: 1. 基于规则的测试生成: 测试用例生成工具:如 Randoop(适用于 Java 应用程序)、Pex(适用于.NET 应用)。 模式识别:如 Clang Static Analyzer 利用静态分析技术识别代码模式和潜在缺陷生成相应测试用例,Infer 自动生成测试用例帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型:如 DeepTest 生成自动驾驶系统的测试用例,DiffTest 基于对抗生成网络(GAN)生成测试用例。 强化学习:如 RLTest 通过与环境交互学习最优测试策略,A3C 通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:如 Testim 通过分析文档和用户故事自动生成测试用例,Test.ai 从需求文档中提取测试用例。 自动化测试脚本生成:如 Selenium IDE 结合 NLP 技术扩展从自然语言描述中生成自动化测试脚本,Cucumber 使用 Gherkin 语言编写的行为驱动开发(BDD)框架通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型:如 GraphWalker 基于状态模型生成测试用例,Spec Explorer 微软开发的模型驱动测试工具通过探索状态模型生成测试用例。 场景模拟:如 Modelbased Testing 基于系统模型自动生成测试用例覆盖各种可能的操作场景和状态转换,Tosca Testsuite 基于模型的测试工具自动生成和执行测试用例适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据自动生成高覆盖率的测试用例检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例确保覆盖关键功能和用户路径提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例确保覆盖所有可能的状态和操作场景检测系统的边界情况和异常处理能力。 此外,让 AI 写出您想要的代码,可以通过创建优质的.cursorrules 来实现,具体包括: 1. 先说清楚您是谁,让 AI 按照专家的水准来思考和编码。 2. 告诉 AI 您要干什么,使其围绕目标写代码。 3. 定好项目的“规矩”,强调团队的代码规范。 4. 明确文件放置位置,便于后期查找。 5. 指定使用的“工具”,保证项目的整洁和统一。 6. 告诉 AI 怎么做测试,使其生成的代码考虑可测试性并主动写测试用例。 7. 推荐参考资料,让 AI 基于最佳实践写代码。 8. 若项目涉及页面开发,补充 UI 的要求。
2025-03-22
利用 AI,基于需求文档生成 测试用例
以下是关于利用 AI 基于需求文档生成测试用例的相关内容: 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 相关工具和平台: Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。 此外,在编程中,用户故事也很重要。其目的在于确保开发团队能够理解用户需求,并从用户角度设计和开发功能。常规模板为:“作为。”在卡密系统中,写用户故事有三点作用:让执行者了解想要做什么样的应用,从而更准确地搭建代码框架;中途作为关键的上下文信息,确保方向不偏移;可以让 Cursor 依据用户故事生成对应的测试用例,保持功能的完整和准确。可以在 Cursor 里生成 MVP 的用户故事(用其他 AI 功能生成也可以),如点击 Cursor 后,选择提前创建的一个文件夹,创建需求文档,输入简短的需求描述,让 AI 帮助生成用户故事,然后按照实际情况接受并修改。
2025-03-05
利用 AI 生成 测试用例 的内容
AI 生成测试用例具有诸多优势,以下为您详细介绍: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 总结:AI 在生成测试用例方面能够自动化和智能化地生成高覆盖率的测试用例,减少人工编写的时间和成本。合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-05
利用 AI 生成测试用例,提示词如何编写
以下是关于利用 AI 生成测试用例时编写提示词的一些方法和要点: 1. 明确任务:清晰地定义生成测试用例的任务,例如明确测试的对象、范围和目标。 2. 提供上下文:若任务需要特定知识背景,在提示词中提供充足信息。 3. 语言清晰:使用简单、明确的语言,避免模糊或有歧义的词汇。 4. 给出具体要求:如对测试用例的格式、覆盖范围等有特定要求,应在提示词中指明。 5. 使用示例:提供期望的测试用例示例,帮助 AI 理解需求。 6. 保持简洁:提示词简洁明了,避免过多复杂信息导致 AI 困惑。 7. 运用关键词和标签:有助于 AI 更好理解任务主题和类型。 8. 测试和调整:生成结果后仔细检查,根据情况多次迭代调整提示词,直至满意。 例如,在生成符合要求的单词卡内容并填入 Excel 文件的测试用例时,首先给出基本示例作为核心依托,然后根据不同生成内容限定规则,包括对自然语言描述附加更多限制,以确保按要求输出 Excel 文档。在批量产出时,注意上传压缩文件并完成套版等操作。 另外,在 GPTs 实战中制作迷宫卡片时,也涉及到分步实现需求,如 GPT 生成主题相关绘图提示词、Dalle3 根据生成图片绘制底图、Python 随机绘制迷宫等步骤,其中都需要精心编写提示词,并根据效果进行调整和优化。
2025-03-05
测试用例自动化生成
AI 生成测试用例是一项很有价值的功能,能显著提高测试覆盖率、降低人工编写的时间和成本。以下是具体的方法、工具及实践应用示例: 方法: 1. 基于规则的测试生成: 测试用例生成工具:如 Randoop(适用于 Java 应用程序)、Pex(适用于.NET 应用)。 模式识别:如 Clang Static Analyzer、Infer。 2. 基于机器学习的测试生成: 深度学习模型:如 DeepTest(用于自动驾驶系统)、DiffTest。 强化学习:如 RLTest、A3C。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:如 Testim、Test.ai。 自动化测试脚本生成:如 Selenium IDE + NLP、Cucumber。 4. 基于模型的测试生成: 状态模型:如 GraphWalker、Spec Explorer。 场景模拟:如 Modelbased Testing 、Tosca Testsuite。 工具和平台:Testim、Test.ai、DeepTest、GraphWalker、Pex 等。 实践中的应用示例: 1. Web 应用测试:使用 Testim 分析用户行为和日志数据,生成高覆盖率的测试用例,检测兼容性问题。 2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径。 3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,检测边界情况和异常处理能力。 总结来说,AI 在生成测试用例方面优势显著,合理应用 AI 工具能让前端开发工程师提高测试效率、增强测试覆盖率、发现潜在问题,提升软件质量和用户体验。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-03-03
作为一个想要使用AI工具提升工作效率的AI小白,我已经学习了怎么编写prompt,接下来我应该学习什么
如果您已经学习了如何编写 prompt ,接下来可以学习以下内容: 1. 理解 Token 限制:形成“当前消耗了多少 Token”的自然体感,把握有效记忆长度,避免在超过限制时得到失忆的回答。同时,编写 Prompt 时要珍惜 Token ,秉承奥卡姆剃刀原理,精简表达,尤其是在连续多轮对话中。 熟练使用中英文切换,若 Prompt 太长可用英文设定并要求中文输出,节省 Token 用于更多对话。 了解自带方法论的英文短语或句子,如“Chain of thought”。 2. 学习精准控制生成式人工智能:重点学习提示词技术,编写更清晰、精确的指令,引导 AI 工具产生所需结果。 探索构建智能体(AI Agents),将工作单元切割开,赋予其特定角色和任务,协同工作提高效率。 在实际应用中遵循准则,如彻底变“懒人”、能动嘴不动手、能让 AI 做的就不自己动手、构建自己的智能体、根据结果反馈调整智能体、定期审视工作流程看哪些部分可用更多 AI 。 3. 若想进一步提升: 学习搭建专业知识库、构建系统知识体系,用于驱动工作和个人爱好创作。 注重个人能力提升,尤其是学习能力和创造能力。 您还可以结合自身生活或工作场景,想一个能简单自动化的场景,如自动给班级孩子起昵称、排版运营文案、安排减脂餐、列学习计划、设计调研问卷等。选一个好上手的提示词框架开启第一次有效编写,比如从基础的“情境:”开始。
2025-04-15
自动规划的prompt如何设计编写
自动规划的 prompt 设计编写可以参考以下要点: 对于简单任务场景: 设定人物:描述 Bot 所扮演的角色或职责、回复风格。 描述功能和工作流程:明确 Bot 的功能和工作流程,约定在不同场景下的回答方式,可通过自然语言强调调用工具以提升约束力,也可为 Bot 提供回复格式示例。 指示 Bot 在指定范围内回答:明确告知回答与不回答的内容。 对于复杂任务场景:推荐使用结构化格式编写提示,使用 Markdown 语法,增强可读性和对 Bot 的约束力。扣子支持将 Bot 的提示自动优化成结构化内容,您可直接使用或修改。 此外,PromptAgent 是一种将提示词优化视为策略性规划问题的方法,采用基于蒙特卡洛树搜索的规划算法,策略性地导航专家级提示词空间。它通过反思模型错误并生成建设性反馈,诱导出精确的专家级见解和深入指令,能高效制定专家级、详细且富有领域洞察力的提示词。 同时,当您理解 chatGPT 如何理解人类语言和文明后,有助于解决 prompt 编写中遇到的问题。比如,找到真正的需求来开始第一个 prompt 编写,这需要一定的洞察能力,可采用“如果某事重复做了三遍,就要思考如何将它自动化”的方法论。例如,若多次在群里发同样的自我介绍,可编写自动优化排版的 Prompt。
2025-04-08
投标书编写的免费AI工具
以下是一些与投标书编写相关的免费 AI 工具: 1. AutogenAI:伦敦初创公司开发的基于生成型人工智能的工具,可帮助企业撰写更强的提案,提高中标率。自成立不到一年已获 28 个客户,能将撰写强大提案的过程加快 800%,同时降低 10%的采购成本。网址:https://autogenai.com 。 此外,还有一些用于 AIGC 相关检测的网站: 1. :提供免费的 AI 内容检测工具,可识别文本是否由 AI 生成。使用方法为将文本粘贴到在线工具中点击检测按钮获取分析结果。 2. GPTZero:专门用于检测由 GPT3 生成内容的工具,适用于教育和出版行业。使用时上传文档或输入文本,系统会分析并提供报告显示是否由 GPT3 生成。 3. Content at Scale:提供 AI 内容检测功能,帮助识别文本是否由 AI 生成。使用时将文本粘贴到在线检测工具中获取分析结果。
2025-04-08
帮我编写一个suno创作提示词模板
以下是为您编写的 Suno 创作提示词模板的相关内容: 在“离谱村”的案例中,首先收到台词素材和配音,确定“童趣”“欢乐”的风格,将相关描述投喂给 GPT4 生成音乐脚本,再输入给 SunoBeats 生成提示词。但初始提示词过长,后参考论坛网友分享的格式,通过调式变化和情节描述,使用和弦进展推动故事情节发展,这种格式的提示词质量和利用率更好。 在“博物馆文物玩法”的案例中,创作思路是给文物上色,参考攻略玩过变形,利用泼洒颜料玩法为雕像上色并使过程有趣。选择首尾帧模式,尾帧基于文物原图重绘为偏写实形象,通过可灵实现人物漂浮效果。涉及工具包括即梦、可灵、Runway、Suno、剪映,各有其优势。步骤为使用即梦图片生成功能上传图片,选择边缘轮廓或人物姿势,不添加景深,提升精细度并选择竖版切割。使用 GPTs 写 Runway 提示词。 希望以上内容对您有所帮助!
2025-03-27
编写炒股公式最好的AI
目前在编写炒股公式方面,没有特定被认定为“最好”的 AI 。编写炒股公式需要综合考虑多种因素,包括数据准确性、算法有效性、市场动态适应性等。不同的 AI 工具和技术在不同的应用场景中可能会表现出不同的效果。
2025-03-14
有哪些是可以帮助编写并生成WORD文档的工具
以下是一些可以帮助编写并生成 WORD 文档的工具: 1. 生成 Word 的插件“create_document”,它要求输入参数为 Markdown 格式。因为 Markdown 格式标记了层级,所以生成的 Word 能够保留小标题的层级,便于在导航窗格中从大纲快速跳转,并且能够插入自动目录。而普通文本格式输入的变量,小标题没有层级,无法生成大纲目录,甚至换行也存在问题。 2. 作为资深研究者和教授,利用 GPT4 按照特定步骤进行操作,包括请求数据集和研究领域、制定研究假设、进行文献综述、假设检验、撰写论文等,最终能够以 Word 文档的形式提交。 希望这些信息对您有所帮助。
2025-03-10
怎么自动获取热点批量生产创意方案
以下是自动获取热点批量生产创意方案的步骤: 1. 借助即梦刚上线的 3.0 生图模型以及 Deepseek 生创意和文案,来复刻“杜蕾斯级别”的刷屏海报,并将创意方法论复用到自身品牌上,打造出圈海报。 2. 利用 Deepseek 归纳“杜蕾斯出圈海报的特点”。打开 Deepseek 联网搜索,向其提问“杜蕾斯出圈海报有什么创意规律?”“它的视觉风格有何共性?”这种方式能快速建立对爆款的感知模型。但不仅要总结,还要将总结转化成提示词,让 AI 依照执行,只有这样才能批量复刻出杜蕾斯级的创意质感。 3. 掌握杜蕾斯的创意底层逻辑后,将其写进提示词里。提示词是和 AI 沟通的语言,也是创意的“发动机”,然后通过提示词批量生成热点创意。
2025-04-16
解释自动驾驶事故的责任划分原则
自动驾驶事故的责任划分原则较为复杂,目前仍在不断探讨和完善中。 一方面,对于自动驾驶汽车造成的事故,责任的划分可能会考虑多个因素。例如,车辆的技术故障、软件算法的缺陷、数据的准确性等。如果车辆因自身的技术问题或设计缺陷而导致事故,制造商或相关技术提供商可能需要承担一定的责任。 另一方面,监管机构在责任划分中也起着重要作用。他们需要确定如何评估和追踪事故,以及如何根据具体情况分配责任。在某些情况下,如果自动驾驶系统的可解释性不足,导致无法清晰了解事故发生时系统的决策过程,这可能会给责任划分带来困难。 此外,像 Waymo 这样的公司与瑞士再保险合作进行的研究表明,自动驾驶车辆在某些方面的事故发生率可能低于人类驾驶,但这并不意味着在所有情况下责任都能清晰界定。 总之,自动驾驶事故的责任划分需要综合考虑技术、法律、监管等多方面的因素,目前仍在不断发展和改进中。
2025-04-15
自动总结视频内容
以下是关于自动总结视频内容的相关信息: 对于有字幕的 B 站视频,若视频栏下有字幕按钮,说明已上传字幕或后台适配了 AI 字幕。可安装油猴脚本,安装后刷新浏览器,点击字幕会出现“下载”按钮,选择多种字幕格式,将下载的字文字内容全选复制发送给 GPTs 即可进行总结。总结完还可继续向 AI 提问更多细节内容或探讨。 Gemini 能理解 YouTube 视频内容,直接输入链接可自动总结视频重点,不只依赖字幕,还能分析画面。 Dia 浏览器在交互方面有亮点,划词后右侧能直接提供查找或解释功能,可让其生成总结视频的字幕,但生成 Word 或 PDF 文档可能没有后续反馈,还能通过特定操作在浏览器内实现快速“分屏”,但实用性有限。
2025-04-15
如何自动生成文案
以下是几种自动生成文案的方法: 1. 基于其它博主开源的视频生成工作流进行优化: 功能:通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具:Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径:通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。 2. 生成有趣的《图文短句》: 实现原理: 先看工作流:包括第一个大模型生成标题、通过“代码节点”从多个标题中获取其中一个(可略过)、通过选出的标题生成简介、通过简介生成和标题生成文案、将文案进行归纳总结、将归纳总结后的文案描述传递给图像流。 再看图像流:包括提示词优化、典型的文生图。 最终的 Bot 制作以及预览和调试。 3. 腾讯运营使用 ChatGPT 生成文案: 步骤:通过 ChatGPT 生成文案,将这些文案复制到支持 AI 文字转视频的工具内,从而实现短视频的自动生成。市面上一些手机剪辑软件也支持文字转视频,系统匹配的素材不符合要求时可以手动替换。例如腾讯智影的数字人播报功能、手机版剪映的图文成片功能。这类 AI 视频制作工具让普罗大众生产视频变得更轻松上手。
2025-04-15
需要做一个自动化出视频的工作流
以下是一个关于自动化出视频工作流的详细介绍: 优势: 全自动化处理,解放双手。 40 秒快速出片,效率提升。 成本低廉,每条仅需 0.0x 元。 输出质量稳定专业。 DeepseekR1 保证文案质量。 还能改进,例如可以加入配套 BGM,让视频更有感染力;增加更丰富的画面内容和转场效果;使用免费节点替代付费插件,进一步降低成本;优化模板样式,支持更多展示形式;增加自动化程度,支持批量处理。 工作流程: 1. 可以在扣子商店体验,建议自己搭建。 2. 工作流调试完成后,加入到智能体中,可以选择工作流绑定卡片数据,智能体则通过卡片回复。 3. 选择发布渠道,重点如飞书多维表格,填写上架信息(为了快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 4. 创建飞书多维表格,添加相关字段,配置选择“自动更新”,输入相关字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 5. 表单分享,实现“填写表单,自动创建文案短视频”的效果。 6. 全自动视频合成使用多视频融合插件,一键导出成品。但需注意节点产生的视频是异步生成,可能无法马上展现,需耐心等待几秒。 如果您还有其他疑问或需要进一步的帮助,请随时联系。
2025-04-14
运用ai,生成每日自动推送到飞书消息的 公司文化日报,包含日历 天气 新闻 内部规划 事项
要运用 AI 生成每日自动推送到飞书消息的公司文化日报,包含日历、天气、新闻、内部规划和事项,您可以考虑以下步骤: 首先,需要确定获取日历、天气、新闻、内部规划和事项等信息的数据源。对于日历,可以使用在线日历服务的 API 来获取相关数据;天气信息可以从专业的气象数据提供商获取;新闻可以通过新闻聚合 API 或者与特定的新闻机构合作获取;内部规划和事项则需要从公司内部的管理系统或数据库中提取。 然后,选择适合的 AI 技术和工具。例如,可以使用自然语言处理技术来对获取到的数据进行处理和整合,生成易于阅读和理解的文本内容。 在生成日报的过程中,要注意格式的规范和统一,使其具有良好的可读性。同时,可以根据公司的文化特点和需求,对内容进行个性化的定制和优化。 另外,为了确保推送的准确性和及时性,需要建立有效的监控和反馈机制,及时发现并解决可能出现的问题。 希望以上建议对您有所帮助。
2025-04-14