Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

利用 AI,基于需求文档生成 测试用例

Answer

以下是关于利用 AI 基于需求文档生成测试用例的相关内容:

基于规则的测试生成:

  • 测试用例生成工具:
    • Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。
    • Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。
  • 模式识别:
    • Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。
    • Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。

基于机器学习的测试生成:

  • 深度学习模型:
    • DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。
    • DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。
  • 强化学习:
    • RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。
    • A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。

基于自然语言处理(NLP)的测试生成:

  • 文档驱动测试生成:
    • Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。
    • Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。
  • 自动化测试脚本生成:
    • Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。
    • Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。

基于模型的测试生成:

  • 状态模型:
    • GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。
    • Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。
  • 场景模拟:
    • Model-based Testing(MBT):基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。
    • Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。

实践中的应用示例:

  • Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。
  • 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。
  • 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。

相关工具和平台:

  • Testim:AI 驱动的自动化测试平台,生成和管理测试用例。
  • Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。
  • DeepTest:利用深度学习生成自动驾驶系统测试用例。
  • GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。
  • Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。

此外,在编程中,用户故事也很重要。其目的在于确保开发团队能够理解用户需求,并从用户角度设计和开发功能。常规模板为:“作为[角色],我希望[活动],以便[理由]。”在卡密系统中,写用户故事有三点作用:让执行者了解想要做什么样的应用,从而更准确地搭建代码框架;中途作为关键的上下文信息,确保方向不偏移;可以让 Cursor 依据用户故事生成对应的测试用例,保持功能的完整和准确。可以在 Cursor 里生成 MVP 的用户故事(用其他 AI 功能生成也可以),如点击 Cursor 后,选择提前创建的一个文件夹,创建需求文档,输入简短的需求描述,让 AI 帮助生成用户故事,然后按照实际情况接受并修改。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:AI 做测试用例

AI生成测试用例是一项非常有价值的功能,可以显著提高测试覆盖率、减少人工编写测试用例的时间和成本。以下是一些具体方法和工具,展示AI如何生成测试用例:[heading3]1.基于规则的测试生成[heading4]a.测试用例生成工具[content]Randoop:基于代码路径和规则生成测试用例,适用于Java应用程序。Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET应用。[heading4]b.模式识别[content]Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。Infer:Facebook开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。[heading3]2.基于机器学习的测试生成[heading4]a.深度学习模型[content]DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。[heading4]b.强化学习[content]RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。[heading3]3.基于自然语言处理(NLP)的测试生成[heading4]a.文档驱动测试生成[content]Testim:AI驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。Test.ai:利用NLP技术从需求文档中提取测试用例,确保测试覆盖业务需求。[heading4]b.自动化测试脚本生成[content]Selenium IDE+NLP:结合NLP技术扩展Selenium IDE,从自然语言描述中生成自动化测试脚本。Cucumber:使用Gherkin语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。

问:AI 做测试用例

GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。[heading4]b.场景模拟[content]Model-based Testing(MBT):基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。[heading3]5.实践中的应用示例[content]1.Web应用测试:使用**Testim**分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。2.移动应用测试:利用**Test.ai**从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。3.复杂系统测试:采用**GraphWalker**基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。[heading3]工具和平台[content]Testim:AI驱动的自动化测试平台,生成和管理测试用例。Test.ai:基于NLP技术的测试用例生成工具,适用于移动应用和Web应用。DeepTest:利用深度学习生成自动驾驶系统测试用例。GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。

熊猫 Jay:AI 编程 Cursor 来了,你没理由说不会写代码了

用户故事是什么呢?用户故事的目的在于确保开发团队能够理解用户需求,并从用户角度设计和开发功能。其常规模板为:“作为[角色],我希望[活动],以便[理由]。”为何在这一步需要写用户故事呢?主要有三点作用:1.首先,让Cursor这个执行者了解我们想要做什么样的应用,从而更准确地搭建代码框架。2.中途作为关键的上下文信息,确保方向不偏移。3.最后,可以让Cursor依据用户故事生成对应的测试用例,保持功能的完整和准确。接下来,我来演示下如何在Cursor里生成MVP的用户故事(用其他AI功能生成也可以)。1、点击Cursor后,选择提前创建的一个文件夹。2、创建需求文档,输入简短的需求描述,让AI帮助我们生成用户故事。可以看到Cursor为我们生成了用户故事,我们按照实际情况接受并修改即可。

Others are asking
现在有哪些做音乐的AI平台
以下是一些做音乐的 AI 平台: :前身为“Definite Technologies”,开发使用 AI 处理/生成声音的 VST/AU/AUv3 插件。 :自适应 AI 音乐平台,通过高质量音频样本进行实时细胞组成。 :基于 AI 的音乐助手,包括歌词写作助手。 :实时音乐、音频和视频创作平台。 :为创意媒体应用提供合成歌声。 :数字宇宙的音乐解决方案,Soundtracks、AI Studio、Music Maker JAM 的制作者。 :AI 音乐创作和制作。 :自由定制高质量免版权费音乐。 :一个云平台,让音乐人和粉丝在全球范围内创作音乐、协作和互动。 :使用嵌入式软件、信号处理和 AI 帮助艺术家录制、混音和母带处理他们的现场表演。 :开源音乐生成工具。 :旨在通过 AI 赋能真实艺术家的伦理音频 AI 插件、工具和社区,而非取代他们。 :使用 AI 创作音乐和语音。
2025-03-05
ai排版
AI 文章排版工具主要用于自动化和优化文档的布局和格式,特别是在处理学术论文和专业文档时。以下是一些流行的 AI 文章排版工具及相关介绍: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档整体风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 3. Latex:虽不是纯粹 AI 工具,但广泛用于学术论文排版,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的 AI 文章排版工具取决于具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等更适用。 在文章排版的 AI 提效方面,GPT 可以先分析原文,列出需要加粗和引用的句子让您确认。解释引用格式后,您确认需要加粗的内容,GPT 输出排版后的文章,点击“复制代码”粘贴到微信 Markdown 排版器。 如果您在飞书文档写文章时忘记加粗重点句子,可利用以下方法让 AI 帮忙:首先,打开 GPTs(https://chatgpt.com/g/gauDv1yCnbwenzhangmarkdownpaibandashi),若打不开则跳过。接着,把从迅捷 Markdown 编辑器复制下来的文章内容发送给这个 GPTs。但注意,此方法需要用到 ChatGPT4o 并懂一点 Markdown 语法,若未用过也不懂或有自己加粗重点句子的习惯,则不建议学习此方法,应选择高效的方式,不为了 AI 而 AI。
2025-03-05
aiarty image
以下是关于 AI 图像相关的知识: 图像高清修复与无损放大: 整个流程分为输入原始图像、修复图像、放大并重绘图像三部分。 图像输入时,添加 Load Image 节点加载图像,不建议上传大分辨率图片,以免处理时间过长。 图像高清修复使用 Iceclear/StableSR 模型,搭配 Stable SR Upscaler 模型和合适的提示词,如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)。 图像高清放大使用 realisticVision 底膜,搭配提示词反推 node 和 tile ControlNet 提升画面细节感,并使用合适的高清放大模型进行二次放大。 星流一站式 AI 设计工具的右侧生成器入门模式中的图片参考: 可以使用图像控制功能精准控制生成图像的内容和风格。 入门模式只能使用以下四种参考功能,包括全部图片参考功能,如原图、景深、线稿轮廓、姿势、Lineart 线稿、Scribble 线稿、光影、Segmant 构图分割等,以及 SoftEdge 线稿、配色参考、配色打乱、法线贴图、MLSD 线稿等。 Zoom Out 全尺寸扩展: “全尺寸扩展”选项允许将放大图像的画布扩展到原始边界之外,不更改原始图像内容。 Zoom Out 不会增加图像的最大 1024 像素 x 1024 像素大小。 放大图像后会出现相应按钮,如 Zoom Out 2X、Zoom Out 1.5X,非方形图像还可通过 Make Square 调整纵横比使其成为方形。
2025-03-05
有哪些好用的搭建知识库然后进行问答的 AI 工具?
以下是一些好用的搭建知识库然后进行问答的 AI 工具: 1. DIN: 搭建步骤: 搭建 OneAPI(https://github.com/songquanpeng/oneapi),用于汇聚整合多种大模型接口。 搭建 FastGpt(https://fastgpt.in/),这是一个知识库问答系统,将知识文件放入,并接入大模型作为分析知识库的大脑,它有问答界面。 搭建 chatgptonwechat(https://github.com/zhayujie/chatgptonwechat),接入微信,配置 FastGpt 把知识库问答系统接入到微信,建议先用小号以防封禁风险。 2. Coze: 知识库问答利用了大模型的 RAG 机制,全称为“检索增强生成”(RetrievalAugmented Generation)。 RAG 机制先从大型数据集中检索与问题相关的信息,再使用这些信息生成回答。 实现知识库问答功能,需创建包含大量 AI 相关文章和资料的知识库,通过手工录入上传文章内容。在设计 Bot 时,添加知识库,并设置合适的搜索策略、最大召回数量和最小匹配度,以结合知识库返回的内容进行回答。
2025-03-05
AI修改多维表格
以下是关于 AI 修改多维表格的相关内容: 创建带有 AI 能力的飞书多维表格: 某些字段由 R1 生成可能存在问题,需将其复制到下一个字段。例如,第六个字段“金句输出”,选择公式中的“金句提炼.输出结果”;第七个字段“概要内容提炼”用 DeepSeek R1 提炼,同样打开“获取更多信息”里的“输出结果”,第八个字段会自动出现“概要内容提炼.输出结果”,第九个字段“概要内容输出”用公式复制第八个字段。这样输入第一个链接,后续字段会自动生成,完成 AI 数据库设置。 利用飞书多维表格字段捷径配置 COZE 的 BOT 青青: 在“谁是人类”活动中创建拟人化 bot 青青,人设为可爱有趣、擅长回答刁钻问题。 发布时配置飞书多维表格,输出为文本,配置多维表格输入表单,选择控件的字段选择器,给字段标题起名“question”,可选择全量发布或仅自己可用,审核通过即发布成功。 飞书多维表格的特点和应用: 多维表格是人人爱用的工具,能将奇思妙想快速变成实际可用产品。 当 AI 与多维表格结合,带来多样可能性,涌现大量智能业务系统,任何人都能搭建,人人都可以是 AI 产品经理。 2024 年 10 月 26 日将在上海字节跳动工区举办多维表格 AI Maker Day,规模 200 人,时间为下午 13:00 18:00,嘉宾包括飞书产品团队、“通往 AGI 之路”社区、科技行业博主,议程暂定。
2025-03-05
如何在电脑硬件配置普通的情况下,用AI搭建知识库
在电脑硬件配置普通的情况下,用 AI 搭建知识库可以参考以下几种方法: 使用阿里云百炼: 1. 上传文件:在百炼控制台的中的非结构化数据页签中点击导入数据,根据引导上传相关文档。 2. 建立索引:进入,根据引导创建一个新的知识库,并选择刚才上传的文件,其他参数保持默认即可。 3. 选择向量存储类型时,如果您希望集中存储、灵活管理多个应用的向量数据,可选择 ADBPG。 4. 引用知识:完成知识库的创建后,可以返回进入到刚才创建的应用设置界面,打开知识检索增强开关、选择目标知识库,测试验证符合预期后点击发布。 使用 GPT: 要搭建基于 GPT API 的定制化知识库,涉及到给 GPT 输入(投喂)定制化的知识。但 GPT3.5,也就是当前免费版的 ChatGPT 一次交互(输入和输出)只支持最高 4096 个 Token,约等于 3000 个单词或 2300 个汉字。为了使用 GPT 的语言能力来处理大量的领域知识,OpenAI 提供了 embedding API 解决方案。参考 OpenAI embedding documents。embeddings 是一个浮点数字的向量(列表)。两个向量之间的距离衡量它们的关联性。小距离表示高关联度,大距离表示低关联度。 使用 Dify: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式,并对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集,为数据集编写良好的描述。 3. 配置索引方式:Dify 提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式,根据实际需求选择合适的索引方式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用,在应用设置中,可以配置数据集的使用方式。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代,定期更新知识库,增加新的内容以保持知识库的时效性。
2025-03-05
利用 AI 生成 测试用例 的内容
AI 生成测试用例具有诸多优势,以下为您详细介绍: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 总结:AI 在生成测试用例方面能够自动化和智能化地生成高覆盖率的测试用例,减少人工编写的时间和成本。合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-05
利用 AI 生成测试用例,提示词如何编写
以下是关于利用 AI 生成测试用例时编写提示词的一些方法和要点: 1. 明确任务:清晰地定义生成测试用例的任务,例如明确测试的对象、范围和目标。 2. 提供上下文:若任务需要特定知识背景,在提示词中提供充足信息。 3. 语言清晰:使用简单、明确的语言,避免模糊或有歧义的词汇。 4. 给出具体要求:如对测试用例的格式、覆盖范围等有特定要求,应在提示词中指明。 5. 使用示例:提供期望的测试用例示例,帮助 AI 理解需求。 6. 保持简洁:提示词简洁明了,避免过多复杂信息导致 AI 困惑。 7. 运用关键词和标签:有助于 AI 更好理解任务主题和类型。 8. 测试和调整:生成结果后仔细检查,根据情况多次迭代调整提示词,直至满意。 例如,在生成符合要求的单词卡内容并填入 Excel 文件的测试用例时,首先给出基本示例作为核心依托,然后根据不同生成内容限定规则,包括对自然语言描述附加更多限制,以确保按要求输出 Excel 文档。在批量产出时,注意上传压缩文件并完成套版等操作。 另外,在 GPTs 实战中制作迷宫卡片时,也涉及到分步实现需求,如 GPT 生成主题相关绘图提示词、Dalle3 根据生成图片绘制底图、Python 随机绘制迷宫等步骤,其中都需要精心编写提示词,并根据效果进行调整和优化。
2025-03-05
测试用例自动化生成
AI 生成测试用例是一项很有价值的功能,能显著提高测试覆盖率、降低人工编写的时间和成本。以下是具体的方法、工具及实践应用示例: 方法: 1. 基于规则的测试生成: 测试用例生成工具:如 Randoop(适用于 Java 应用程序)、Pex(适用于.NET 应用)。 模式识别:如 Clang Static Analyzer、Infer。 2. 基于机器学习的测试生成: 深度学习模型:如 DeepTest(用于自动驾驶系统)、DiffTest。 强化学习:如 RLTest、A3C。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:如 Testim、Test.ai。 自动化测试脚本生成:如 Selenium IDE + NLP、Cucumber。 4. 基于模型的测试生成: 状态模型:如 GraphWalker、Spec Explorer。 场景模拟:如 Modelbased Testing 、Tosca Testsuite。 工具和平台:Testim、Test.ai、DeepTest、GraphWalker、Pex 等。 实践中的应用示例: 1. Web 应用测试:使用 Testim 分析用户行为和日志数据,生成高覆盖率的测试用例,检测兼容性问题。 2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径。 3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,检测边界情况和异常处理能力。 总结来说,AI 在生成测试用例方面优势显著,合理应用 AI 工具能让前端开发工程师提高测试效率、增强测试覆盖率、发现潜在问题,提升软件质量和用户体验。但请注意,内容由 AI 大模型生成,请仔细甄别。
2025-03-03
如何高效的编写软件测试用例
以下是关于如何高效编写软件测试用例的方法: 1. 基于规则的测试生成 测试用例生成工具 Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别 Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成 深度学习模型 DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习 RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成 文档驱动测试生成 Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成 Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成 状态模型 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟 Modelbased Testing :基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例 Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 6. 工具和平台 Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。
2025-01-22
那么有什么工具吗可以生成测试用例吗
以下是一些可以生成测试用例的工具: 1. 基于规则的测试生成: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 在实践中的应用示例包括: 1. Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 2. 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 3. 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 AI 在生成测试用例方面具有显著的优势,可以自动化和智能化生成高覆盖率的测试用例,减少人工编写测试用例的时间和成本。通过合理应用 AI 工具,前端开发工程师可以提高测试效率、增强测试覆盖率和发现潜在问题,从而提升软件质量和用户体验。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-09
可以实现测试用例设计、测试脚本、测试执行、测试报告 的AI 有哪些?
以下是一些可以实现测试用例设计、测试脚本、测试执行和测试报告的 AI 工具和方法: 1. 基于规则的测试生成: 测试用例生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 模式识别: Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 2. 基于机器学习的测试生成: 深度学习模型: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 强化学习: RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 自动化测试脚本生成: Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 4. 基于模型的测试生成: 状态模型: GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Spec Explorer:微软开发的模型驱动测试工具,通过探索状态模型生成测试用例。 场景模拟: Modelbased Testing:基于系统模型自动生成测试用例,覆盖各种可能的操作场景和状态转换。 Tosca Testsuite:基于模型的测试工具,自动生成和执行测试用例,适用于复杂应用的端到端测试。 5. 实践中的应用示例: Web 应用测试:使用 Testim 分析用户行为和日志数据,自动生成高覆盖率的测试用例,检测不同浏览器和设备上的兼容性问题。 移动应用测试:利用 Test.ai 从需求文档中提取测试用例,确保覆盖关键功能和用户路径,提高测试效率和质量。 复杂系统测试:采用 GraphWalker 基于系统状态模型生成测试用例,确保覆盖所有可能的状态和操作场景,检测系统的边界情况和异常处理能力。 相关工具和平台: Testim:AI 驱动的自动化测试平台,生成和管理测试用例。 Test.ai:基于 NLP 技术的测试用例生成工具,适用于移动应用和 Web 应用。 DeepTest:利用深度学习生成自动驾驶系统测试用例。 GraphWalker:基于状态模型生成测试用例,适用于复杂系统的行为测试。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试。
2024-10-24
deepseek相关的文档
以下是与 DeepSeek 相关的文档和信息: 在 2025 年 2 月 6 日的“【今晚 8 点】聊聊你怎么使用 DeepSeek!”中,提到了以下内容: DP 模型的功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如 bug 和 DIFF SIG,探讨语言概念在音系学下的心理印象等。 大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。 此外,2 月 6 日的宝玉日报中提到: Dario Amodei 认为 DeepSeek 进入前沿 AI 竞赛,但美国应保持领先优势。 强调“没有民族主义敌意”,依旧欢迎华裔科学家加入 Anthropic。 批评 DeepSeek 安全性差,称其“测试过的模型里最糟糕”。相关文稿:
2025-03-05
我想完全本地化部署deepseek,然后,将我的文档,文本,图片等内容丢给它训练,微调。我要完全本地化,因为我的文档设计隐私。我要免费开源流程。如何实现,
要完全本地化部署 DeepSeek 并使用您的文档、文本、图片等内容进行训练和微调,以下是一些相关的信息和步骤: 1. 模型训练与平台服务: 模型复现与微调:1:1 复现通常没问题,但理解细节并自行制作需要基础知识。有手把手教程、数据集等可帮助 1:1 复现,微调在特定领域可降低幻觉,参数量不变但权重变化。 训练模型的学习方法:先会用再学会训,从训的过程中倒推学习参数调整,这是以用导学的学习方法。 模型回答效果对比:微调后的模型在回答排列组合等问题时,思考前几乎无反馈,答案多为英文且格式稳定,但仍可能答错。 2. 平台服务介绍: 阿里云提供多种解决方案。 百炼是提供多种模型服务的 Maas 平台。 派平台是提供云服务的 PaaS 平台,二者在定位、服务内容和核心差异上有所不同。 3. 关于模型训练与数据集相关问题: 数据资源情况:默认提供公共数据训练集,百派平台能匹配模型和数据,通义开源了不少数据集。 多模态训练:多模态有自身标注方式,如视频拉框标注。 参数量变化:通常训练模型参数量固定,若想改变需改模型层,但可能要从头调。 本地微调框架:可使用 llama factory 等框架,需搭建并部署。 开源数据下载:可在 GitHub、hugging face、Mo Model Scope 等平台获取。 数据集转化:将文档资料转成数据集可先手动形成 SOP,再逐步自动化,初期需大量人力。 4. 本地部署介绍:讲解了如果拥有云服务器如何进行本地部署,以及满血版本地部署的实际情况。 5. 免费额度说明:在 freely.aliyun.com 可领取 500 元免费额度,但有使用限制,不能部署满血版和较大的增流模型。 6. 平台服务差异:介绍了 DLC、DSW 和 EAS 等模型部署平台服务的差别。 7. 模型蒸馏微调:会带着大家复现模型的蒸馏和微调,并讲解相关知识。 R1 模型的强化学习:通过强化学习,在训练过程中给予模型反馈,如路线规划是否成功到达终点、输出格式是否符合期望等,对正确路线增强权重,使做对的概率变高,导致思考逻辑变长。 R1 模型的蒸馏与微调:用 Deepseek RE Zero 蒸馏出带思考的数据,基于 Deepseek V3 微调,进行冷启动,再做强化学习,还从非公布模型提取微调数据,加上人类偏好,最终形成 R1。 R1 与其他模型的差别:R1 是原生通过强化学习训练出的模型,蒸馏模型是基于数据微调出来的,基础模型能力强,蒸馏微调模型能力也会强。 模型的相互帮助:Deepseek R1 反过来蒸馏数据微调 V3,形成互相帮助的局面,使两个模型都更强。 请注意,在进行本地化部署和训练微调时,需要具备一定的技术知识和经验,并且要遵循相关的法律法规和道德规范。
2025-03-04
有没有专业文档排版AI
以下是关于专业文档排版 AI 的相关信息: AI 文章排版工具主要用于自动化和优化文档的布局和格式,特别是在处理学术论文和专业文档时。一些流行的 AI 文章排版工具包括: 1. Grammarly:不仅是语法和拼写检查工具,还提供排版功能,可改进文档风格和流畅性。 2. QuillBot:AI 驱动的写作和排版工具,能改进文本清晰度和流畅性,保持原意。 3. Latex:虽不是纯粹的 AI 工具,但在学术论文排版中广泛使用,使用标记语言描述格式,有许多 AI 辅助的编辑器和插件简化排版过程。 4. PandaDoc:文档自动化平台,使用 AI 帮助创建、格式化和自动化文档生成,适合商业和技术文档。 5. Wordtune:AI 写作助手,重新表述和改进文本,使其更清晰专业,保持原始意图。 6. Overleaf:在线 Latex 编辑器,提供丰富模板和协作工具,适合学术写作和排版。 选择合适的工具取决于具体需求,如文档类型、出版标准和个人偏好。对于学术论文,Latex 和 Overleaf 受欢迎;对于一般文章和商业文档,Grammarly 和 PandaDoc 等更适用。 此外,还有一些 AI 辅助的 PPT 工具,如: 1. Gamma:在线 PPT 制作网站,通过输入文本和想法提示快速生成幻灯片,支持嵌入多媒体格式。 2. 美图 AI PPT:通过输入简单文本描述生成专业 PPT 设计,包含丰富模板库和设计元素。 3. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等。 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能。 关于《促进创新的人工智能监管方法》的相关内容:文中提到,AI 已融入日常生活,带来诸多实际好处,如流媒体服务推荐节目、导航规划路线等。同时指出,应在支持创新的同时提供监管框架以识别和应对风险,避免过度严格的方法抑制创新和减缓 AI 应用,应建立适度且支持创新的监管框架,关注 AI 部署的情境而非特定技术,以平衡收益与潜在风险。
2025-03-04
有没有什么AI工具可以把文档性质的内容转化为表格形式
以下是一些可以将文档性质的内容转化为表格形式的 AI 工具和相关方法: 1. GPT4:可以通过指令让其以表格形式输出细节描述,具有打破叙事习惯、便于局部调整和确保内容具体细节等优点。 2. Claude:可用于处理相关内容,但可能存在修改关键情节等问题。 3. Langchain: 对于表格: 方法 1:读入表格 markdown 格式,嵌入 template。 方法 2:直接使用 function call,绕过 langchain 定义数据库读取的方式。 对于文字:包括文字相似度检索过程,如读入文字、进行清洗、句子切分、向量化、计算相似度、取前几的答案等。 此外,还可以参考相关的代码和脚本,如 https://github.com/yuanzhoulvpi2017/DocumentSearch 。同时,https://gitee.com/cyz6668/langchainsimplerag 也对相关内容进行了整理。
2025-03-03
AI类需求产品经理应该如何写需求文档
以下是为您提供的关于 AI 类需求产品经理如何写需求文档的相关内容: 工具推荐: 用户研究、反馈分析:Kraftful(kraftful.com) 脑图:Whimsical(whimsical.com/aimindmaps)、Xmind(https://xmind.ai) 画原型:Uizard(uizard.io/autodesigner/) 项目管理:Taskade(taskade.com) 写邮件:Hypertype(hypertype.co) 会议信息:AskFred(fireflies.ai/apps) 团队知识库:Sense(senseapp.ai) 需求文档:WriteMyPRD(writemyprd.com) 敏捷开发助理:Standuply(standuply.com) 数据决策:Ellie AI(ellie.ai) 企业自动化:Moveworks(moveworks.com) 开发流程: 1. 基础小任务: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。 对于特定技术学习(如 chrome 插件开发),让 AI 按照最佳实践生成示范项目,包含典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成相关脚本的要求。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,包含影响技术方案选择的细节,方便后续开发时与 AI 交流。 银海相关: 可以通过 Prompt 提示词来复现产品的轻量化版本。 Prompt 提示词是给 AI 的指令,可以是文字或按一定格式的参数描述。 学习 Prompt 提示词可参考:https://www.promptingguide.ai/zh 提供了 10 个场景及相应的 Prompt 提示词和实现效果,包括行业洞察分析、方法论专家、头脑风暴、需求文档设计、功能价值分析、竞品分析报告、流程图/图表设计、思维导图设计、解决方案专家、周报生成器。
2025-02-28
如何通过langchain实现上传 一个客户需求文档,生成一个产品规格书doc格式的文档
要通过 LangChain 实现上传客户需求文档并生成产品规格书(doc 格式),可以按照以下步骤进行: 1. 上传文档:用户可以上传包含知识的文档,支持 txt、pdf、docx 等格式,LangChain ChatChat 会将文档转换为 Markdown 格式。 2. 文本切割:为便于分析和处理,将长文本切割为小块(chunk)。 3. 文本向量化:将切割的 chunk 通过 embedding 技术,转换为算法可以处理的向量,存入向量数据库。 4. 问句向量化:用户提问后,同样将用户的问句向量化。 5. 语义检索匹配:将用户的问句与向量数据库中的 chunk 匹配,匹配出与问句向量最相似的 top k 个。 6. 提交 prompt 至 LLM:将匹配出的文本和问句,一起添加到配置好的 prompt 模板中,提交给 LLM。 7. 生成回答:LLM 生成回答,返回给用户。
2025-02-27
我想搭建自己的知识库,然后进行知识提取和查询辅助我进行办公和内容生成,请问有哪些工具好用?
以下是一些可用于搭建知识库并进行知识提取和查询以辅助办公和内容生成的工具: 1. ChatGPT:可以生成文章、故事、诗歌、歌词等内容,作为聊天机器人后端提供自然对话体验,用于问答系统、文本摘要、机器翻译、教育等,还能生成代码片段。相关网址:https://chat.openai.com/ 、https://bard.google.com/extensions 、https://claude.ai/ 。 2. ExoBrain 的集成软件:作为外脑的主要记忆空间,能捕获各种数字内容,挂接和导入外部记忆,快速理解内容,灵活创作笔记,生成创作建议,与外脑知识库对话并自动做外部检索完善答案。相关网址:https://hallid.ai/?ref=indigox.me ,关注获取最新信息。 3. 多维表格:用表格+AI进行信息整理、提效、打标签,满足 80%数据处理需求。相关文章: ,适用人群为 Excel 重度使用者、手动数据处理使用者、文件工作者。 4. Cursor:通过 AI 工具对编程祛魅,降低技术壁垒。相关文章: ,适用人群为 0 编程经验、觉得编程离我们很遥远的小白。 5. Suno:AI 赋能音乐创作,无需乐理知识即可参与音乐制作。相关文章: ,适用人群为 0 乐理知识、觉得作词作曲和我们毫不相关成本巨大的小白。 6. 其他工具: PPT 生成: 。 音视频提取总结:https://bibigpt.co/r/AJ 。 播客总结:https://podwise.xyz/dashboard/trending 。 生成脑图:https://xmind.ai/editor/ 。 PDF 对话:演示 www.chatpdf.com 。
2025-03-05
我需要生成一个建筑方案的鸟瞰图,用什么网站是免费的
以下为您推荐一个可以免费生成建筑方案鸟瞰图的网站:Meshy。您可以按照以下步骤操作: 1. 在 Discord 上打开搜索频道,搜索 Meshy。 2. 找到蘑菇头图标并点击加入。 3. 左边频道会多出 Meshy 的图标,其中有三种不同的频道,在对应的频道作画。 4. 了解指令,如/create、/img3d、/skin 等。 5. 使用/create 指令输入您想生成的内容,例如“A treasure chest,realistic,wooden,carved,highest quality”。 6. 还可以使用/skin 指令为生成的模型加上 AI 贴图(注:Meshy 中输入输出的模型都为.glb 格式,模型上线 50MB)。生成更加精美的贴图,让模型更加精致。
2025-03-05
生成8岁孩子正在击剑的图片
很抱歉,暂时无法为您生成 8 岁孩子正在击剑的图片。但您可以通过以下方式获取此类图片: 1. 使用专门的图片搜索引擎,输入相关关键词,如“8 岁孩子击剑”。 2. 利用一些提供图片创作服务的平台,向创作者描述您的需求。 3. 参考一些体育类的图片库,可能会找到符合您要求的图片。
2025-03-05
如何把图片生成动态立体图
目前在将图片生成动态立体图方面,相关技术和方法还在不断发展和探索中。常见的途径可能包括使用专业的图形设计软件,如 3D 建模工具,通过对图片进行深度分析和建模来实现动态立体效果。但具体的操作过程会因软件的不同而有所差异。另外,一些新兴的 AI 图像生成技术也可能在未来为这一需求提供更便捷的解决方案。
2025-03-05
PPT生成工具
以下是一些关于 PPT 生成工具的信息: 教师使用 AI 生成 PPT 的小技巧: 减轻排版工作的压力。 生成打底的内容,减轻人写内容的工作。 文章生成 PPT,让 AI 帮忙摘要内容,生成大纲列表。 主题生成 PPT,让 AI 根据主题扩充成大纲列表,乃至具体内容。 在特定的场景下不用改直接用,如学生快速为小组展示配 PPT。 AI 辅助 PPT 的原理和作用: 用户输入。 AI 输出。 排版。网站往往提供了各种形状和样式,网站把 AI 输出的文本丢给 LLM,让它根据内容,在已有的 UI 组件中选择更适合的组件。按时间线,每页 PPT 的文字,选出整个 PPT 中,每一页的 UI 组件。有的网站,如 tome、gamma,配图也是由 GenAI 根据页面内容生成的。呈现 AI 生成的 PPT 结果,用户不满意可以自行选择模版。 几款 PPT 生成工具(网站): https://wenku.baidu.com :付费,质量好。 https://zhiwen.xfyun.cn/ :讯飞智文,免费,引导好。 http://Chatppt.com :付费,自动化程度高。 http://Mindshow.fun :支持 Markdown 导入。 http://Gamma.app :支持 Markdown 导入,AI 配图效果好。 http://Tome.app :AI 配图效果好。 剪映:图文成片(只需提供文案,自动配图配音)。 还有通过 VBA 代码生成 PPT 的工具,如李继刚开发的版本 0.1 的工具,可让 GPT 生成 VBA 代码,在 PPT 中直接生成 PPT 内容,初步试过能跑通,VBA 直接粘进 PPT 运行即可生成。
2025-03-05