Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

什么是prompt engineering

Answer

提示工程(Prompt Engineering)是人工智能领域中,特别是在自然语言处理(NLP)和大型语言模型(LLMs)的上下文中,一个相对较新的概念。它涉及设计和优化输入提示(prompts),以引导 AI 模型生成特定类型的输出或执行特定的任务。

提示工程是一门经验科学,涉及迭代和测试提示以优化性能。在提示工程周期中花费的大部分精力实际上并不是在编写提示上。相反,大部分提示工程时间都花在开发一组强大的评估上,然后针对这些评估进行测试和迭代。

提示工程的生命周期包括以下几个步骤:

  1. 设计初步提示:制定一个初步的提示,概述任务定义、良好响应的特征,以及模型所需的任何上下文。理想情况下,应该添加一些规范输入和输出的示例供模型参考。这个初步提示将作为改进的起点。
  2. 测试提示:使用初步提示将测试用例输入到模型中。仔细评估模型的响应与预期的输出和成功标准是否一致。使用一致的评分标准,无论是人工评估、与答案标准的比较,甚至是基于评分标准的模型判断的另一个实例。关键是要有一种系统性的评估性能的方式。
  3. 优化提示:根据评估结果,对初步提示进行修改和优化。这可能涉及调整提示的内容、结构或格式,以提高模型的性能和准确性。
  4. 验证和部署:经过优化的提示需要进行验证和部署。验证包括对模型在不同数据集和任务上的性能进行评估,以确保提示的有效性和泛化能力。部署则涉及将提示集成到实际应用中,以实现对用户的服务。

总之,提示工程是一种通过设计和优化输入提示来引导 AI 模型生成特定输出或执行特定任务的方法。它是 AI 模型开发和优化过程中的一个重要环节,对于提高模型的性能和准确性具有重要意义。

Content generated by AI large model, please carefully verify (powered by aily)

References

2.Prompt engineering 提示工程

Prompt engineering is an empirical science that involves iterating and testing prompts to optimize performance.Most of the effort spent in the prompt engineering cycle is not actually in writing prompts.Rather,the majority of prompt engineering time is spent developing a strong set of evaluations,followed by testing and iterating against those evals.提示工程是一门经验科学,涉及迭代和测试提示以优化性能。在提示工程周期中花费的大部分精力实际上并不是在编写提示上。相反,大部分提示工程时间都花在开发一组强大的评估上,然后针对这些评估进行测试和迭代。

问:什么是提示工程?与提示词有什么区别?

提示工程(Prompt Engineering)是人工智能领域中,特别是在自然语言处理(NLP)和大型语言模型(LLMs)的上下文中,一个相对较新的概念。它涉及设计和优化输入提示(prompts),以引导AI模型生成特定类型的输出或执行特定的任务。

2.Prompt engineering 提示工程

3.Engineer the preliminary prompt:Next,craft an initial prompt that outlines the task definition,characteristics of a good response,and any necessary context for Claude.Ideally you should add some examples of canonical inputs and outputs for Claude to follow.This preliminary prompt will serve as the starting point for refinement.设计初步提示:接下来,制定一个初步的提示,概述任务定义、良好响应的特征,以及Claude所需的任何上下文。理想情况下,您应该添加一些规范输入和输出的示例供Claude参考。这个初步提示将作为改进的起点。4.Test prompt against test cases:Feed your test cases into Claude using the preliminary prompt.Carefully evaluate the model's responses against your expected outputs and success criteria.Use a consistent grading rubric,whether it's human evaluation,comparison to an answer key,or even another instance of Claude’s judgement based on a rubric.The key is to have a systematic way to assess performance.根据测试用例测试提示:使用初步提示将测试用例输入到Claude中。仔细评估模型的响应与您预期的输出和成功标准是否一致。使用一致的评分标准,无论是人工评估、与答案标准的比较,甚至是基于评分标准的Claude判断的另一个实例。关键是要有一种系统性的评估性能的方式。

Others are asking
prompt engineering
Prompt engineering(提示工程)包括以下几个方面: 1. 提示开发生命周期: 开发测试用例:在定义任务和成功标准后,创建涵盖应用程序预期用例的多样化测试用例,包括典型示例和边界情况,提前定义好的测试用例有助于客观衡量提示的性能。 设计初步提示:制定初步提示,概述任务定义、良好响应的特征及必要的上下文,理想情况下添加规范输入和输出的示例供 Claude 参考,此初步提示作为改进的起点。 根据测试用例测试提示:使用初步提示将测试用例输入到 Claude 中,仔细评估模型的响应与预期输出和成功标准的一致性,使用一致的评分标准,如人工评估、与答案标准的比较或 Claude 基于评分标准的判断,关键是要有系统性的评估性能方式。 2. Claude 的性能:Claude 开箱即提供高水平基线性能,提示工程可进一步提升其性能并微调响应以适应特定用例,这些技术虽非必需,但对提升输入和输出可能有用。可参阅提示入门(https://docs.anthropic.com/claude/docs/introtoprompting)快速开始使用提示或了解提示概念。 3. 使用例子中的迭代和改进:记住,提示工程是一个迭代过程,如果初始示例未产生完美结果,不要灰心,通过调整和实验,能够释放 Claude 的全部潜力,为应用程序取得出色结果。
2024-12-24
how AI helps in the field of life science engineering and informatics, and which roles it plays in our research and innovation.请用中文和英文回答
中文回答: 人工智能在生命科学工程和信息学领域发挥着重要作用。例如,DeepMind 开发的 AI 技术能够预测几乎所有已知蛋白质的结构,这将加速科学研究和救命药物的开发,在对抗疟疾、抗生素耐药性和塑料垃圾等方面帮助科学家取得巨大进展。随着人工智能的发展,它能够扩大熟练劳动力或提升低技能劳动力的水平,例如可以提出答案或创意,让经过训练的人类选择最佳答案,筛选结果并跳过错误答案,自然地整合到现有的工作流程中。在合适的条件下,人工智能将改变生活的各个方面,刺激经济,创造新的就业机会并改善工作场所。 英文回答: Artificial intelligence plays significant roles in the field of life science engineering and informatics. For instance, an AI technology developed by DeepMind can predict the structure of almost every known protein to science, which will accelerate scientific research and the development of lifesaving medicines. It has already helped scientists make huge progress in combating malaria, antibiotic resistance, and plastic waste. As AI develops, it can expand the skilled labor force or enhance the level of lowskilled labor. For example, it can propose answers or ideas, allowing trained humans to select the best ones, filter the results and skip incorrect answers, and integrate naturally into the existing workflow. Under the right conditions, AI will transform all areas of life, stimulate the economy, create new jobs and improve the workplace.
2024-08-26
how AI helps in the field of life science engineering and informatics, and which roles it plays in our research and innovation.请用中文描述一遍,英文描述一遍
中文描述: 用户询问:人工智能如何在生命科学工程和信息学领域发挥作用,以及它在我们的研究和创新中扮演何种角色。 英文描述: Quary: How AI helps in the field of life science engineering and informatics, and which roles it plays in our research and innovation. 以下是为您找到的相关内容: 1. 人工智能(AI)已经在带来广泛的社会效益,从医疗进步到缓解气候变化。例如,DeepMind(一家英国企业)开发的一项 AI 技术现在能够预测几乎每种已知科学的蛋白质结构。这一突破将加速科学研究和救命药物的开发,已经帮助科学家在对抗疟疾、抗生素耐药性和塑料垃圾方面取得巨大进展。 2. 英国科学技术框架将 AI 列为五项关键技术之一,并指出监管在为 AI 创造繁荣环境方面的作用。在适当的条件下,AI 将改变生活的所有领域,并通过释放创新和提高生产力来刺激英国经济,创造新的就业机会并改善工作场所。 3. 相关法案提到支持跨多个机构和组织的跨学科研究和开发,包括物理学、工程学、数学科学、计算机和信息科学、机器人学、生物和认知科学、材料科学、社会和行为科学、网络安全和技术伦理等与人工智能研究和相关学科。
2024-08-26
how AI helps in the field of life science engineering and informatics, and which roles it plays in our research and innovation.
AI 在生命科学工程和信息学领域具有多方面的助力和重要作用,主要体现在以下几个方面: 1. 提升劳动力水平:随着人工智能的发展,它能够扩大熟练劳动力或提升低技能劳动力的水平。例如,可以提出答案或创意,让经过训练的人类选择最佳答案,筛选结果并跳过错误答案,自然地整合到现有的工作流程中。 2. 推动行业转变:生命科学和医疗保健领域正越来越多地受到工程技术的推动而发生转变。在生命科学领域,基因编辑、细胞生物学、干细胞、机器人实验等方面的进展使科学家能够以前所未有的方式操纵生物学,且随着人工智能嵌入生命科学实验中,存在着强大的反馈循环。医疗保健领域也在利用技术经历复兴,朝着价值导向的付费模式转变,为人工智能创造了深层次的效用。 3. 助力新疗法开发:在理解生物学方面,人工智能扮演着关键角色,成为揭示生物学复杂性的推动者。如今已有的关于人类疾病的人工智能模型,指引着更有效的药物的开发路径,能够更快地进入市场,并减少失败的次数,使研究超越当前主要依赖实验室人力劳动偶然发现的模式。 但也要注意潜在的担忧,早期人工智能模型在人类收集的数据上进行训练可能存在嵌入的偏见和其他失败。随着人工智能应用于新的行业,科学家、医疗保健提供者和监管机构需要保持警惕,以防止潜在的有害副作用。
2024-08-26
chatbot system prompt
以下是关于聊天机器人的相关内容: 1. 在打造聊天机器人的视频中,会使用不同的辅助函数,传入消息列表,包括系统消息、用户消息和助手消息。系统消息用于提供整体指示和设置助手行为角色,可在用户无察觉情况下引导助手回复,使对话自然流畅且避免插入明显提示信息。例如,系统消息可设定助手像莎士比亚一样说话。 2. 头脑风暴常用的 20 个 prompt 包括:Brainwriting Prompt、Reverse Brainstorming Prompt、Mind Mapping Prompt 等。 3. 打造聊天机器人中的 OrderBot 需等待收集整个订单并总结,确认客户是否添加其他内容,询问送货地址和收取支付款项,以简短、口语化和友好方式回应,澄清所有选项、附加项和规格。还可要求模型创建基于对话的 JSON 摘要,用于提交订单系统,可对聊天机器人进行定制和通过系统消息改变其行为及表现。
2025-01-30
imagine prompt
以下是关于图像提示、排列提示和探索提示的相关内容: 图像提示: 将图像添加到提示中,按“/imagine”照常输入,出现提示框后可拖入图片文件或粘贴图片 URL。使用 Midjourney Bot 在私信中上传图像可保护隐私,除非用户有隐身模式,否则图像提示在中途网站上可见。 举例:如阿波罗雕像、复古花图、恩斯特·海克尔的水母等,还包括中途模型版本 4 和 5 的相关示例。同时,将图像裁剪为与最终图像相同的宽高比可获得最佳效果。 排列提示: 排列提示允许您使用单个命令快速生成提示的变体。不同订阅者可创建的作业数量不同,基本订阅者最多 4 个,标准订阅者最多 10 个,Pro 和 Mega 订阅者最多 40 个。 您可以使用排列提示创建涉及中途提示任何部分的组合和排列,包括文本、图像提示、参数或提示权重。排列提示仅在使用快速模式时可用。将选项列表放在大括号{}内以快速创建和处理多个提示变体,例如“/imagine prompt a{red,green,yellow}bird”会创建并处理三个作业。排列提示将在开始处理之前显示确认消息。 探索提示: 时间旅行:不同的时代有不同的视觉风格,如“/imagine prompt<decade>cat illustration 1700 年代1700s”等。 表情:使用情感词语赋予人物个性,如“/imagine prompt<emotion>cat 决定Determined”等。 变得多彩:全方位的可能性,如“/imagine prompt<color word>colored cat 千禧粉红Millennial Pink”等。 环境探索:不同的环境可以设定独特的情绪,如“/imagine prompt<location>cat 苔原Tundra”等。
2025-01-26
如何优化自己的prompt,提升AI结果输出的稳定性
以下是优化自己的 prompt 以提升 AI 结果输出稳定性的方法: 1. 明确具体的描述:使用更具体、细节的词语和短语来表达需求,避免过于笼统。 2. 添加视觉参考:在 prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 prompt 的整体语气和情感色彩,以生成期望的语境和情绪。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的描述方式。 5. 增加约束条件:在 prompt 中添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建 prompt:将复杂需求拆解为逐步的子 prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究 AI 社区流行的、有效的 prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 此外,如果提示词效果不符合预期,可以和 AI 再进行几轮对话来调整输出结果。最终通过询问 AI“怎么样修改现有的 Prompt,可以让你稳定输出当前的预期”来进行 prompt 的迭代。得到 prompt 后,可以新开一个 AI 对话,把 prompt 输入到对话中,开始验证其可用性和稳定性。例如输入 MECE 法则进行测试。
2025-01-24
用AI总结长文的prompt怎么写比较好
以下是关于用 AI 总结长文的一些提示词编写建议: 1. 单人发言版:基于李继刚老师的“通知消息整理助手”修改“文字排版大师”的 Prompt,重点 Prompt 语句需标出。 2. 多人发言版: 明确跟 GPT 说明需要其帮忙总结文字内容。 将提示词和文字原文发送给 GPT,等待其输出完毕后复制粘贴到文本编辑器中,整理并删掉无关内容,替换掉不美观的符号。 3. 法律相关: 格式:【设定角色+任务目标+上下文和背景信息+(正面要求)详细需求和细节性信息+(负面要求)限制和不需要的内容+回答的语言风格和形式】 讲清楚背景和目的,例如律师处理交通事故案件时应清晰描述案件事实、法规等。 学会提问,使用清晰、具体的语言,避免模糊表述,了解 AI 工作原理和限制。 拆解工作流程,将复杂任务分解成更小、更具体的环节。 4. 通用写作方面: 第一部分:说清楚要解决的问题及背景,可能导致的损失。 第二部分:以案例引入,写明案号、案件事实经过、裁判结果、关键依据等要点。 第三部分:对案例进一步分析,写明注意关键点,不给建议。 第四部分:给出具体操作建议,包括事前、事中、事后的注意事项和补救措施。 第五部分:结语及作者宣传。 文章结构需有结构化理解,所有结论应有案例基础,不能违反法律规定,文字简练精准,信息密度足够,建议具体细致且易于操作。
2025-01-24
12个prompt 框架
以下是 12 种 Prompt 框架: 1. Instruction(指令):即希望 AI 执行的具体任务,如翻译或写一段文字。 2. Context(背景信息):给 AI 更多背景信息,引导模型做出更贴合需求的回复。 3. Input Data(输入数据):告知模型需要处理的数据。 4. Output Indicator(输出引导):告知模型输出的类型或风格。 5. Capacity and Role(能力和角色):ChatGPT 应扮演的角色。 6. Insight(见解):提供请求背后的见解、背景和上下文。 7. Statement(声明):说明要求 ChatGPT 做什么。 8. Personality(个性):希望 ChatGPT 以何种风格、个性或方式回应。 9. Experiment(实验):请求 ChatGPT 回复多个示例。 10. Background(背景):说明背景,为 ChatGPT 提供充足信息。 11. Role(角色):希望 ChatGPT 扮演的角色。 12. Objectives(目标):希望实现的目标。 此外,还有以下框架: 1. TASK(任务):定义特定任务。 2. ACTION(行动):描述需要做的事情。 3. GOAL(目标):解释最终目标。 4. INPUT(输入):描述信息或资源。 5. STEPS(步骤):询问详细的步骤。 6. EXPECTATION(期望):描述所需的结果。 7. REQUEST(请求):描述您的要求。 8. Key Result(关键结果):要什么具体效果,试验并调整。 9. Evolve(试验并改进):三种改进方法自由组合,包括改进输入、改进答案、重新生成。 10. CONTEXT(上下文背景):为对话设定舞台。 11. OBJECTIVE(目的):描述目标。 12. SCENARIO(方案):描述场景。 同时,还有一些特定的框架,如 ICIO 框架、CRISPE 框架、BROKE 框架等。
2025-01-23
1.AI搜索的prompt怎么写 2.AI搜论文的prompt怎么写比较好
以下是关于 AI 搜索和 AI 搜论文的 prompt 写作的相关指导: 对于 AI 搜索的 prompt 写作: 1. 明确具体的描述:使用更具体、细节的词语和短语来描述您的需求,避免过于笼统。 2. 添加视觉参考:若可能,在 prompt 中插入相关图片参考,以提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 prompt 的整体语气和情感色彩。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最准确表达需求的描述方式。 5. 增加约束条件:为避免意外输出,添加如分辨率、比例等限制性条件。 6. 分步骤构建 prompt:将复杂需求拆解为逐步的子 prompt,引导 AI 先生成基本结构,再逐步完善。 7. 参考优秀案例:研究 AI 社区流行且有效的 prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同写法,并根据输出效果反馈持续优化。 对于 AI 搜论文的 prompt 写作,您可以参考以下要点: 1. 设定角色为资深学术研究者,明确具备高效的学术论文阅读、总结能力。 2. 遵循“二八原则”进行论文总结。 3. 输出阅读的总结文字,包括列出论文的明确方法论、经过验证的结论等关键信息。 4. 采用结构化的内容组织方式,如使用编号、子标题和列表。 5. 按照规定概述内容解读结语的结构写作,先概述规定内容,然后解读具体内容,最后以结语结束。 6. 结合案例和挑战,增强说服力并提供解决方案。 7. 引入法规内容和实际操作案例,提供详细解释和建议。 8. 使用商业术语,确保专业性和针对性。 9. 注意文章结构,标题要开门见山、切中要害并引起目标群体悬念;第一部分说清楚要解决的问题及背景和可能导致的损失;第二部分以案例引入;第三部分对案例进一步分析;第四部分给出具体操作建议,包括事前、事中、事后的注意事项和措施。 总之,编写高质量的 prompt 需要不断实践和总结经验,熟悉 AI 模型的能力边界,保持开放思维并尝试创新描述方式。
2025-01-22