Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI 大模型的专业术语有哪些

Answer

以下是一些 AI 大模型的专业术语:

  1. AIGC:生成式 AI 生成的内容。
  2. AI:人工智能。
  3. 机器学习:电脑找规律学习,包括监督学习、无监督学习、强化学习。
    • 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。
    • 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务包括聚类。
    • 强化学习:从反馈里学习,最大化奖励或最小化损失,类似训小狗。
  4. 深度学习:一种参照人脑有神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。
  5. 生成式 AI:可以生成文本、图片、音频、视频等内容形式。
  6. LLM:大语言模型。对于生成式 AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。
  7. Prompt:提示词,即输入给大模型的文本内容,可以理解为和大模型说的话、下达的指令。
  8. Token:大模型语言体系中的最小单元。不同厂商的大模型对中文的文本切分方法不同,通常 1Token≈1 - 2 个汉字。大模型的收费计算方法及对输入输出长度的限制,都以 token 为单位计量。
  9. 上下文:英文通常翻译为 context,指对话聊天内容前、后的内容信息。上下文长度限制了模型一次交互中能够处理的最大 token 数量,上下文窗口限制了模型在生成每个新 token 时实际参考的前面内容的范围。
Content generated by AI large model, please carefully verify (powered by aily)

References

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

走入AI的世界

首先我们给出一些常见缩写和专业词汇的“人话”解释,它们十分基础,但理解他们至关重要。为了讨论更加聚焦,接下来的内容将主要围绕大语言模型为主进行展开(对于其他模态的大模型,我们暂且放放):LLM:Large language model的缩写,即大语言模型,前面百团大战中的各类大模型,说的都是大语言模型(极其应用)Prompt:中文译作提示词,就是我们输入给大模型的文本内容,可以理解为你和大模型说的话,下达的指令。提示词的质量好坏,会显著影响大模型回答的质量,很多时候如果你觉得大模型回答的太差了,AI味儿太浓了,很可能是你的提示词写的不够好,换言之,不是AI不行,而是你不行😌Token:就像人类有着不同的语言,大模型也有着自己的语言体系,如图9,我们发送文本给大模型时,大模型会先把文本转换为他自己的语言,并推理生成答案,而后再翻译成我们看得懂的语言输出给我们。正如人类不同语言都有最小的字词单元(汉语的字/词,英语的字母/单词),大模型语言体系中的最小单元就称为Token。这种人类语言到大模型语言的翻译规则,也是人类定义的,以中文为例,由于不同厂商的大模型采用了不同的文本切分方法,因此一个Token对应的汉字数量也会有所不同,但在通常情况下,1Token≈1-2个汉字。请注意,大模型的收费计算方法,以及对输入输出长度的限制,都是以token为单位计量的。上下文:英文通常翻译为context,指对话聊天内容前、后的内容信息。使用时,上下文长度和上下文窗口都会影响AI大模型回答的质量。上下文长度限制了模型一次交互中能够处理的最大token数量,而上下文窗口限制了模型在生成每个新token时实际参考的前面内容的范围(关于这一点,你需要看完3.2中关于GPT的讨论,方能更好理解)

Others are asking
我想要做一个ai工具,针对电子元器件行业,我来提供专业术语翻译的知识库和固定描述语句翻译方法,希望上传中文PDF后,可以下载一个翻译好的PDF,0编程基础应该怎么做呢
对于您这种没有编程基础但想要制作针对电子元器件行业的 AI 工具来实现中文 PDF 上传并下载翻译好的 PDF 的需求,以下是一些建议: 首先,您需要学习一些基本的 AI 概念和技术知识,了解自然语言处理(NLP)的基本原理。 其次,可以考虑使用现有的无代码或低代码 AI 开发平台。这些平台通常具有可视化的界面和易于操作的工具,能够帮助您在不编写代码的情况下构建简单的 AI 应用。 然后,针对您的专业术语翻译需求,需要对电子元器件行业的术语进行系统整理和分类,建立一个清晰的术语库。 同时,确定固定描述语句的翻译规则和方法,并将其转化为可在 AI 工具中应用的逻辑。 在实施过程中,要不断测试和优化您的工具,以确保翻译的准确性和质量。 总之,虽然没有编程基础会增加一定的难度,但通过合理利用现有资源和持续学习,您是有可能实现这个目标的。
2025-01-04
我想要做一个ai工具,针对电子元器件行业,我来提供专业术语翻译的知识库和固定描述语句翻译方法,希望上传中文PDF后,可以下载一个翻译好的PDF
目前针对您想要针对电子元器件行业制作一个能上传中文 PDF 并下载翻译好的 PDF 的 AI 工具的需求,暂时没有相关的现成内容和方法。但您可以考虑以下步骤来实现这一目标: 1. 数据准备:收集和整理电子元器件行业的专业术语、固定描述语句以及对应的翻译,构建一个丰富准确的知识库。 2. 选择合适的技术:例如自然语言处理技术和机器翻译算法,以实现对中文 PDF 的翻译。 3. 开发工具界面:设计一个用户友好的界面,方便用户上传中文 PDF 和下载翻译后的 PDF。 4. 测试和优化:对工具进行充分的测试,根据测试结果不断优化翻译的准确性和工具的性能。 这是一个较为复杂的项目,需要一定的技术和资源投入,但如果成功实现,将为电子元器件行业带来很大的便利。
2025-01-04
Sd文生图的专业术语有哪些
以下是一些关于 SD 文生图的专业术语: 1. 内容型提示词:主要用于描述想要的画面,如“1 个女孩,黑发,长发,校服,向上看,短袖,粉红色的花,户外,白天,蓝色的天空,云,阳光,上身,侧面”。 2. 标准化提示词:例如“,drawing,paintbrush”。 3. 权重:通过括号和特定数值来增加提示词的权重,权重越高在画面中体现越充分,提示词的先后顺序也会影响权重。 4. 反向提示词:告诉 AI 不要的内容,如“NSFw,”。 5. 采样迭代步数:指 AI 绘画去噪的次数,步数越高绘画越清晰,但绘画速度越慢,通常数值控制在 20 40 之间较好。 6. 采样方法:AI 生成图像时的特定算法,常用的有“Euler a;DPM++2S a Karras;DPM++2M Karras;DPM++SDE Karras;DDIM”。 7. 比例:尺寸并非越大越好,模型练图通常按 512x512 的框架绘制,高宽比尽量在这个数值附近。高清修复可放大图像倍率,高宽比主要控制画面比例。
2024-12-16
我想用ai生成图片,有什么工具
目前市场上有许多用于生成图片的工具,以下为您介绍: 1. 文生图工具: DALL·E:由 OpenAI 推出,可根据输入的文本描述生成逼真的图片。 StableDiffusion:开源的文生图工具,能生成高质量图片,支持多种模型和算法。 MidJourney:因高质量的图像生成效果和用户友好的界面设计而受欢迎,在创意设计人群中流行。 您还可以在 WaytoAGI 网站(https://www.waytoagi.com/category/104)查看更多文生图工具。 2. 图片生成 3D 建模工具: Tripo AI:VAST 发布的在线 3D 建模平台,能利用文本或图像在几秒钟内生成高质量且可立即使用的 3D 模型。 Meshy:功能全面,支持文本生成 3D、图片生成 3D 以及 AI 材质生成。 CSM AI:支持从视频和图像创建 3D 模型,Realtime Sketch to 3D 功能支持通过手绘草图实时设计 3D 形象,再转换为 3D 模型。 Sudo AI:支持通过文本和图像生成 3D 模型,适用于游戏领域的模型生成。 VoxCraft:由生数科技推出的免费 3D 模型生成工具,能将图像或文本快速转换成 3D 模型,并提供多种功能。 这些工具通常具有用户友好的界面,允许用户通过简单操作生成图片或 3D 模型,无需专业技能。它们可广泛应用于游戏开发、动画制作、3D 打印、视觉艺术等领域。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-25
有没有自动降低文章的aigc率的工具,中文的
目前尚未有专门用于自动降低文章 AIGC 率的中文工具。但您可以通过人工修改、调整表述方式、增加独特的观点和内容等方法来降低文章的 AIGC 特征。
2025-03-25
有哪些AI工具可以获取上市公司年报数据。我是小白,推荐简单好学的工具。
以下是一些可能获取上市公司年报数据的 AI 工具及相关信息: AI 智库:提供了上市公司的相关排名和产品信息,如百度、美图公司、阿里巴巴、昆仑万维等公司的情况。 余一的相关文档:包括《从 2023 年报,看中国上市公司怎么使用生成式 AI》等,可通过相关链接获取详细内容。 对于小白来说,您可以先尝试从这些资源中获取所需的上市公司年报数据。
2025-03-25
有没有自动降低文章的aigc率的工具
以下是一些能够自动检测并降低文章 AIGC 率的工具: 1. Turnitin: 功能:是广泛使用的学术剽窃检测工具,最近增加了检测 AI 生成内容的功能。 使用方法:用户上传论文,系统自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape: 功能:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。 使用方法:输入文本或上传文档,系统扫描网络以查找相似或重复的内容。 3. Grammarly: 功能:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。 使用方法:将文本粘贴到 Grammarly 的编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck: 功能:基于云的剽窃检测工具,适用于教育机构和学术研究,可检测 AI 生成内容的迹象。 使用方法:上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. : 功能:专门设计用于检测 AI 生成内容,使用先进的算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。 使用方法:上传文档或输入文本,系统提供详细报告,包括可能的 AI 生成内容。
2025-03-25
如何降低文章的aigc率
要降低文章的 AIGC 率,可以从以下几个方面入手: 1. 注重个人创作和思考:在写作过程中,充分发挥自己的知识、经验和创造力,减少对 AI 生成内容的依赖。 2. 深入研究和理解主题:通过广泛阅读相关资料,深入了解文章主题,从而能够以独特的视角和观点进行阐述。 3. 独特的表达风格:培养自己独特的语言表达风格,包括词汇运用、句式结构等,使文章具有鲜明的个人特色。 4. 增加细节和实例:通过详细描述具体的案例、经历或数据,丰富文章内容,使其更具真实性和可信度。 5. 人工审核和修改:在完成初稿后,仔细检查和修改,确保文章的逻辑、语言和内容均符合个人的创作思路。 此外,在学术研究和写作中,还可以使用一些 AIGC 论文检测网站和工具来辅助判断文章中是否存在 AI 生成的内容,例如: 1. Turnitin:是广泛使用的学术剽窃检测工具,增加了检测 AI 生成内容的功能。用户上传论文后,系统会自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统会扫描网络查找相似或重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,其剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统会提供分析报告。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统会分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. :专门设计用于检测 AI 生成内容的工具,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统会提供详细报告,包括可能的 AI 生成内容。
2025-03-25
免费降aigc率网站
以下是一些免费的 AIGC 检测网站: 1. :提供免费的 AI 内容检测工具,能识别文本是否由 AI 生成。使用方法是将文本粘贴到在线工具中,点击检测按钮,系统会提供分析结果。 2. GPTZero:专门设计用于检测由 GPT3 生成的内容,适用于教育和出版行业。使用时上传文档或输入文本,系统会分析并提供报告,显示文本是否由 GPT3 生成。 3. Content at Scale:提供 AI 内容检测功能,帮助识别文本是否由 AI 生成。使用时将文本粘贴到在线检测工具中,系统会分析并提供结果。 此外,在学术研究和写作中,还有一些常用的 AIGC 论文检测网站和工具: 1. Turnitin:广泛使用的学术剽窃检测工具,最近增加了检测 AI 生成内容的功能。用户上传论文,系统自动分析文本并提供详细报告,标示出可能由 AI 生成的部分。 2. Copyscape:主要用于检测网络上的剽窃行为,虽不是专门的 AIGC 检测工具,但能发现可能被 AI 生成的重复内容。输入文本或上传文档,系统扫描网络查找相似或重复内容。 3. Grammarly:提供语法检查和剽窃检测功能,剽窃检测部分可帮助识别可能由 AI 生成的非原创内容。将文本粘贴到编辑器中,选择剽窃检测功能,系统提供分析报告。 4. Unicheck:基于云的剽窃检测工具,适用于教育机构和学术研究,能检测 AI 生成内容的迹象。上传文档或输入文本,系统分析并生成报告,显示潜在的剽窃和 AI 生成内容。 5. :专门设计用于检测 AI 生成内容,使用先进算法分析文本,识别是否由 GPT3 或其他 AI 模型生成。上传文档或输入文本,系统提供详细报告,包括可能的 AI 生成内容。
2025-03-25
怎么用大模型赚钱
以下是关于如何用大模型赚钱的一些分析和建议: 1. 面向各国政府做基础大模型本土化预训练:很多 Global 的量化基金在中国会水土不服,大模型也存在类似情况。OpenAI、Google、Meta 的模型在中文能力和对中国国情的优化上存在不足,不符合政策要求。这给了国内大模型公司做本土化预训练的机会,只要做到国内领先,即使和世界领先的模型有代际差,也能有市场。 2. 关注行业应用:大模型在企业中的落地应用是关键。目前大模型是典型的赢家通吃领域,巨头在资金、技术和数据方面有优势。但大模型企业需要将技术与更多场景结合,打造落地应用。例如,Gartner 预测到 2028 年至少有 15%的日常工作决策将由代理型 AI 自主做出。 3. 竞争格局与成绩:国内大模型行业已形成以百度、阿里、字节等科技大厂和创业“AI 六小虎”为主要玩家的竞争格局。2024 年是国内大模型落地元年,中标项目数量和金额大幅增长。如百度在中标数量和金额上排名领先,在金融等细分行业也表现出色。 需要注意的是,大模型领域竞争激烈,只有极少数公司能成功,且需要将大模型商业化,否则企业可能在赛道比拼中失败。同时,大模型的发展与国家政策密切相关,需要受到有效监管才能健康发展。
2025-03-25
Qwen 多模态模型哪一个最顶?
目前阿里发布的 Qwen 多模态模型中,Qwen2.5VL 较为突出。它可处理长达数小时的视频,并在电脑上执行自动化任务。提供 3B、7B、72B 三种规模,旗舰版对标 GPT4o、Claude 3.5 Sonnet。具备全文档解析能力,支持手写、表格、图表、化学公式等多场景识别,还可操作电脑或手机界面,执行自动化任务,如点击按钮、填表等。详情可参考:https://www.xiaohu.ai/c/xiaohuai/qwen25vl285cee 。此外,Qwen2.5Max 也是阿里通义千问的大型专家模型(MoE),基于 SFT 和 RLHF 策略训练,在多项基准如 Arena Hard、LiveBench、LiveCodeBench、GPQADiamond 上超越 DeepSeek V3,引发社区关注。更多体验方式包括支持官方 Chat、API 接口、Hugging Face Demo 等,详情可参考:https://qwenlm.github.io/blog/qwen2.5max/ 、https://chat.qwenlm.ai 、https://alibabacloud.com/help/en/modelstudio/gettingstarted/firstapicalltoqwen?spm=a2c63.p38356.helpmenu2400256.d_0_1_0.1f6574a72ddbKE 、https://huggingface.co/spaces/Qwen/Qwen2.5MaxDemo 。
2025-03-25
我想搭建个人rag知识库,实现本地化部署,可以调用本地大模型去分析知识库的内容进行解答
以下是搭建个人 rag 知识库并实现本地化部署,调用本地大模型分析知识库内容进行解答的详细步骤: 一、通过 Open WebUI 使用大模型 1. 访问相关网址,使用邮箱注册账号。 2. 登陆成功后,Open WebUI 一般有两种使用方式,包括聊天对话和 RAG 能力(让模型根据文档内容回答问题,这是构建知识库的基础之一)。 3. 如果要求不高,此时已搭建本地大模型,并通过 Web UI 实现与大模型对话。ChatGPT 访问速度快且回答效果好的原因在于其服务器配置高、训练参数多、数据更优及训练算法更好。 二、本地知识库进阶 1. 若要更灵活掌控知识库,需使用额外软件 AnythingLLM,其包含 Open WebUI 的所有能力,并额外支持选择文本嵌入模型和向量数据库。 2. 安装地址:https://useanything.com/download 。安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 3. 在 AnythingLLM 中有 Workspace 的概念,可创建独有 Workspace 与其他项目数据隔离。首先创建工作空间,然后上传文档并在工作空间中进行文本嵌入,选择对话模式(包括 Chat 模式和 Query 模式),最后进行测试对话。 三、RAG 是什么 利用大模型搭建知识库是 RAG 技术的应用。在进行本地知识库搭建实操前,需对 RAG 有大概了解。RAG 应用可抽象为 5 个过程: 1. 文档加载:从多种来源加载文档,LangChain 提供 100 多种不同的文档加载器,包括非结构化、结构化数据及代码等。 2. 文本分割:文本分割器把 Documents 切分为指定大小的块,称为“文档块”或“文档片”。 3. 存储:涉及将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 4. 检索:通过检索算法找到与输入问题相似的嵌入片。 5. 输出:把问题及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示生成更合理的答案。 文本加载器是将用户提供的文本加载到内存中,便于后续处理。
2025-03-25
大神解读大模型底层
大模型的底层原理主要包括以下几个方面: 1. 生成式:大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,从给定的提示词“how”开始,通过计算推理依次输出“are”“you”等,直到计算出下一个词是“”时结束输出。 2. 预训练:大模型“脑袋”里存储的知识都是预先学习好的,这个预先学习并把对知识的理解存储记忆在“脑袋”里的过程称为预训练。以 GPT3 为例,训练它使用了约 4990 亿 token 的数据集,相当于 86 万本《西游记》。预训练需要花费大量时间和算力资源,且在没有外部帮助的情况下,大模型所知道的知识信息是不完备和滞后的。 3. 转换器模型(Transformer):Transformer 是一种处理文本内容的经典模型架构,虽然其具体细节不清楚不影响使用大模型,但感兴趣的可以通过相关链接进一步了解。 4. 参数规模:依靠概率计算逐字接龙的方法看似难以生成高质量回答,但随着参数规模的增加,如从 GPT1 的 1.5 亿到 GPT3.5 的 1750 亿,实现了量变到质变的突破,“涌现”出惊人的“智能”。这种“涌现”现象在人类的进化和个体学习成长历程中也存在。
2025-03-24
模型理解汉字能力很差
目前模型在理解汉字方面存在一些问题,主要表现为: 1. 语义理解较差,例如在某些应用场景中对中文的理解不够准确。 2. 中文汉字的集合较大,纹理结构更复杂,增加了理解难度。 3. 缺少中文文字的图文对数据,影响了模型对汉字的学习和理解。 为了提升模型对中文文字的生成能力,采取了以下措施: 1. 选择 50000 个最常用的汉字,机造生成千万级的中文文字图文对数据集,但机造数据真实性不足。 2. 实用 OCR 和 MLLM 生成海报、场景文字等真实中文文字数据集,约百万量级。通过结合高质量真实数据,提升了中文文字生成能力的真实性,即使是真实数据中不存在的汉字的真实性也有所提高。
2025-03-24
有哪些效果好的开源OCR模型值得推荐
以下是一些效果较好的开源 OCR 模型推荐: 1. Mistral OCR:当前最强的 OCR 模型,具有多语言支持,超越 Gemini 2.0 Flash,可在 Le Chat 及 API 调用。ElevenLabs 赠送 $25 Mistral API 额度,免费领取!领取地址: 2. Gemini 2.0 Flash:也是一款 OCR 模型。
2025-03-24