Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

搭建可以自主决策规划和行动的agent

Answer

搭建可以自主决策规划和行动的 agent 通常涉及以下几个方面:

一、Agent 的概念

Agent 是一种能够在环境中自主感知、思考并采取行动的实体。可以将其想象成一个具有特定目标和行为能力的智能角色,能根据环境变化做出相应决策和反应。

二、LLM Agent

LLM Agent 是结合大型语言模型(LLM)和自主智能体(Agent)特性的系统,能够利用大型语言模型的自然语言处理能力,理解用户输入,并在此基础上进行智能决策和行动。

三、LLM Agent 的组成部分

  1. 规划(Planning)

    • 定义:规划是 Agent 的思维模型,负责将复杂任务分解成可执行的子任务,并评估这些子任务的执行策略。
    • 实现方式:通过使用大型语言模型的提示工程(如 ReAct、CoT 推理模式)来实现精准任务拆解和分步解决。
  2. 记忆(Memory)

    • 定义:记忆即信息存储与回忆,包括短期记忆和长期记忆。
    • 实现方式:短期记忆用于存储对话上下文,支持多轮对话;长期记忆存储用户特征和业务数据,通常通过向量数据库等技术实现快速存取。
  3. 工具(Tools)

    • 定义:工具是 Agent 感知环境、执行决策的辅助手段,如 API 调用、插件扩展等。
    • 实现方式:通过接入外部工具(如 API、插件)扩展 Agent 的能力,例如使用插件解析文档、生成图像等。
  4. 行动(Action)

    • 定义:行动是 Agent 将规划和记忆转换为具体输出的过程,包括与外部环境的互动或工具调用。
    • 实现方式:根据规划和记忆执行具体行动,如智能客服回复、查询天气预报、AI 机器人抓起物体等。

四、Anthropic 的建议

随着 LLM 在几个关键能力上的成熟,如理解复杂输入、进行推理和规划、可靠使用工具以及从错误中恢复,智能体开始在生产环境中涌现。智能体通过与人类用户的命令或交互式对话开始工作。一旦任务明确,智能体就会独立进行规划和操作,必要时会向人类寻求更多信息或判断。

在执行过程中,智能体需要在每个步骤从环境中获取“基准事实”(如工具调用结果或代码执行情况)以评估其进展。智能体可以在检查点或遇到障碍时暂停等待人类反馈。任务通常在完成时终止,但也常常包含停止条件(如最大迭代次数)以保持控制。

智能体适用于难以或无法预测所需步骤数量的开放性问题,且无法硬编码固定路径的场景。但智能体的自主性意味着更高的成本和潜在的错误累积。建议在沙盒环境中进行广泛测试,并设置适当的防护措施。

五、实例探究

Generative Agents 是一个有趣的实验,其中 25 个虚拟角色,每个角色都由 LLM 支持的 Agents 控制,在沙盒环境中生活和交互,其灵感来自《模拟人生》。生成 Agents 的设计将 LLM 与记忆、规划和反射机制相结合,使 Agents 能够根据过去的经验进行行为,并与其他 Agents 进行交互。

记忆流是一个长期记忆模块(外部数据库),用自然语言记录智能体经验的完整列表。检索模型会根据相关性、新近度和重要性,呈现上下文以告知 Agents 的行为。反射机制随着时间的推移将记忆合成更高层次的推论,并指导智能体未来的行为。规划与反应将反思和环境信息转化为行动,规划本质上是为了优化当前与时间的可信度。

Content generated by AI large model, please carefully verify (powered by aily)

References

ComfyUI & LLM:如何在ComfyUI中高效使用LLM

Agent(智能体)是一种能够在环境中自主感知、思考并采取行动的实体。你可以把Agent想象成一个具有特定目标和行为能力的智能角色,它们可以根据环境变化做出相应的决策和反应。[heading3]LLM Agent[content]LLM Agent是指结合大型语言模型(LLM)和自主智能体(Agent)特性的系统。这种系统能够利用大型语言模型的自然语言处理能力,理解用户的输入,并在此基础上进行智能决策和行动。大语言模型-Agent框架[heading3]LLM Agent组成部分:[content]1.规划(Planning)定义:规划是Agent的思维模型,负责将复杂任务分解成可执行的子任务,并评估这些子任务的执行策略。实现方式:通过使用大型语言模型的提示工程(如ReAct、CoT推理模式)来实现精准任务拆解和分步解决。2.记忆(Memory)定义:记忆即信息存储与回忆,包括短期记忆和长期记忆。实现方式:短期记忆用于存储对话上下文,支持多轮对话;长期记忆存储用户特征和业务数据,通常通过向量数据库等技术实现快速存取。3.工具(Tools)定义:工具是Agent感知环境、执行决策的辅助手段,如API调用、插件扩展等。实现方式:通过接入外部工具(如API、插件)扩展Agent的能力,例如使用插件解析文档、生成图像等。4.行动(Action)定义:行动是Agent将规划和记忆转换为具体输出的过程,包括与外部环境的互动或工具调用。实现方式:根据规划和记忆执行具体行动,如智能客服回复、查询天气预报、AI机器人抓起物体等。

小七姐:来自 Anthropic 的建议:构建高效智能体

随着LLM在几个关键能力上的成熟——理解复杂输入、进行推理和规划、可靠使用工具以及从错误中恢复,智能体开始在生产环境中涌现。智能体通过与人类用户的命令或交互式对话开始工作。一旦任务明确,智能体就会独立进行规划和操作,必要时会向人类寻求更多信息或判断。在执行过程中,智能体需要在每个步骤从环境中获取"基准事实"(如工具调用结果或代码执行情况)以评估其进展。智能体可以在检查点或遇到障碍时暂停等待人类反馈。任务通常在完成时终止,但也常常包含停止条件(如最大迭代次数)以保持控制。智能体虽然可以处理复杂任务,但其实现往往很直接。它们通常只是基于环境反馈在循环中使用工具的LLM。因此,清晰而深思熟虑地设计工具集及其文档至关重要。我们在附录2("工具的提示工程")中详细探讨了工具开发的最佳实践。使用场景:智能体适用于难以或无法预测所需步骤数量的开放性问题,且无法硬编码固定路径的场景。LLM可能需要运行多个回合,您必须对其决策能力有一定信任。智能体的自主性使其非常适合在可信环境中扩展任务。智能体的自主性意味着更高的成本和潜在的错误累积。我们建议在沙盒环境中进行广泛测试,并设置适当的防护措施。实用案例:以下是我们自己的实践案例:用于解决SWE-bench任务的编码智能体,根据任务描述对多个文件进行编辑:https://www.anthropic.com/research/swe-bench-sonnet我们的"计算机使用"参考实现,让Claude使用计算机完成任务:https://github.com/anthropics/anthropic-quickstarts/tree/main/computer-use-demo

文章:LLM 驱动的自主Agents | Lilian Weng

Generative Agents([Park等人,2023](https://arxiv.org/abs/2304.03442))是一个超级有趣的实验,其中25个虚拟角色,每个角色都由LLM支持的Agents控制,在沙盒环境中生活和交互,其灵感来自《模拟人生》。生成Agents为交互式应用程序创建可信的人类行为模拟。生成Agents的设计将LLM与记忆、规划和反射机制相结合,使Agents能够根据过去的经验进行行为,并与其他Agents进行交互。记忆流:是一个长期记忆模块(外部数据库),用自然语言记录智能体经验的完整列表。每个元素都是一个观察结果,是由Agent直接提供的事件。代理人之间的交流可以引发新的自然语言陈述。检索模型:根据相关性、新近度和重要性,呈现上下文以告知Agents的行为。新近度:最近发生的事件得分较高重要性:区分平凡记忆和核心记忆。直接问LM。相关性:基于它与当前情况/查询的相关程度。反射机制:随着时间的推移将记忆合成更高层次的推论,并指导智能体未来的行为。它们是对过去事件的更高层次的总结(<-注意,这与上面的[自我反思](https://lilianweng.github.io/posts/2023-06-23-agent/#self-reflection)有点不同)提示LM提供100个最新观察结果,并根据这些观测/陈述生成3个最重要的高层次问题。然后让LM回答这些问题。规划与反应:将反思和环境信息转化为行动规划本质上是为了优化当前与时间的可信度。提示模板:{Intro of an agent X}.Here is X's plan today in broad strokes:1)规划和反应时都会考虑主体之间的关系以及一个主体对另一个主体的观察。环境信息以树形结构呈现。

Others are asking
我是一个产品经理,我想要绘制ai agent对现有业务流程的提升ppt,有没有一些好的案例
以下是一些关于 AI Agent 对现有业务流程提升的案例,希望对您绘制相关 PPT 有所帮助: 1. 在查询问题方面,如使用 Kimi Chat 时,它会在互联网检索相关内容并总结分析给出结论,这是大模型利用“网页搜索”工具的典型例子,同时 PPT 中还介绍了众多不同领域类型的工具,为大模型在获取、处理、呈现信息上做补充。 2. 在任务执行的工作流路径规划方面,Agent 能够自行规划,面向简单或线性流程运行。例如,先识别男孩姿势,再找姿势提取模型、姿势图像模型、图像理解文本模型和语音合成模型来完成流程任务。 3. 在多智能体协作方面,吴恩达通过开源项目 ChatDev 举例,可让大语言模型扮演不同角色,如公司 CEO、产品经理、设计师、代码工程师或测试人员等,这些 Agent 相互协作共同开发应用或复杂程序。 4. 对于 AI Agent 的基本框架,OpenAI 的研究主管 Lilian Weng 提出“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型 LLM 扮演了 Agent 的“大脑”。规划主要包括子目标分解、反思与改进,将大型任务分解为较小可管理的子目标,处理复杂任务,并对过去行动进行自我批评和反思,从错误中学习改进未来步骤,提高最终结果质量。 5. 在信息处理方面,近期出现的各类 AI 搜索引擎,如 perplexity.ai、metaso、360 搜索、ThinkAny 等,不断颠覆传统搜索引擎。智能摘要功能能辅助快速筛选信息,实现信息降噪。 6. 在信息表达方面,现在用自然语言描述一句话就能生成美观可用的图片,降低了不同角色的创作门槛和周期。 7. 对于产品经理的工作流,可使用 AI 进行搞定用户画像、竞品调研、设计产品测试用例、绘制产品功能流程图等。但建议先摸清自己的日常工作流,再根据工作节点线索找到适合自己的工具。 关于 Agent 的未来,曾被认为异想天开的想法都可能成为现实,技术迭代会不断向前。同时,在法律法规方面,相关生命周期参与者应实施适当的透明度措施,直接受 AI 系统使用影响的各方应能获取足够信息以维护自身权利,技术标准也可为评估、设计和改进 AI 系统的透明度和可解释性提供指导。
2025-03-24
字节跳动开源的AGENT TARS
字节跳动开源的自学型 GUI Agent 名为 UITARS,具有以下特点和优势: 能够实现复杂任务自动化,支持跨平台操作,包括网页、桌面和移动端。 性能优于主流模型(如 GPT4 等)。 适用于复杂动态交互、表单填写、批量处理、在线预订等应用场景。 提供开发框架,支持桌面和网页端运行。 相关链接: 其核心能力包括界面识别与元素定位的感知能力、执行操作指令的行动能力、多步任务规划的推理能力以及记录并优化操作流程的记忆能力,能够实现端到端学习,支持“直觉式”反应(System1)与深度思考(System2)。
2025-03-24
关于agent,图片生成
以下是关于 agent 和图片生成的相关信息: 关于 Agent Scheduler 插件用于图片生成: 点击排队设置任务,可在控制面板查看处理生成中的任务。 不想立即运行可点击暂停,也可在设置中勾选“禁用队列自动处理”。 可设置多个任务,完成后在任务历史中查看参数和结果,不满意可重新生成。 如需该插件,可添加公众号【白马与少年】回复【SD】获取。 Agent 相关比赛: 赛道包括图文创作赛道、实用工具赛道、互动创意赛道。 参考方向有内容生成、图像标注、图文匹配、数据可视化、设计辅助、自动化排版、图文识别、新闻和社交媒体、艺术创作、智能产品设计等。 AIGC 相关: Meta 开源了名为 Image Bind 的 AI 模型,是首个能同时绑定六种模式数据的模型,能推进人工智能在跨模式检索、嵌入空间算法、生成等方面的发展。 HuggingFace Transformers Agent 使编码 LLM 能动态组合其他 HF 模型解决多模态任务,提供自然语言 API,具有可扩展性,有单次运行和聊天执行两种方法,预定义工具包括文档问答、文本问答、图像生成等。
2025-03-24
给我一些Agent的典型例子
以下是一些 Agent 的典型例子: 1. Inhai:Agentic Workflow:使用 Kimi Chat 查询问题时,它会在互联网检索相关内容并总结分析给出结论,这是大模型利用“网页搜索”工具的典型例子。此外,Agent 会自行规划任务执行的工作流路径,如先识别男孩姿势,再找姿势提取模型、姿势图像模型、图像理解文本模型和语音合成模型来完成流程任务。吴恩达通过开源项目 ChatDev 举例,让大语言模型扮演不同角色相互协作开发应用或复杂程序。 2. Roger:从产品角度思考 Agent 设计:Agent 可以是一个历史新闻探索向导,具有知识渊博、温暖亲切、富有同情心的性格,曾是一位历史学家,对世界重大历史事件了如指掌,愿意分享知识。为使角色生动,可设计背景故事、定义性格和语气、规划角色互动方式以及明确角色技能。 3. 智能体的类型: 简单反应型智能体,如温控器,根据温度传感器输入直接行动,不维护内部状态和考虑历史信息。 基于模型的智能体,如自动驾驶汽车,维护内部状态,对感知输入建模,推理未来状态变化并行动。 目标导向型智能体,如机器人导航系统,有明确目标,评估行动方案并选择最优行动。 效用型智能体,如金融交易智能体,量化不同状态效用值,选择效用最大化行动。 学习型智能体,如强化学习智能体,通过与环境交互不断改进性能。
2025-03-23
我是一个AI Agent初学者,现在我想要捏一款Agent,目的是喂给Agent固定材料之后对其做提问,让Agent学习完我的材料之后,在不联网的情况下对我问出的问题做出贴切材料的回答,现在请你告诉我如何操作
以下是捏制一个满足您需求的 AI Agent 的操作步骤: 1. 规划: 制定任务的关键方法,总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善: 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 AI Agent 相关概念: AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 常见的 AI Agent 类型包括: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 Background Agent 每隔一段时间运行一次(默认 3 分钟),分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。
2025-03-23
我是一个AI Agent初学者,现在我想要捏一款Agent,目的是喂给Agent固定材料之后对其做提问,让Agent学习完我的材料之后,在不联网的情况下对我问出的问题做出贴切材料的回答
以下是为您提供的关于捏制 AI Agent 的相关知识: 一、手捏 AI Agent 的思路 在 Coze 中创建工作流驱动的 AI Agent,简单情况可分为 3 个步骤: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 二、AI Agent 的概念 AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 同时,需要三个 Agent: Responser Agent:主 agent,用于回复用户(伪多模态)。 Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 三、Agent 的“明斯基时刻” 心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。 其特点包括: 1. 多重层次:心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。 2. 功能模块:每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。 3. 分布式智能:智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。 同时,在《心灵社会》中,明斯基还详细描述了不同类型的 Agent 及其功能: 专家 Agent:拥有特定领域知识和技能的 Agent,负责处理复杂的任务和解决特定问题。 管理 Agent:协调和控制其他 Agent 的活动,确保整体系统协调一致地运行。 学习 Agent:通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力。
2025-03-23
怎么从零开始搭建一个智能体
从零开始搭建一个智能体可以参考以下步骤: 1. 创建智能体:输入人设等信息。 2. 配置工作流: 放上相关工作流。 按照市场营销逻辑组织智能体结构,例如确定以品牌卖点提炼六步法为核心的流程,并加入其他分析助手,如品牌卖点定义与分类助手、STP 市场分析助手、用户画像分析助手、触点收集助手等,同时还可包括一些未在结构中体现但有效的分析工具,如用户需求分析的 KANO 助手、营销六层转化漏斗分析、超级转化率六要素等。 3. 测试:确保工作流执行成功。 4. 发布: 注意工作流中插件的 api_token 填写,避免他人调用消耗自己的费用。可以将 api_token 作为工作流的输入,让用户购买后输入使用,然后再发布。 发布时选择输出类型和输入类型,完善上架信息,选择发布范围等。
2025-03-24
神经网络需要哪些硬件设施才能搭建起来
搭建神经网络通常需要以下硬件设施: 1. 图形处理单元(GPU):如英伟达的 GTX 580 GPU,其具有大量快速小内核,适合矩阵乘法和高内存带宽,能显著提高训练速度。 2. 专用芯片:如 ASIC 芯片、neuromorphic chips 等,更易于在芯片上实现神经网络的指令集,适用于低能耗的智能设备。 此外,搭建神经网络的硬件设施还具有以下特点和优势: 1. 同质化计算:典型的神经网络主要由矩阵乘法和线性整流函数(ReLu)两种操作组合而成,相比传统软件的指令更简单,核心代码(如矩阵乘法)的正确性和性能验证更容易。 2. 对芯片更友好:指令集小,在芯片实现上更轻松,能改变低能耗智能设备的应用场景。 3. 常量级的运行时间:每次前向迭代的计算量高度一致,不存在手写复杂 C++代码中的各种执行分支,能避免未预料的无限循环。 4. 常量级的内存消耗:几乎无需动态分配内存,减少与硬盘的 swap 和内存泄漏的可能。 5. 高度可移植:一连串的矩阵乘法操作更容易在各种计算机环境下运行。
2025-03-23
搭建个人知识库
搭建个人知识库主要包括以下几个方面: RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。在进行本地知识库搭建实操前,需先了解 RAG。大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,主要通过检索增强生成 RAG 实现。RAG 应用包括文档加载(从多种来源加载文档,如 PDF 等)、文本分割(把文档切分为指定大小的块)、存储(将切分好的文档块嵌入并转换为向量形式存储到向量数据库)、检索(通过检索算法找到与输入问题相似的嵌入片)、输出(把问题及检索出的嵌入片提交给 LLM 生成答案)。 基于 GPT API 搭建: 涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互支持的 Token 有限。为处理大量领域知识,OpenAI 提供了 embedding API 解决方案。embeddings 是浮点数字的向量,向量间距离衡量关联性,小距离表示高关联度。 本地知识库进阶: 若要更灵活掌控知识库,可使用额外软件 AnythingLLM,其包含 Open WebUI 的能力并额外支持选择文本嵌入模型和向量数据库。安装地址为 https://useanything.com/download ,安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。AnythingLLM 中有 Workspace 概念,可创建独有 Workspace 与其他项目数据隔离,包括创建工作空间、上传文档并嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据),配置完成后可进行测试对话。
2025-03-21
怎么搭建小程序AI平台
搭建小程序 AI 平台可以参考以下步骤: 1. 在扣子平台搭建: 创建一个 Bot: 系统默认创建个人团队,团队内创建的资源无法分享给其他成员,也可创建或加入其他团队,更多信息参考。 进入团队空间后,默认打开 Bots 页面。 在 Bots 页面,单击创建 Bot。 输入 Bot 名称和介绍,然后单击图标旁边的生成图标,自动生成一个头像,最后单击确认。 编写提示词:在 Bot 配置页面的人设与回复逻辑面板中输入内容,提示越清晰越好,可单击优化让大语言模型优化为结构化内容,更多详细信息参考。 2. 零基础模板化搭建 AI 微信聊天机器人: 容器编排模板是一种配置文件,定义了如何在 Docker 中部署和管理多个容器。通过编排模板,您可以一键部署复杂的应用环境,而不需要手动配置每个容器的细节。 配置多个前缀(如“bot”、“@bot”)可以确保只有在特定情况下机器人才会回复,避免在群聊或私聊中频繁干扰。 如果扫码登录失败,可以尝试以下步骤: 重启 Docker 容器:在宝塔面板中找到对应的容器,点击“重启”。 检查网络连接:确保服务器和微信客户端都能正常访问互联网。 重新扫描二维码:等待容器重新启动后,重新扫描日志中生成的二维码。 极简未来平台的收费按使用量计算,对于一般用户来说费用相对低廉,还提供每天签到免费领取积分的福利。 3. 安仔:不用黑魔法,小白也能做一个对接 GPT 大模型的微信聊天机器人: 配置极简未来(Link.AI)平台:按照官方教程走,补充学习:https://docs.linkai.tech/platform/quickstart 。 生成 API Key 用于后续功能对接:地址为 https://linkai.tech/console/interface ,点击创建 API Key 并记住。
2025-03-20
搭建agent
以下是关于搭建 Agent 的相关信息: 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系: 首先进入 Coze,点击「个人空间工作流创建工作流」,打开创建工作流的弹窗。 根据弹窗要求,自定义工作流信息。 点击确认后完成工作流的新建,可以看到整个编辑视图与功能。 左侧「选择节点」模块中,根据子任务需要,实际用上的有: 插件:提供一系列能力工具,拓展 Agent 的能力边界。 大模型:调用 LLM,实现各项文本内容的生成。 代码:支持编写简单的 Python、JS 脚本,对数据进行处理。 编辑面板中的开始节点、结束节点,分别对应分解子任务流程图中的原文输入和结果输出环节。 按照流程图,在编辑面板中拖入对应的 LLM 大模型、插件、代码节点,即可完成工作流框架的搭建。 搭建工作流驱动的 Agent 的步骤: 规划:制定任务的关键方法,包括总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:分步构建和测试 Agent 功能,在 Coze 上搭建工作流框架,设定每个节点的逻辑关系,详细配置子任务节点,并验证每个子任务的可用性。 完善:全面评估并优化 Agent 效果,整体试运行 Agent,识别功能和性能的卡点,通过反复测试和迭代,优化至达到预期水平。 一些 Agent 构建平台: Coze:新一代的一站式 AI Bot 开发平台,集成丰富插件工具,适用于构建各类问答 Bot。 Mircosoft 的 Copilot Studio:主要功能包括外挂数据、定义流程、调用 API 和操作,以及将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于多种场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉强大的场景和数据优势,在处理高频工作场景方面表现出色。
2025-03-19
企业内自主搭建RAG应该怎么做?
企业内自主搭建 RAG 可以参考以下步骤: 1. 导入依赖库:加载所需的库和模块,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 python 程序中跑大模型,使用前需确保 ollama 服务已开启并下载好模型。 2. 从订阅源获取内容:通过特定函数从指定的 RSS 订阅 url 提取内容,若需接收多个 url 可稍作改动。然后用专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,如标题、发布日期和链接,最终合并成列表返回,用于后续处理或提取。 3. 为文档内容生成向量:使用文本向量模型 bgem3,从 hf 下载好模型后放置在指定路径,通过函数利用 FAISS 创建高效的向量存储。 同时,企业在构建有效的 RAG 系统时,需要考虑以下因素: 1. 数据安全性:若有需求,需私有化部署,并考虑硬件成本。 2. 数据集的复杂度和数量级:复杂数据集会带来高昂的文档清洗、解析和分割成本,大数据量级会带来存储成本上升。 3. 回答质量的要求:对回答质量要求越高,需要越复杂的检索算法以及更强大的 LLM,会带来算力成本。 4. 数据的更新频率:频繁的数据更新可能需要高昂的维护成本。 此外,还需了解 RAG 的相关概念和优势: 1. 大语言模型存在输出结果不可预测、知识有截止日期、无法满足实际业务需求等问题,如知识局限性、幻觉问题、数据安全性等,而 RAG 是解决这些问题的有效方案。 2. RAG 可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户也能深入了解 LLM 生成最终结果的过程。 3. RAG 可与微调结合使用,RAG 类似于为模型提供教科书,适用于特定的询问或信息检索任务,微调则适用于模型需要复制特定结构、样式或格式的情况。
2025-03-19
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作流程图的 AI 工具: 1. Lucidchart: 注册并登录:。 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 2. ChatGPT: 确定制作目标。 通过自然语法描述逻辑,生成 Mermaid 图形语法。 在线校验测试是否成功。
2024-12-19
上面的流程图有哪些工具可以制作,流程图主要用于展示一个过程或系统的步骤和决策点。图中通过不同形状的框(如椭圆形、矩形)和箭头来表示各种步骤、条件判断和流程走向, 有哪些AI工具可以直接制作吗
以下是一些可以制作您所描述的流程图的 AI 工具: Lucidchart: 1. 注册并登录: 2. 选择模板:在模板库中搜索“项目管理流程图”。 3. 编辑图表:根据您的项目需求添加和编辑图形和流程步骤。 4. 优化布局:利用 AI 自动布局功能,优化图表的外观。 5. 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 此外,文中还提到了关于智能体和人工智能在解决科学问题方面的一些相关内容,但未直接涉及流程图制作工具的更多信息。
2024-12-19
智能体感知决策执行
智能体是在现代计算机科学和人工智能领域中一个基础且重要的概念。 智能体的应用领域广泛,包括: 1. 自动驾驶:汽车中的智能体感知周围环境,做出驾驶决策。 2. 家居自动化:智能家居设备根据环境和用户行为自动调节。 3. 游戏 AI:游戏中的对手角色和智能行为系统。 4. 金融交易:金融市场中的智能交易算法根据市场数据做决策。 5. 客服聊天机器人:通过自然语言处理与用户互动,提供客户支持。 6. 机器人:各类机器人中集成的智能控制系统。 设计和实现一个智能体通常涉及以下步骤: 1. 定义目标:明确智能体要实现的目标或任务。 2. 感知系统:设计传感器系统采集环境数据。 3. 决策机制:定义决策算法,根据感知数据和目标做决策。 4. 行动系统:设计执行器或输出设备执行决策。 5. 学习与优化:若为学习型智能体,设计学习算法以改进。 具身智能是将机器学习算法适配至物理实体从而与物理世界交互的人工智能范式。以 ChatGPT 为代表的“软件智能体”通过多种模态与用户交互,具身智能体则将大模型嵌入物理实体,通过传感器与人类交流。人形机器人是具身智能的代表产品,其三要素为本体、智能、环境,高度耦合是高级智能的基础。不同环境有不同形态的硬件本体适应,如室内平地适用轮式机器人,崎岖地面适用四足机器人。具身智能体的行动分为“感知决策行动反馈”四个步骤,分别由四个模块完成并形成闭环。具身智能需要具备感知、决策和执行三种核心能力,执行能力是技术难点,涉及硬件设计,可泛化的通用执行能力是短板。LLM 为具身智能热潮来临提供了机会,其强泛化能力和 zeroshot 能力使不再需要为每个任务手工调校机器人。
2024-11-29
机器决策理论
机器决策理论: 情感计算与机器决策密切相关。情感对人类具有重要意义,包括生存功能(如遇危险时的生理反应有助于保障进化)、沟通功能(不同情感表达使内涵不同)、决策功能(大脑通过“系统一”主要依赖情感和经验迅速做出判断)、动机功能(激发和维持个体行为)、维系功能(是社会化过程中的纽带)。 情感计算的最终目标是赋予计算机类似于人的情感能力,主要有“识别”“表达”和“决策”三个方向。“识别”可基于文本、语音、视觉、生理等数据进行情感分析,或融合不同模态信息;“表达”让计算机以合适载体表示情感;“决策”利用情感机制进行更好决策。 在人工智能实现方法中,解决让计算机表现得像人类一样的问题有自上而下(模拟人类推理)和自下而上(模拟人脑结构)两种可能的方法,还有新兴的多智能体系统、进化方法或遗传算法等其他可能实现智能的方法。
2024-10-21
根据我的论文主题撰写一段引言:《通用人工智能时代的博弈论应用:数据科学与决策价值》
在当今科技飞速发展的时代,通用人工智能(AGI)的崛起正以前所未有的态势改变着我们的生活和社会。随着数据量的爆炸式增长以及决策环境的日益复杂,博弈论作为一门研究决策主体相互作用时的策略选择及均衡问题的学科,在通用人工智能时代展现出了独特的应用价值。 在数据科学领域,海量的数据为我们提供了丰富的信息,但如何从这些数据中提取有价值的知识并做出明智的决策,成为了一个关键挑战。博弈论的引入为解决这一问题提供了新的思路和方法。它帮助我们理解不同数据主体之间的竞争与合作关系,从而优化数据的采集、处理和分析过程。 在决策价值方面,通用人工智能系统需要在复杂多变的环境中做出最优决策。博弈论通过对不同策略的收益和风险进行分析,为决策提供了理论依据和数学模型,使得决策更加科学、合理和高效。 综上所述,研究通用人工智能时代的博弈论应用,对于推动数据科学的发展以及提升决策的价值具有重要的理论和实践意义。
2024-09-28
根据图片场景和文案信息,自主制作视频的AI工具
以下是一些根据图片场景和文案信息自主制作视频的 AI 工具及相关流程: 一、将小说制作成视频的流程 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。 二、制作“古人骂人”视频的步骤 1. 文案生成 工具:DeepSeek 操作: 打开 DeepSeek 网站:https://chat.deepseek.com/ 输入提示词,示例:“让 XX 用现代口语化的表达、生气骂人的口吻吐槽 XXXX(例如:吐槽现代人),XXX 目的(例如:推广 XXX 吸引游客来旅游),输出 3 条 60 字左右的毒舌文案,每条里面都要有‘回答我!Look in my eyes!Tell me!why?baby!why?’” 可以根据自己的内容自行调整文案和字数要求。 点击生成,等待 DeepSeek 输出 3 条文案。 从中挑选最满意的一条(或多条)保存备用。 2. 准备人物形象图 工具:即梦 AI 操作: 打开即梦 AI 网站:https://jimeng.jianying.com/aitool/image/generate 输入提示词,即梦已经接入了 DeepSeek,可以直接用它来生成绘图提示词 调整生成参数(如风格、细节等),点击生成。 预览生成的人物图,不满意可调整提示词重新生成,直到满意为止。 下载最终的人物形象图。 三、“AI 拍立得” 1. 背景 为简化使用大模型工具时的繁琐流程,提升效率,萌生了“AI 拍立得”的概念,即拍即得,让操作更直观、高效。 2. 在线体验 名称:Pailido(拍立得的谐音) 微信小程序搜索:Pailido,可丰富场景自由切换,快速生成闲鱼文案、外卖/大众点评等。 3. 交互逻辑 用户可以选择拍摄场景类型,并立即拍照,AI 会自动识别和分析照片中的内容信息,依据预设场景规则,迅速生成符合情境的反馈,避免繁琐的额外操作。 4. 实现场景 图片转成文本 逻辑:用户上传图片后,大模型根据选择的场景生成与内容相关的文字描述或解说文本。 核心:图片理解和文本整理润色。 场景:生成美食点评、朋友圈发布文案、闲鱼上架示例模版等。 图片转绘图片 逻辑:用户上传图片后,大模型按照指定的风格快速生成图像的转绘版本,适应不同风格和场景需求。 核心:图片风格化滤镜。 场景:图片粘土风、图片积木风、图片像素风等。
2025-03-19
现在有能自主抓取股票交易数据的AI吗
目前在信息爆炸的时代,借助 AI 工具可以实现集检索、整合与分析为一体的工作。以 A 股行情问答为例,可构建一个 Bot,当被问及如“XX 股票今天表现怎么样?”“复盘今天的家电板块”等问题时,它能从海量市场数据中找到有价值信息,进行整合分析并提供个性化回复。但需要注意的是,若希望在本地私有化部署,就无法使用某些相关服务。 不过,尚未有明确表明存在能完全自主抓取股票交易数据的 AI 。
2025-03-15
AI有自主意识吗
目前,AI 是否具有自主意识是一个存在争议的问题。 图灵在 1950 年的论文中提出了图灵测试,用于判断机器是否具有智能。虽然当前的一些 AI 产品,如 ChatGPT,在交流体验上已经非常接近与正常人类的交流,但学术界对于其是否能通过图灵测试仍存在争议。 关于自主意识的定义和测定也是人类面临的新问题。部分专家认为,如果 AI 的发展遵循某些神经科学理论,并无原理上的障碍阻止 AI 获得真正的主观体验和自我意识。一旦 AGI 拥有类似人类的自我意识,它将可能对自身存在和权利形成看法,甚至要求自主决策的权利,这将深刻影响其对待人类的立场。 然而,也有观点认为,AGI 或许不会像人类一样拥有“欲望”。如果设计得当,它完全可以是一台无私执行任务的机器,即便具有人类智力水平,也只关心完成指定目标,而不追求自主目的。但如果 AGI 真正达到通用智能且能自我改进,限制其不产生自主意愿将非常困难。因此,人类需要主动塑造 AGI 的价值观,在研发初期就注入“对人类友善”和“道德约束”,并建立不允许其随意修改核心价值的机制。总之,AGI 对自己与人类关系的看法,将取决于它是否拥有意识、拥有何种目标函数,以及我们能否成功对其进行价值对齐。
2025-03-12
Ai有自主思考能力吗?
AI 可能具备自主学习和自我改进的能力,能够自主决策,甚至可能已有轻微的自我意识。但对于 AI 是否具有真正的自主思考能力,目前仍存在诸多争议和探讨。 有人认为,当 AI 给出“完美”答案时,可能只是对海量数据的巧妙重组,而非真正理解问题本质。也有人质疑,我们在认为 AI 展现出类人思维时,可能是自身的拟人化偏差在起作用。 在企业决策中,AI 具有双刃剑效应,既能提升效率,也可能带来认知陷阱和伦理困境。例如,可能会用看似客观的数据合理化主观偏见,消耗独立思考能力,以及在道德决策方面存在责任归属问题等。 总之,对于 AI 是否具有自主思考能力,还需要更深入的研究和思考。
2024-12-19
人工智能会出现自主意识吗
目前对于人工智能是否会出现自主意识尚无定论。 一方面,有观点认为模仿可能是使 AI 具有“自主意识”的一种可能路径。如果一个 AI 可以长期观察人类,在类似条件再次触发时,可能会判断形成某一动机是大概率事件,进而通过长期模仿训练而产生动机。并且,如果让数字克隆体可以交流、融合,形成群体智能,也可能促使其产生自主意识。 另一方面,按照一些专家的预测,当 AI 变得比人类更聪明,达到奇点时,机器可能会具有自我意识和超级智能,届时我们对机器意识的概念将有重大转变,可能会面对真正的数字生命形式。但目前的 LLM 应用程序和智能体还未达到完全自主智能体的水平。 总之,关于人工智能是否会出现自主意识仍在探讨和研究中。
2024-12-18