Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

langchain到底是什么。如何理解。

Answer

LangChain 是一个用于构建高级语言模型应用程序的框架,旨在简化开发人员使用语言模型构建端到端应用程序的过程。

它具有以下特点和优势:

  1. 提供了一系列工具、组件和接口,使利用大型语言模型(LLM)和聊天模型创建应用程序更便捷。
  2. 核心概念包括组件和链,组件是模块化构建块,可组合创建强大应用,链是一系列组件或其他链的组合,用于完成特定任务。
  3. 具有模型抽象功能,能为用例选择合适模型,并利用组件构建应用。
  4. 支持创建和管理提示模板,引导语言模型生成特定输出。
  5. 允许开发人员定义处理步骤链,完成复杂任务。
  6. 支持构建代理,能使用语言模型做决策并调用工具。
  7. 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,可与外部数据源交互收集数据,并提供内存功能维护状态。

LangChain 还是一个为简化大模型应用开发而设计的开源框架,通过提供模块化的工具和库,允许开发者轻松集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛的模型,具备良好的可扩展性,以适应业务需求变化。作为得到社区广泛支持的开源项目,拥有活跃的贡献者和持续更新,提供全面的文档和示例代码帮助新用户快速掌握,同时充分考虑了应用的安全性和用户数据的隐私保护,是多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。

LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/

Content generated by AI large model, please carefully verify (powered by aily)

References

问:LangChain 是什么?

LangChain是一个用于构建高级语言模型应用程序的框架,它旨在简化开发人员使用语言模型构建端到端应用程序的过程。LangChain提供了一系列工具、组件和接口,使得创建由大型语言模型(LLM)和聊天模型支持的应用程序变得更加容易。该框架的核心概念包括组件(Component)和链(Chain),其中组件是模块化的构建块,可以组合起来创建强大的应用程序,而链则是组合在一起以完成特定任务的一系列组件(或其他链)。LangChain的主要特点包括:模型抽象:LangChain提供了对大型语言模型(LLM)和聊天模型的抽象,允许开发人员为他们的用例选择合适的模型,并利用提供的组件来构建应用程序。提示模板和值:LangChain支持创建和管理提示模板,这些模板是用于引导语言模型生成特定输出的输入结构。链(Chains):LangChain允许开发人员定义一系列的处理步骤,这些步骤可以按顺序执行以完成复杂的任务。代理(Agents):LangChain支持构建代理,这些代理可以使用语言模型来做出决策,并根据用户的输入决定调用哪个工具。LangChain支持多种用例,如针对特定文档的问答、聊天机器人、代理等,并且可以与外部数据源交互以收集生成步骤的数据。此外,LangChain还提供了内存功能,帮助维护链或代理调用之间的状态。LangChain旨在为开发人员提供一个强大的工具集,以便他们能够构建适应性强、高效且能够处理复杂用例的高级语言模型应用程序。内容由AI大模型生成,请仔细甄别

RAG提示工程系列(3)| 迈向工程化应用

到目前为止,我们一直利用Prompt Layer平台对提示词进行验证和迭代工作。然而,在实际的工作场景中,我们并不会局限于仅使用像Prompt Layer这样专门针对提示词优化的平台。相反,我们会采用更广泛的工具和框架进行大模型项目的开发。在实际项目中,我们会使用工程化框架,为开发提供必要的支持。随着我们向工程化的第一步迈进,我们将逐步转变思路,不再仅仅局限于提示词角度的建设和优化,而是更加从实际项目角度入手去考虑工程化建设。这意味着我们将转变我们要采用更全面的工具和方法,以确保能够满足实际业务需求,提供真正的价值。下面,我们就介绍几种常用的RAG框架,供大家参考。[heading4]3.1 LangChain[content]LangChain是一个为简化大模型应用开发而设计的开源框架。它通过提供一套模块化的工具和库,允许开发者轻松地集成和操作多种大模型,从而将更多的精力投入到创造应用的核心价值上。LangChain的设计注重简化开发流程,支持广泛的模型,并且具备良好的可扩展性,以适应不断变化的业务需求。作为一个得到社区广泛支持的开源项目,LangChain拥有活跃的贡献者和持续的更新,同时提供了全面的文档和示例代码帮助新用户快速掌握。此外,LangChain在设计时也充分考虑了应用的安全性和用户数据的隐私保护,是一个多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。LangChain官方手册:https://python.langchain.com/docs/get_started/introduction/

RAG 提示工程(三):迈向工程化应用

到目前为止,我们一直利用Prompt Layer平台对提示词进行验证和迭代工作。然而,在实际的工作场景中,我们并不会局限于仅使用像Prompt Layer这样专门针对提示词优化的平台。相反,我们会采用更广泛的工具和框架进行大模型项目的开发。在实际项目中,我们会使用工程化框架,为开发提供必要的支持。随着我们向工程化的第一步迈进,我们将逐步转变思路,不再仅仅局限于提示词角度的建设和优化,而是更加从实际项目角度入手去考虑工程化建设。这意味着我们将转变我们要采用更全面的工具和方法,以确保能够满足实际业务需求,提供真正的价值。下面,我们就介绍几种常用的RAG框架,供大家参考。[heading4]3.1 LangChain[content]LangChain是一个为简化大模型应用开发而设计的开源框架。它通过提供一套模块化的工具和库,允许开发者轻松地集成和操作多种大模型,从而将更多的精力投入到创造应用的核心价值上。LangChain的设计注重简化开发流程,支持广泛的模型,并且具备良好的可扩展性,以适应不断变化的业务需求。作为一个得到社区广泛支持的开源项目,LangChain拥有活跃的贡献者和持续的更新,同时提供了全面的文档和示例代码帮助新用户快速掌握。此外,LangChain在设计时也充分考虑了应用的安全性和用户数据的隐私保护,是一个多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。LangChain官方手册:https://python.langchain.com/docs/get_started/introduction/

Others are asking
什么是langchain
LangChain 是一个用于构建高级语言模型应用程序的框架,旨在简化开发人员使用语言模型构建端到端应用程序的过程。 它具有以下特点和优势: 1. 提供一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更易实现。 2. 核心概念包括组件和链,组件是模块化的构建块,链是组合在一起完成特定任务的一系列组件(或其他链)。 3. 具有模型抽象功能,提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用。 4. 支持创建和管理提示模板,引导语言模型生成特定输出。 5. 允许开发人员定义一系列处理步骤,按顺序执行完成复杂任务。 6. 支持构建代理,能使用语言模型做决策并根据用户输入调用工具。 7. 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,可与外部数据源交互收集数据,还提供内存功能维护状态。 LangChain 是一个为简化大模型应用开发而设计的开源框架,通过提供模块化的工具和库,允许开发者轻松集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛的模型,具备良好的可扩展性,适应不断变化的业务需求。作为得到社区广泛支持的开源项目,拥有活跃的贡献者和持续更新,提供全面的文档和示例代码帮助新用户快速掌握,在设计时充分考虑应用的安全性和用户数据的隐私保护,是多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-03-11
如何通过langchain实现上传 一个客户需求文档,生成一个产品规格书doc格式的文档
要通过 LangChain 实现上传客户需求文档并生成产品规格书(doc 格式),可以按照以下步骤进行: 1. 上传文档:用户可以上传包含知识的文档,支持 txt、pdf、docx 等格式,LangChain ChatChat 会将文档转换为 Markdown 格式。 2. 文本切割:为便于分析和处理,将长文本切割为小块(chunk)。 3. 文本向量化:将切割的 chunk 通过 embedding 技术,转换为算法可以处理的向量,存入向量数据库。 4. 问句向量化:用户提问后,同样将用户的问句向量化。 5. 语义检索匹配:将用户的问句与向量数据库中的 chunk 匹配,匹配出与问句向量最相似的 top k 个。 6. 提交 prompt 至 LLM:将匹配出的文本和问句,一起添加到配置好的 prompt 模板中,提交给 LLM。 7. 生成回答:LLM 生成回答,返回给用户。
2025-02-27
LangChain
LangChain 是一个用于构建高级语言模型应用程序的框架,具有以下特点和功能: 旨在简化开发人员使用语言模型构建端到端应用程序的过程,提供了一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更易实现。 核心概念包括组件和链,组件是模块化的构建块,链是组合在一起完成特定任务的一系列组件(或其他链)。 具有模型抽象、提示模板和值、链、代理等功能。 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,且可与外部数据源交互并提供内存功能。 LangChain 与 RAG(检索增强生成)的关系: 框架与技术:LangChain 作为框架,提供实现 RAG 必需的工具和组件,RAG 技术可在其框架内实施利用。 模块化实现:允许开发者通过模块化组件构建 RAG 应用程序。 简化开发:通过提供现成的链和提示模板简化 RAG 应用开发过程。 提高性能:利用 LangChain 实现 RAG 可创建更高效、准确的应用程序,尤其在需大量外部信息辅助决策的场景。 应用构建:通过丰富的 API 和组件库支持构建复杂的 RAG 应用,如智能问答系统、内容推荐引擎等。 在开发 LangChain 应用时,构建 RAG 应用的相关组件包括数据加载器、文本分割器、文本嵌入器、向量存储器、检索器、聊天模型等,一般流程如下:(具体流程未给出,如有需要请补充提问)
2025-02-24
详细介绍下langchain
LangChain 是一个用于构建高级语言模型应用程序的框架,旨在简化开发人员使用语言模型构建端到端应用程序的过程。 它具有以下特点和优势: 1. 提供一系列工具、组件和接口,使基于大型语言模型(LLM)和聊天模型创建应用程序更轻松。 2. 核心概念包括组件和链,组件是模块化构建块,可组合创建强大应用,链是一系列组件或其他链的组合,用于完成特定任务。 3. 具有模型抽象功能,提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用。 4. 支持创建和管理提示模板,引导语言模型生成特定输出。 5. 允许开发人员定义处理步骤链,按顺序执行完成复杂任务。 6. 支持构建代理,能使用语言模型做决策并根据用户输入调用工具。 7. 支持多种用例,如特定文档问答、聊天机器人、代理等,可与外部数据源交互收集数据,还提供内存功能维护状态。 LangChain 是一个开源框架,为简化大模型应用开发而设计。它通过提供模块化的工具和库,允许开发者轻松集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛的模型,具备良好的可扩展性以适应业务需求变化。作为社区广泛支持的开源项目,拥有活跃的贡献者和持续更新,提供全面的文档和示例代码帮助新用户快速掌握。同时,在设计时充分考虑应用的安全性和用户数据的隐私保护,是多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-02-14
langchain与dify哪个更有发展前景
LangChain 和 Dify 都是在 LLM 应用开发领域具有特点和优势的工具,难以简单地判断哪个更有发展前景。 LangChain 是一个编排框架,在提示链细节抽象、与外部 API 接口、从向量数据库检索上下文数据以及在多个 LLM 调用中维持内存等方面表现出色,为多种常见应用提供模板,在业余爱好者和初创公司中被广泛使用。但它目前仍是相对新的项目,且一些开发者在生产中更愿意切换到原生 Python 以消除额外依赖性。 Dify 是一个开源的 LLM 应用开发平台,具有快速部署、创意文档生成、长文档摘要、自定义 API、连接全球 LLM、更接近生产环境等优势。它允许用户编排从代理到复杂 AI 工作流的 LLM 应用,并配备了 RAG 引擎,旨在为特定行业提供聊天机器人和 AI 助手。 两者的发展前景取决于多种因素,如技术创新、市场需求、社区支持等。在不同的应用场景和需求下,它们各自都有发挥作用的空间和潜力。
2025-02-14
langchain会被淘汰吗
LangChain 目前不太可能被淘汰。它是 LLM 应用程序编排框架中的领导者,在提示链细节抽象、与外部 API 接口、上下文数据检索以及维持内存等方面表现出色,为业余爱好者和初创公司广泛使用,并已开始有构建的应用转入生产。 虽然 LangChain 仍是相对新的项目,一些开发者特别是 LLM 的早期采用者,更愿意在生产中切换到原生 Python 以消除额外的依赖性,但预计这种自行制作的方法在大多数用例中的使用会随时间减少,这与传统的 web 应用堆栈情况类似。 同时,高级提示词工程技术的普及促进了一系列工具和框架的发展,LangChain 已成为提示词工程工具包景观中的基石,最初专注于链条,后扩展到支持包括智能体和网络浏览功能在内的更广泛功能,其全面的功能套件使其成为开发复杂 LLM 应用的宝贵资源。
2025-02-14
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
有哪些公司主要做数据处理,比如把文档转化成ai可理解的东西
以下是一些主要从事数据处理,将文档转化为 AI 可理解内容的公司: 在基础模型领域,有 OpenAI、Google、Cohere、AI21、Stability.ai 等公司,它们在构建大型语言模型方面展开竞争。此外,还有新兴的开源选项如 Eleuther。 像 Hugging Face 这种共享神经网络模型的社群,在软件 2.0 时代可能成为智慧的枢纽和人才中心。 还有一些独立应用公司,例如 Jasper(创意文案)、Synthesia(合成语音与视频)等,它们涉及 Creator&Visual Tools、Sales&Marketing、Customer Support、Doctor&Lawyers、Assistants、Code、Testing、Security 等各种行业。
2025-03-25
模型理解汉字能力很差
目前模型在理解汉字方面存在一些问题,主要表现为: 1. 语义理解较差,例如在某些应用场景中对中文的理解不够准确。 2. 中文汉字的集合较大,纹理结构更复杂,增加了理解难度。 3. 缺少中文文字的图文对数据,影响了模型对汉字的学习和理解。 为了提升模型对中文文字的生成能力,采取了以下措施: 1. 选择 50000 个最常用的汉字,机造生成千万级的中文文字图文对数据集,但机造数据真实性不足。 2. 实用 OCR 和 MLLM 生成海报、场景文字等真实中文文字数据集,约百万量级。通过结合高质量真实数据,提升了中文文字生成能力的真实性,即使是真实数据中不存在的汉字的真实性也有所提高。
2025-03-24
我是一名硬件工程师 如何让ai快速理解我的原理图并优化
以下是关于让 AI 理解原理图并优化的相关知识: 1. 在 AI 硬件发展方面,存算一体的方式是未来的趋势。对比人脑,其能耗低,使用存算一体的芯片有望诞生全新算法,运行几百亿参数的大模型的最佳架构也是存算一体,因其避免了数据搬运。 2. 大模型在通用知识方面较强,但对专业领域知识了解不足。将大模型与私域知识结合有 5 种方法:重新训练(拿私域数据重新训练大模型)、微调(拿私有数据 finetuning 大模型)、RAG(将知识库里的知识搜索送进大模型)、关键词工程(写好提示词)、加长 Context(当 Context 能无限长时,可将知识和记忆 prefill 到 Context 里)。学术界中,做深度学习的人偏向于用 RAG,做过搜索的人偏向于用 Long Context。 3. 在 Trae 优化代码方面,当请求“帮我把当前的代码给优化一下”时,请求先到 Trae 自己的服务器,服务器再请求对应模型返回数据。不会发送本地代码文件,只发送“文件名”加“问题”,且在最开始 Trae 打开项目进行索引构建时,已在云端构建好项目文件。 对于您作为硬件工程师让 AI 快速理解原理图并优化的需求,目前可能需要进一步探索如何将原理图的特征和相关信息转化为适合 AI 处理和理解的形式,或许可以借鉴上述将专业知识与大模型结合的方法,以及利用高效的数据库和模型架构来提高处理效率。
2025-03-23
通俗易懂地解释一下什么叫AGI,和我们平常理解的AI有什么区别
AGI 即通用人工智能,指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能。 与平常理解的 AI 相比,平常的 AI 往往是针对特定领域或任务进行设计和优化的,例如下围棋、图像识别等。而 AGI 涵盖了更广泛的认知技能和能力,不仅限于特定领域,包括推理、规划、解决问题、抽象思维、理解复杂思想、快速学习和从经验中学习等,并且要求这些能力达到或超过人类水平。 在 AI 发展历程中,早期的研究有对智能的宏伟目标追求,但很多研究进展是狭义地关注明确定义的任务。直到 2000 年代初,“通用人工智能”(AGI)这一名词流行起来,强调从“狭义 AI”向更广泛的智能概念转变,回应了早期 AI 研究的长期抱负和梦想。 例如,GPT3 及其后续版本在某种程度上是朝着 AGI 迈出的巨大一步,早期的语言模型则没有像 GPT3 这样连贯回应的能力。
2025-03-22
哪些模型的视频理解能力比较好?
以下是一些视频理解能力较好的模型: 1. 通义千问的 Qwen2.5VL 模型:具有以下优势: 视觉理解能力:在 13 项权威评测中夺得视觉理解冠军,全面超越 GPT4o 与 Claude3.5。 视频理解能力:支持超 1 小时的视频理解,无需微调即可变身为 AI 视觉智能体,实现多步骤复杂操作。 万物识别:擅长识别常见物体及分析图像中的文本、图表、图标、图形和布局。 精准的视觉定位:采用矩形框和点的多样化方式对通用物体定位,支持层级化定位和规范的 JSON 格式输出。 全面的文字识别和理解:提升 OCR 识别能力,增强多场景、多语言和多方向的文本识别和文本定位能力。 增强的视频理解:引入动态帧率(FPS)训练和绝对时间编码技术,支持小时级别的超长视频理解,具备秒级的事件定位能力。 开源平台: Huggingface:https://huggingface.co/collections/Qwen/qwen25vl6795ffac22b334a837c0f9a5 Modelscope:https://modelscope.cn/collections/Qwen25VL58fbb5d31f1d47 Qwen Chat:https://chat.qwenlm.ai 2. Sora 模型:周鸿祎认为其技术思路完全不同,能像人一样理解现实世界,将大语言模型和 Diffusion 结合起来训练,实现了对现实世界的理解和模拟两层能力,对物理世界的模拟将对机器人具身智能和自动驾驶带来巨大影响。 3. 腾讯的混元模型:在语义理解方面表现出色,能够精准还原复杂的场景和动作,例如一只银渐层在游乐园里奔跑跳到小女孩怀里、一位紫衣女修在竹林中抚琴、星系边缘宇宙战舰引爆反物质引擎等场景。
2025-03-18
deepseek到底是什么?打个比方
DeepSeek 是一个在 AI 领域受到关注的品牌。它在硅谷受到关注和追逐,早在 2024 年 5 月 DeepSeekV2 发布时,就以多头潜在注意力机制(MLA)架构的创新引发了小范围轰动。DeepSeek 不是“中国式创新”的产物,其秘方更具硅谷风格。 DeepSeek 是基于 AI 模型的产品,需要搭配具体模型,如 DeepSeek V3(类 GPT4o)和 DeepSeek R1(类 OpenAI o1)。它展示出媲美领先 AI 产品性能的模型,但成本较低,在全球主要市场的 App Store 登顶。在实际使用体验方面,在文字能力上表现突出,尤其在中文场景中高度符合日常、写作习惯,但在专业论文总结方面稍弱。数学能力经过优化表现不错,编程能力略逊于 GPT。 需要注意的是,将 DeepSeek 比喻成“AI 界的拼多多”是偏颇的,认为其秘方就是多快好省也是不全面的。
2025-03-03
我在一周前的文章[1]里说对 DeepSeek-R1 只需要说大白话,但在三天前的文章[2]里又用了看起来还挺复杂的结构化提示词。有伙伴问我到底咋回事。这就来解释下喽。
以下是关于 DeepSeekR1 提示词的相关信息: 历史更新: 字节跳动推出新技术 OmniHuman,利用单张图片和音频生成生动视频。 DeepSeek 的出现标志着算力效率拐点显现,其优化算法架构提升算力利用效率,AI 基础大模型参数量迎来拐点,2025 年是算法变革元年,其训练过程聚焦强化学习提升推理能力。 提示词方法论: 核心原理认知:包括多模态理解、动态上下文、任务适应性等 AI 特性定位,以及采用意图识别+内容生成双通道处理等系统响应机制。 基础指令框架:包括四要素模板、格式控制语法等。 进阶控制技巧:如思维链引导、知识库调用、多模态输出。 高级调试策略:包括模糊指令优化、迭代优化法。 行业应用案例:涵盖技术开发场景、商业分析场景。 异常处理方案:如处理信息幻觉、格式偏离、深度不足等情况。 效能监测指标:包括首次响应准确率、多轮对话效率、复杂任务分解等。 在 R1 时代,使用 AI 提示词关键在于提供足够背景信息,简单大白话有效但信息量不足难达理想结果,示例和框架可助理清思路,最终影响在于思考和表达,利用乔哈里视窗分析信息需求,避免过度指令化,让 AI 自由思考以激发更高创意和效果。
2025-02-07
到底什么是大家说的AI
AI 分为 ANI 和 AGI 。ANI 即 artificial narrow intelligence 弱人工智能,它只能做一件事,比如智能音箱、网站搜索、自动驾驶、工厂与农场的应用等。AGI 即 artificial general intelligence ,能做任何人类可以做的事。 简单地说,AI 是让计算机或机器能像人类一样思考和学习的技术。比如在小学课堂上,会以学生能理解的语言来解释,先和学生互动,听听他们口中的 AI ,再引出概念。 从专业术语角度,机械学习是学习输入输出,从 A 到 B 的映射,是让电脑在不被编程的情况下自己学习的研究领域。数据科学是分析数据集,从数据中获取结论与提示,输出结果往往是幻灯片、结论、PPT 、项目结果等。神经网络/深度学习则有输入层、输出层、中间层(隐藏层)。 数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。通常以表格形式出现,每一列代表一个特定变量,每一行对应于某一成员的数据集的问题。数据分为结构化数据与非结构化数据,结构化数据可以放在巨大的表格中,非结构化数据如图片、视频、文本,机器处理起来更难。获取数据的方法有手动标注、观察行为、网络下载。使用数据时,如果开始搜集数据,可以马上将数据展示或者喂给某个 AI 团队。但数据不一定多就有用,有时数据中会出现不正确、缺少的数据,这就需要有效处理数据。
2025-02-01
到底有多强大
以下是关于不同 AI 相关内容强大之处的介绍: Sora:当不复制旧的,而是把新的、不可能的想法变成现实时,Sora 最为强大。它能帮助创意人员将想法变为现实,不仅擅长创造看起来真实的东西,创造完全超现实的东西的能力也令人兴奋。 LORA:在画风、人物、物品、动作姿态的固定方面表现强大,其文件承载的信息量远大于 Embedding,在还原真人物品时细节精度更高。使用时需注意搭配相应大模型和特定触发词。 Hypernetworks:主要针对画风训练,可像 LORA 一样加载使用。 Google 的 Gemini:是 Google DeepMind 团队开发的多模态模型,支持多种提示类型,能理解和处理几乎任何输入,结合不同类型信息并生成几乎任何输出,被称为 Google 迄今为止最强大、最全面的模型,是原生多模态大模型,从设计之初就支持多模态,能处理多种形式的数据。
2025-01-26
ai到底是什么
AI(人工智能)是一门令人兴奋的科学,它是指某种模仿人类思维,可以理解自然语言并输出自然语言的东西。 对于没有理工科背景的人来说,将 AI 当成一个黑箱来理解是一种可行的方式,即只需要知道它能通过特定的文字、仪轨程式来引用已有资源,驱使某种可以一定方式/程度理解人类文字的异类达成预设效果,且其生态位是一种似人而非人的存在。 从历史角度看,最初计算机由查尔斯·巴贝奇发明,用于按照明确的程序进行数字运算。现代计算机虽更先进,但仍遵循相同的受控计算理念。然而,对于像根据照片判断一个人的年龄这类任务,由于无法明确具体步骤,所以是人工智能感兴趣的领域。 在应用方面,AI 健身是利用人工智能技术辅助或改善健身训练和健康管理的方法,能为用户提供个性化的指导。例如 Keep、Fiture、Fitness AI、Planfit 等都是不错的 AI 健身工具。
2025-01-08
AI智能体在电商领域到底能做什么
AI 智能体在电商领域主要有以下应用: 1. 电商导购:以“什么值得买”智能体为例,当用户输入购买需求,如“我想买个笔记本电脑”,智能体会提取关键词,通过相关 API 检索商品信息,与内置提示词组装成上下文,请求大模型回答,提供更精准的商品推荐。 2. 工作流协作:通过多个智能体的组装,解决复杂场景的搜索问题。例如给新产品取名,定义多个智能体分别负责不同功能,如给出建议名字、检索是否同名等,同时需要调度中枢协调工作,决定是继续下一步还是回溯。 3. 决策支持:如在理赔提交审核中,将付款方规则转换为有向无环图,智能体遍历决策树,利用语言模型评估相关文件是否符合规则,并在复杂任务中选择最佳方法。 4. 品牌卖点提炼:实际搭建中,遵循营销管理流程保证输出合理性,根据电商业态调整单独智能体的提示词提升信息准确度,为营销团队提供更广阔思路和灵感。
2024-12-19