Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

有什么构建类似键鼠精灵 AI工作流的方法

Answer

以下是构建类似键鼠精灵 AI 工作流的一些方法:

  1. 利用 Comfyui 界面:
    • 打开 Comfyui 界面后,右键点击界面,找到 Comfyui LLM party 的目录。您可以手动连接节点来实现工作流,例如实现一个最简单的 AI 女友工作流;也可以直接将相关工作流文件(如工具调用对比实验麦洛薇飞书机器人)拖拽到 Comfyui 界面中一键复刻。
  2. 启动 ollama:
    • 从 ollama 的 github 仓库找到对应版本并下载。
    • 启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。
    • 如果 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。
  3. 低代码+UI 版本:
    • 方法一:直接使用 Coze 的 API 对接前端 UI 框架,将工作流逻辑集中在工程模板端,实现前后端分离的处理方式。
    • 方法二:直接调用大模型 API,并通过前端代码实现提示词处理和逻辑控制,将交互流程完全放入前端代码中。
    • 实现文件上传:通过 Coze 的上传文件接口,用户可将本地文件上传至 Coze 的云存储。在消息或对话中,文件上传成功后可通过指定 file_id 来直接引用该文件。
    • 关于 API 的使用及工作流执行流程可以参考相关文档
  4. 飞书机器人创建:
    • 飞书应用建立:
      • 飞书开放平台中创建自建应用。
      • 进入应用获取 app_id 与 app_secret。
      • 添加应用能力->开启机器人应用能力。
      • 权限管理->消息与群组->选择需要的权限打开。
      • 安全设置->将 comfyUI 运行的电脑 IP 加入白名单。
      • 发布机器人以应用生效。
    • 获取群组或用户 id:
      • 要先把创建的机器人拉到群组中或者拉进私聊。
      • 飞书开发平台找到发送消息的开发文档。
      • 右侧点击获取 token。
      • 选择 receive id type,chat_id 对应群组,open_id 与 user_id 对应个人,点击选择成员,复制对应的 id 即可。
    • 如果需要让机器人发送语音,需要自行在电脑上安装 ffmpeg 。
Content generated by AI large model, please carefully verify (powered by aily)

References

无需微调,仅用提示词工程就能让 LLM 获得 tool calling 的功能

打开Comfyui界面后,右键点击界面,即可找到Comfyui LLM party的目录,你既可以如下图一样,学习如何手动连接这些节点,从而实现一个最简单的AI女友工作流,也可以直接将[工具调用对比实验](https://github.com/heshengtao/comfyui_LLM_party/blob/main/workflow/%E6%8F%90%E7%A4%BA%E8%AF%8D%E5%B7%A5%E7%A8%8B%E8%8E%B7%E5%BE%97%E5%B7%A5%E5%85%B7%E8%B0%83%E7%94%A8%E5%AF%B9%E6%AF%94%E5%AE%9E%E9%AA%8C.json)工作流文件拖拽到Comfyui界面中一键复刻我的提示词工程实验。[heading2]4、启动ollama[content]从ollama的github仓库找到对应版本并下载:启动ollama后,在cmd中输入ollama run gemma2将自动下载gemma2模型到本地并启动。将ollama的默认base URL=http://127.0.0.1:11434/v1/以及api_key=ollama填入LLM加载器节点即可调用ollama中的模型进行实验。[heading2]5、常见报错及解决方案[content]1.如果ollama连接不上,很可能是代理服务器的问题,请将你的127.0.0.1:11434添加到不使用代理服务器的列表中。

0基础手搓AI拍立得

完成这个搭建,你就可以拥有一个本地小应用了!如果你还会应用发布/代码兼容适配,还能上架到网页/小程序中。方法一:直接使用Coze的API对接前端UI框架,将工作流逻辑集中在工程模板端,实现前后端分离的处理方式。方法二:直接调用大模型API,并通过前端代码实现提示词处理和逻辑控制,将交互流程完全放入前端代码中。如何实现文件上传通过Coze的[上传文件接口](https://www.coze.cn/docs/developer_guides/retrieve_files),用户可将本地文件上传至Coze的云存储。在消息或对话中,文件上传成功后可通过指定file_id来直接引用该文件。Coze的API与工作流执行关于API的使用及工作流执行流程可以参考[相关文档](https://www.coze.cn/docs/developer_guides/workflow_run)。若用户需要通过前端展示文件或流程结果,可以通过以下两种方式实现:[heading3]2.2.1我是如何设计界面[content]搭建Demo最简单的方式是首先绘制草图,然后借助多模态AI工具(如GPT/Claude)生成初步的前端结构代码。前端开发语言简要说明HTML:用于构建网页的基础框架,定义整体的页面结构。CSS:负责网页的布局样式美化,使页面视觉效果更优美。JavaScript:实现交互逻辑,如信息处理、网络请求及动态交互功能。

AI 女友麦洛薇(0 代码 comfyui 搭建,知识图谱稳定人设,无限上下文,永久记忆,可接入飞书)

打开Comfyui界面后,右键点击界面,即可找到Comfyui LLM party的目录,你既可以如下图一样,学习如何手动连接这些节点,从而实现一个最简单的AI女友工作流,也可以直接将[麦洛薇飞书机器人](https://github.com/heshengtao/comfyui_LLM_party/blob/main/workflow/%E9%BA%A6%E6%B4%9B%E8%96%87%E9%A3%9E%E4%B9%A6%E6%9C%BA%E5%99%A8%E4%BA%BA.json)工作流文件拖拽到Comfyui界面中一键复刻我的麦洛薇机器人。[heading2]4、飞书机器人创建[content]1.飞书应用建立1.1在[飞书开放平台](https://open.feishu.cn/app?lang=zh-CN)中创建自建应用1.2进入应用获取app_id与app_secret1.3添加应用能力->开启机器人应用能力1.4权限管理->消息与群组->选择需要的权限打开1.5安全设置->将comfyUI运行的电脑IP加入白名单1.6发布机器人以应用生效1.获取群组或用户id2.0要先把创建的机器人拉到群组中或者拉进私聊2.1飞书开发平台找到发送消息的开发文档2.2右侧点击获取token2.3选择receive id type,chat_id对应群组,open_id与user_id对应个人,点击选择成员,复制对应的id即可1.如果需要让机器人发送语音,需要自行在电脑上安装ffmpeg

Others are asking
我在完成一篇论文,能不能给我一些论文相关的AI提示词
以下是为您提供的一些论文相关的 AI 提示词示例: 1. 对于法律文章写作: 敕令法律文章撰写 author:叁随道人 version:1.0(20240626) language:中文 2. 对于一般性的论文写作: 这意味着您不能期待设计一个完美的提示词,然后 AI 百分百给到您一个完美的符合要求的答案,中间不能有谬误,否则就是一个需要修复的“BUG”。您要给到 AI 的提示词实际上是一个关于此项问题的相对完善的“谈话方案”,真正的成果需要在你们的对话中产生,您也需要在对话中来限缩自己思维中的模糊地带。 现在大多数人(包括各个大厂的提示词工程师们)基本上都还抱着前 AI 时代的“机器编程”思路来进行 AI 的“自然语言编程”。对于想要尝试 AI 的朋友们,建议多给到 AI 几轮对话修正的余地,不要期望输入一次提示词 AI 就能给到您想要的东西,毕竟很多时候其实您自己刚开始也不知道自己想要什么。 3. 对于文生图相关的论文: 英文为:,drawing,paintbrush 。括号和:1.2,都是用来增加权重的,权重越高在画面中体现越充分,同样提示词的先后顺序也会影响权重。 反向提示词:NSFw,,(toomany finger
2025-03-08
any recommendation for using AI to create my own website
以下是一些使用 AI 创建自己网站的建议和推荐: Bard 建议使用“给 AI 下具体设计任务”的方式,而不是简单地“要求 AI 直接输出内容”。这可以让 AI 更好地发挥创造力,同时也便于人类对最终输出进行检查和修改。 设计网站 logo 时,应保持简单易记,使用相关符号或图标,选择与技术和信任相关的颜色(如蓝色、绿色、白色),使用一致的字体,并获取他人的反馈。 利用 AI 创建网站时,通过与 AI 交互输入需求可快速创建网站,发布后会获得网址。 代码下载后可能复制容易但修改不易,有的工具可选中特定版块修改,有的则需整体重写。 网站修改的方法如通过浏览器开发者工具修改 logo,可替换图片或删除后上传同名图片。 推荐的网页原型图生成工具包括: 即时设计:https://js.design/ ,是一款可在线使用的「专业 UI 设计工具」,为设计师提供更加本土化的功能和服务,相较于其他传统设计工具,更注重云端文件管理、团队协作,并将设计工具与更多平台整合,一站搞定全流程工作。 V0.dev:https://v0.dev/ ,Vercel Labs 推出的 AI 生成式用户界面系统。每个人都能通过文本或图像生成代码化的用户界面。它基于 Shadcn UI 和 Tailwind CSS 生成复制粘贴友好的 React 代码。 Wix: ,是一款用户友好的 AI 工具,可让您在没有任何编码知识的情况下轻松创建和自定义自己的网站,提供广泛的模板和设计供您选择,以及移动优化和集成电子商务功能等功能。Wix 建站工具通过拖放编辑、优秀模板和 250 多种 app,能帮助不同领域的用户创建所有种类的网站。 Dora:https://www.dora.run/ ,使用 Dora AI,可以通过一个 prompt,借助 AI 3D 动画,生成强大网站。支持文字转网站,生成式 3D 互动,高级 AI 动画。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2025-03-08
AI与SAAS结合
AI 与 SaaS 的结合具有以下特点和影响: 1. 像 Microsoft 推出的 Copilot 产品升级,如 Copilot Team 与 Studio,能让 Agent 融入企业内部,实现自动化的会议记录和日程安排,还能设计组织内部自动化流程,帮助操作办公软件。这表明软件应用范式已转移,AI Agent 成为新 SaaS。 2. 对于生成式 AI 对 SaaS 生态的影响,起初认为大公司不会受到太大冲击,因为初创公司和大公司各有优势,初创公司机会在于瞄准可自动化工作领域。但现在不确定是否低估了“AI 原生”的巨大潜力。 3. 二十年前传统软件公司对 SaaS 崛起的态度与如今对 AI 变革的态度可能类似。SaaS 带来了业务模式的全面变革,包括开发方式、市场策略和商业模式的转变,只有极少数传统公司成功转型。 4. OpenAI 的目标明确为 all in AGI,商业模式为 SaaS,直接提供 API,接口设计内部决定,按使用付费。其在一些产品上如 ChatGPT Plus、与第三方插件结合等方面的处理方式较为简单直接。
2025-03-08
AI和AGI的区别
AI(Artificial Intelligence,人工智能)和 AGI(Artificial General Intelligence,通用人工智能)有以下区别: 1. 能力范围: AI 通常指的是弱人工智能(ANI,Artificial Narrow Intelligence),它只能完成特定的任务,如智能音箱的语音交互、网站搜索、自动驾驶、工厂与农场的应用等。 AGI 则能够做任何人类可以做的事情。 2. 发展程度: ANI 已经取得了巨大的发展。 而 AGI 目前还没有取得巨大的进展。 3. 模型目的和底层数据量: 以往的 AI 被视为“工具”,而 AGI 更像是“大脑”。 OpenAI 主张的 AGI 模型,如 GPT 系列,致力于成为“世界模型”,将世界上所有的知识压缩到模型里,其底层数据量巨大,正在接近全人类所有数据的量级。
2025-03-08
AI能做什么?无所不能么
AI 具有广泛的应用和能力,但并非无所不能。以下是 AI 能够做到的一些方面: 在医疗领域,AI 可以辅助疾病的预测、诊断和治疗,例如通过训练神经网络预测蛋白质结构,从而推进结构生物学的发展,帮助预防抗生素耐药性、推进疾病研究以及加速对抗塑料污染。 在科学研究方面,AI 能够促进科学发现,例如用于拼凑出首张距离地球 5500 万光年的黑洞图像,还能解决长期困扰科学家的蛋白质折叠难题。 在医疗检测方面,AI 有助于提高疾病检测效率,如应用于乳腺癌筛查,使更多患者能更快接受筛查,让临床医生有更多时间为患者服务并提供更快速的治疗。 在农业领域,AI 机器人可以提高农业生产效率。 然而,对于一些终极问题,答案不可避免且坚决是否定的。但这并不意味着 AI 不能重要地帮助科学进步,例如在非常实用的层面上,语言模型可以为计算功能提供新的语言接口,并通过其知识提供高水平的“自动完成”,辅助科学工作中的“传统答案”或“传统的后续步骤”。
2025-03-08
有没有ai编程的AI rules
目前关于 AI 编程的 AI Rules 主要有以下内容: 在字节发布的全新 AI IDE Trae 中,由于其过于智能,有时难以控制其立即执行任务,且目前没有全局 AI Rules 的设置,需要用“”来引入规则。 在进行 AI 编程时,应遵循一定的准则。例如,能不编程尽量不编,优先寻找线上工具、插件、本地应用等现成的解决方案,先找现成的开源工具和付费服务,最后再考虑自己编程,且编程时要以终为始,聚焦目标。 在 Trae 中,可以新建一个文件“AI Rules”,将相关规则代码复制进去并保存。在与 AI 沟通需求时引入该文件,AI 会按照规则进行开发。同时,AI 生成的代码可能存在随机性和错误,需要花费时间调试 Bug,可以通过终端、测试网页功能时的“F12”等方式查看报错信息并修复。
2025-03-08
工作流构建
以下是关于工作流构建的相关内容: Comfyui 界面的工作流搭建: 1. 打开 Comfyui 界面后,右键点击界面,即可找到 Comfyui LLM party 的目录。您既可以学习如何手动连接节点来实现一个最简单的 AI 女友工作流,也可以直接将工作流文件拖拽到 Comfyui 界面中一键复刻提示词工程实验。 2. 从 ollama 的 github 仓库找到对应版本并下载。启动 ollama 后,在 cmd 中输入 ollama run gemma2 将自动下载 gemma2 模型到本地并启动。将 ollama 的默认 base URL=http://127.0.0.1:11434/v1/以及 api_key=ollama 填入 LLM 加载器节点即可调用 ollama 中的模型进行实验。如果 ollama 连接不上,很可能是代理服务器的问题,请将 127.0.0.1:11434 添加到不使用代理服务器的列表中。 公众号内容自动总结并推送的工作流搭建: 1. 双击画板查看高清大图,此图很重要,可结合后边的具体细节反复查看。 2. 在开始节点输入 server 酱的 sendkey 和 rss 列表。其中,key 为 server 酱的 sendkey,获取方式参看文档「相关资源」部分;rss_list 为 rss 列表,没有的可以先白嫖提供的测试数据。 3. 使用「文本处理」节点处理输入的 rss 列表,处理为一行一个,输出为数组,方便后边节点批处理。 4. 读取用户输入的 rss 列表中的内容,在插件中找到链接读取节点。配置节点时选择批处理,批处理输入参数选择「分割 rss 列表」的 output,下方输入参数中 url 选择当前节点中的 item1。 5. 汇总 RSS 中所有文章内容。使用「代码」节点,左侧节点选择代码,输入项选择上一步中输出的 outputList,点击「在 IDE 中编辑」,选择「Python」,输入相应代码。配置输出项时,类型选择「Array<Object>」,点击右边的小加号,分别输出 title、url、author。 其他工作流相关内容: 1. 阿里云百炼工作流应用与模型介绍及作业布置,包括智能体与工作流的区别、工作流应用新建的类型、多模态模型工作流节点的操作、作业布置的要求和发布渠道等。 2. 工作流相关知识讲解,涵盖工作流类型差异、大模型使用、知识库创建等方面。 3. 工作流构建的步骤,如添加 Markdown 标题、输入内容、放入模型输出等,还提到不同场景下文字校对工作流的差异。 4. 模型能力应用方式和理解,包括语言翻译、图片识别、根据用户语言回复等。 5. 模型部署方式,提及智能体的发布与消耗 token 的情况,以及本地部署、蒸馏模型部署的相关内容。 6. 开源模型情况,介绍了通义万象的开源版本等。
2025-03-08
coze构建知识库
构建 Coze 知识库的步骤如下: 1. 手动清洗数据: 在线知识库:点击创建知识库,创建画小二课程的 FAQ 知识库。飞书在线文档中每个问题和答案以“”分割,选择飞书文档、自定义的自定义,输入“”,可编辑修改和删除,添加 Bot 并在调试区测试效果。 本地文档:注意拆分内容以提高训练数据准确度,将海报内容训练到知识库中。例如画小二 80 节课程分为 11 个章节,先放入大章节名称内容,再按固定方式细化处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到。 3. 标准流程搭建产品问答机器人: 收集知识:确认了解知识库支持的数据类型,收集知识通常有三种方式,包括企业或个人沉淀的 Word、PDF 等文档,企业或个人沉淀的云文档(通过链接访问),互联网公开的一些内容(可安装 Coze 提供的插件采集)。 创建知识库:路径为个人空间知识库创建知识库,支持本地文档、在线数据、飞书文档、Notion 等文档类型,本次可使用本地文档,按照操作指引上传文档、分段设置、确认数据处理,可使用特殊分割符“”,分段标识符号选择“自定义”,内容填“”。 希望以上内容对您有所帮助。
2025-03-04
利用大模型构建系统的工具
以下是关于利用大模型构建系统的工具的相关内容: 大模型的发展历程: 2017 年发布的 Attention Is All You Need 论文是起源。 2018 年,Google 提出 BERT,其创新性地采用双向预训练并行获取上下文语义信息和掩码语言建模,开创了预训练语言表示范式,参数规模为 110M 到 340M。 2018 年,OpenAI 提出 GPT,开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号,展示了强大的语言生成能力,参数规模达 1750 亿。 2021 年,Meta 提出 Large LAnguage Model Approach(LLAMA),这是首个开源模型,为构建更大规模、更通用的语言模型提供了系统化的方法与工具,参数规模为十亿到千亿。 Inhai:Agentic Workflow:AI 重塑了我的工作流: 以 Kimi Chat 为例,它利用「网页搜索」工具在互联网上检索相关内容,并基于检索结果进行总结分析,给出结论。同时,PPT 中介绍了众多不同领域类型的工具,为大模型在获取、处理、呈现信息上做额外补充。 Planning:Agent 通过自行规划任务执行的工作流路径,面向简单或线性流程的运行。例如,先识别男孩姿势,再使用相关模型合成女孩图像,接着使用图像理解文本模型,最后语音合成输出。 Multiagent Collaboration:吴恩达通过开源项目 ChatDev 举例,可让大语言模型扮演不同角色相互协作,共同开发应用或复杂程序。 AI Agent 基本框架:OpenAI 的研究主管 Lilian Weng 提出“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型 LLM 扮演 Agent 的“大脑”。规划包括子目标分解、反思与改进,将大型任务分解为较小可管理的子目标处理复杂的任务,反思和改进指对过去行动进行自我批评和自我反思,从错误中学习并改进未来步骤,提高最终结果质量。记忆用于存储信息。 开发:LangChain 应用开发指南 大模型的知识外挂 RAG: LangChain 是专注于大模型应用开发的平台,提供一系列组件和工具构建 RAG 应用: 数据加载器:从数据源加载数据并转换为文档对象,包含 page_content 和 metadata 属性。 文本分割器:将文档对象分割成多个较小的文档对象,方便后续检索和生成。 文本嵌入器:将文本转换为嵌入,用于衡量文本相似度实现检索。 向量存储器:存储和查询嵌入,通常使用索引技术加速检索。 检索器:根据文本查询返回相关文档对象,常见实现是向量存储器检索器。 聊天模型:基于大模型生成输出消息。 使用 LangChain 构建 RAG 应用的一般流程如下:(具体流程未给出)
2025-02-28
构建项目 ,如何通过ai生成可视化数据报表,设计方案
以下是一个通过 AI 生成可视化数据报表的设计方案: 1. 理解需求:明确查询要求,例如适应特定尺寸(如宽 1734px、高 1071px)的 TSX 代码,确保生成的组件符合尺寸要求,避免出现滚动条。 2. 生成静态代码:创建一个静态的 React 组件,将所有数据和组件进行硬编码。 3. 实现数据可视化:构建一个复杂的数据可视化平台,支持多种图表类型、实时数据更新、自定义仪表板和数据钻取功能。 4. 设计用户界面:为复杂的数据可视化平台编写 TSX 代码,界面包括多个图表、定制仪表板和实时数据更新,尺寸为宽 1734px 和高 1071px。 5. 定义 React 组件:定义一个用于渲染主界面的 React 组件,包括网格布局、图表组件、导航 UI 组件、按钮和输入字段等,并加入模拟实时更新和自定义仪表板的开关和切换等组件。 6. 规划 UI 结构:设计包含头部、侧边栏和主内容区的 UI 结构,主内容区展示多个图表,并考虑自定义控制。 7. 探索图标资源:从 'lucidereact' 提取图标,如主页、用户和搜索等,使界面更加直观和易用。
2025-02-27
行业大模型构建
以下是关于行业大模型构建的相关信息: 优秀模型案例介绍: SuperCLUE2.0 是通用大模型综合性测评基准 SuperCLUE1.0 的能力延展,融合行业场景属性和大模型落地特点,为行业应用及开发者构建评估框架,促进大模型供需两侧的进一步对齐。 SuperCLUE 持续构建行业测评基准,包括已发布的汽车行业测评基准,以及筹备中的金融、教育、娱乐、手机、政务、医疗等行业测评基准。 SuperCLUE 持续构建专项测评基准,已发布的有 Safety 安全测评基准、Agent 智能体测评基准,筹备中的有个性化中文测评基准、角色扮演测评基准、中文多模态测评基准、RAG 检索增强测评基准、办公场景测评基准等。 优化路径: 广义上的大模型优化包括完整训练一个大模型,但从策略上建议先从提示词工程到微调开始,因为涉及大模型训练成本极高。在分析出问题所在后,可按需选用或综合运用缺失知识用 RAG、准确度或模式遵循度不足用微调等技术进行性能优化。 国内大模型落地情况: Gartner 预测到 2028 年至少有 15%的日常工作决策将由代理型 AI(AI 智能体)自主做出。 2024 年被称为国内大模型落地元年,“百模大战”后,国内大模型行业主要玩家包括百度、阿里、字节等科技大厂和创业“AI 六小虎”。 2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长,中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。在金融行业,百度也以 14 个中标数量、3734.4 万元中标金额排名第一,科大讯飞居第二。
2025-02-27
如何用AI构建政务模型
以下是关于如何用 AI 构建政务模型的相关信息: 行业、学术界、研究组织和全球合作伙伴正在寻找解决基础模型监管相关挑战的方法。例如,基础模型的开发者正在探索将对齐理论嵌入模型的方式,政府需要与 AI 研究社区密切合作,利用研究见解并完善监管框架。 英国致力于提升在基础模型方面的能力。基础模型是一种新兴的通用 AI 类型,训练数据量大,能适应多种任务,其快速发展给政府监管带来新挑战。 需建立一个中央职能,支持单个监管机构的视野扫描活动,以实现可适应、协作和值得信赖的监管机制。该职能有助于建立一个能适应新兴趋势、召集合作伙伴共同识别趋势,并确保监管框架能应对新兴趋势的监管制度。 要确保与国际监管框架的互操作性,包括监测英国原则与国际监管方法、保证和/或风险管理以及技术标准之间的一致性,支持跨境协调与合作。此职能对于实现促进创新的监管制度至关重要,能确保英国创新者可进行国际交易,英国公司能吸引海外投资。
2025-02-27