以下是关于搭建公司轻量知识 agent 的相关信息:
Coze:
其他 Agent 构建平台:
您可以根据公司的具体需求选择适合的平台进行进一步探索和应用。
作者沧海原文:[Coze记账管家——数据库使用教程](https://ov4jtf5rf0.feishu.cn/docx/QwcSdf6XNoBJ73xlPAacZhh1nDj)[heading1]一、什么是COZE[content]COZE是字节跳动旗下的子公司推出的AI Agent构建工具,允许用户在无编程知识的基础上,使用自然语言和拖拽等方式构建Agent;目前coze可以白嫖海量的大模型免费使用,有丰富的插件生态。[heading1]二、什么是记账管家[content]你已经了解什么是COZE了,记账管家就是基于COZE平台的能力搭建的一个记账应用;你可以在直接和coze说你今天的收入或者支出情况,coze会自动帮你记账,同时帮你计算出你的账户余额。每一笔记账记录都不会丢失,下次来记账管家还记得你的历史记账记录。点击以下卡片体验记账管家
in terms of SIFT features.But today all this is discarded.Modern deep-learning neural networks use only the notions of convolution and certain kinds of invariances,and perform much better.This is a big lesson.As a field,we still have not thoroughly learned it,as we are continuing to make the same kind of mistakes.To see this,and to effectively resist it,we have to understand the appeal of these mistakes.We have to learn the bitter lesson that building in how we think we think does not work in the long run.The bitter lesson is based on the historical observations that 1)AI researchers have often tried to build knowledge into their agents,2)this always helps in the short term,and is personally satisfying to the researcher,but 3)in the long run it plateaus and even inhibits further progress,and 4)breakthrough progress eventually arrives by an opposing approach based on scaling computation by search and learning.The eventual success is tinged with bitterness,and often incompletely digested,because it is success over a favored,human-centric approach.One thing that should be learned from the bitter lesson is the great power of general purpose methods,of methods that continue to scale with increased computation even as the available computation becomes very great.The two methods that seem to scale arbitrarily in this way are search and learning.The second general point to be learned from the bitter lesson is that the actual contents of minds are tremendously,irredeemably complex;we should stop trying to find simple ways to think about the contents of minds,such as simple ways to think about space,objects,multiple agents,or symmetries.All these are part of the arbitrary,intrinsically-complex,outside world.They are not what should be built in,as their complexity is endless;instead we should build in only the meta-methods that can find and capture this arbitrary complexity.Essential to these methods is that they can find good approximations,but the search for them should be by our methods,not by us.We want AI agents that can discover like we can,not which contain what we have discovered.Building in our discoveries only makes
以下是一些Agent构建平台:1.Coze:Coze是一个新一代的一站式AI Bot开发平台,适用于构建基于AI模型的各类问答Bot。它集成了丰富的插件工具,可以极大地拓展Bot的能力边界。2.Mircosoft的Copilot Studio:这个平台的主要功能包括外挂数据、定义流程、调用API和操作,以及将Copilot部署到各种渠道。3.文心智能体:这是百度推出的基于文心大模型的智能体(Agent)平台,支持开发者根据自身需求打造大模型时代的产品能力。4.MindOS的Agent平台:允许用户定义Agent的个性、动机、知识,以及访问第三方数据和服务或执行设计良好的工作流。5.斑头雁:这是一个2B基于企业知识库构建专属AI Agent的平台,适用于客服、营销、销售等多种场景。它提供了多种成熟模板,功能强大且开箱即用。6.钉钉AI超级助理:依托于钉钉强大的场景和数据优势,提供更深入的环境感知和记忆功能。这使得它在处理高频工作场景如销售、客服、行程安排等方面表现更加出色。以上信息提供了关于6个平台的概述,您可以根据自己的需求选择适合的平台进行进一步探索和应用。内容由AI大模型生成,请仔细甄别