Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai原理

Answer

AI 的原理包括以下几个方面:

  • 图灵测试:由图灵提出,通过人类提问者向计算机和人类回应者连续提问,若在相当长时间内提问者无法可靠区分,可认为计算机具备智能。但目前对于某些 AI 产品是否能通过图灵测试存在争议,也有人认为需要新的标准来判定 AI 真正拥有智慧,如是否拥有自主意识等。
  • 相关技术名词:
    • AI 即人工智能。
    • 机器学习包括监督学习(有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归)、无监督学习(学习的数据没有标签,算法自主发现规律,如聚类)、强化学习(从反馈里学习,最大化奖励或最小化损失,类似训小狗)。
    • 深度学习是一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。
    • 生成式 AI 可以生成文本、图片、音频、视频等内容形式。
    • LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类。
  • 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。
Content generated by AI large model, please carefully verify (powered by aily)

References

一个希望有点意思的AI分享(一)

咱们会通过一些具体的例子,让大家对AI是什么有个印象;然后会尝试介绍一些AI的技术原理,希望你能体会到AI技术的美妙和深刻;接着我们会解释如何理解”AI能做什么“这个问题;再者我们会介绍一些具体的工具案例和资料;最后我们会简单聊一些AI的未来发展以及影响。首先来看AI是什么这个问题。我们从它的父亲说起。有一部电影叫做《模仿游戏》,它讲述的就是计算机科学和人工智能之父,图灵的故事。他在二战期间构建的机器,或者说计算机的原型,破译了德军的密码。他预见了计算机的发展,并开始考虑一个很深刻的问题:“如何判断一台机器具有智能?”在他的1950年的论文中,他提出了一种被称为“图灵测试”的方法。测试中,一位人类提问者通过文字通道向两个回应者(一个是计算机,另一个是人类)连续提问。在相当长的时间内,如果提问者无法可靠地区分哪个回应者是计算机,哪个是人类,那么可以认为这台计算机具备了智能。这是一个非常经典和深刻的方法,要实现这一点其实很困难。下面是2024年春OpenAI公司发布新一代ChatGPT聊天机器人(GPT4o)产品时的发布会视频,你可以选择从9分钟开始直接看用户和ChatGPT交流的现场展示部分。如果你之前对AI没有那么关注,相信你会感到震惊。这个体验已经非常接近和正常人类的交流。事实上如果考虑到知识丰富和情绪稳定,它应该比大多数人类更适合交流;p那么,请你想象一下,如果你是提问者,你觉得ChatGPT可以跨越图灵测试吗?虽然学术界依然存在着很多争议,但是确实有很多人认为目前的AI产品已经可以通过图灵测试。事实上,这可能比绝大多数人认为的到来得早得多。也有人说,我们需要新的标准来判定AI真正拥有智慧,比如,它是否拥有自主意识?那自主意识又是什么以及如何测定呢?这是人类面临的新问题。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

一、视频一主要回答了什么是AI大模型,原理是什么。1、概念:生成式AI生成的内容,叫做AIGC2、概念与关系:相关技术名词1)AI——人工智能2)机器学习——电脑找规律学习,包括监督学习、无监督学习、强化学习。3)监督学习——有标签的训练数据,算法的目标是学习输入和输出之间的映射关系。包括分类和回归。4)无监督学习——学习的数据没有标签,算法自主发现规律。经典任务包括聚类,比如拿一堆新闻文章,让模型根据主题或内容特征分成具有相似特征的组。5)强化学习——从反馈里学习,最大化奖励或最小化损失;类似训小狗。6)深度学习——一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习、强化学习。7)生成式AI——可以生成文本、图片、音频、视频等内容形式8)LLM——大语言模型。对于生成式AI,其中生成图像的扩散模型就不是大语言模型;对于大语言模型,生成只是其中一个处理任务,比如谷歌的BERT模型,可用于语义理解(不擅长文本生成),如上下文理解、情感分析、文本分类;3、技术里程碑——2017年6月,谷歌团队发表论文《Attention is All You Need》。这篇论文首次提出了Transformer模型,它完全基于自注意力机制(Self-Attention)来处理序列数据,而不需要依赖于循环神经网络(RNN)或卷积神经网络(CNN)。

Others are asking
怎么写好AI绘画提示词
以下是关于写好 AI 绘画提示词的一些要点和方法: 1. 趣味性与美感概念:通过反差、反逻辑、超现实方式带来视觉冲击,在美术基础不出错前提下将形式与内容结合。 2. 纹身图创作要点:强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。 3. 魔法少女示例:以魔法少女为例,发散联想其服饰、场景、相关元素等,并可采用反逻辑反差方式。 4. 提示词编写方法:用自然语言详细描述画面内容,避免废话词,Flux 对提示词的理解和可控性强。 5. 实操演示准备:按赛题需求先确定中式或日式怪诞风格的创作引子。 6. 人物创作过程:从汉服女孩入手,逐步联想其颜色、发型、妆容、配饰、表情、背景等元素编写提示词。 7. 输入语言:星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(一个长头发的金发女孩),基础模型 1.5 使用单个词组(女孩、金发、长头发),支持中英文输入。 8. 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质,比如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 9. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,负面提示词可以帮助 AI 理解我们不想生成的内容,比如:不好的质量、低像素、模糊、水印。 10. 利用“加权重”功能:可在功能框增加提示词,并进行加权重调节,权重数值越大,更优先。对已有的提示词权重进行编辑。 11. 辅助功能:翻译功能可一键将提示词翻译成英文;删除所有提示词可清空提示词框;会员加速可加速图像生图速度,提升效率。 12. 对于 Stable Diffusion:生成方式主要分为文生图和图生图两种。文生图仅通过正反向词汇描述来发送指令。在文本描述上又分为两类:内容型提示词主要用于描述想要的画面,采样迭代步数通常数值控制在 20 40 之间最好,采样方法一般常用的为:Euler a;DPM++2S a Karras;DPM++2M Karras;DPM++SDE Karras;DDIM。将比例设置为 800:400,高宽比尽量在 512x512 数值附近。
2025-03-10
怎么写好AI绘画提示词
以下是写好 AI 绘画提示词的一些要点和方法: 1. 画面描述:用自然语言详细描述画面内容,避免废话词。比如描述人物时,包括发型、妆容、服饰、配饰、表情、背景等元素;描述场景时,涵盖环境光照、画面构图等。 2. 趣味性与美感:趣味性可通过反差、反逻辑、超现实方式带来视觉冲击,美感需在美术基础不出错前提下形式与内容结合。 3. 纹身图创作:强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。 4. 特定示例:如以魔法少女为例,发散联想其服饰、场景、相关元素等,并可采用反逻辑反差方式。 5. 输入语言:根据不同模型选择合适的输入方式,有的使用自然语言(一个长头发的金发女孩),有的使用单个词组(女孩、金发、长头发),且支持中英文输入。 6. 提示词内容准确:包含人物主体、风格、场景特点、环境光照、画面构图、画质等,例如:一个女孩抱着小猫,背景是一面红墙,插画风格、孤独感,高质量。 7. 调整负面提示词:点击提示框下方的齿轮按钮,弹出负面提示词框,输入不想生成的内容,如不好的质量、低像素、模糊、水印等。 8. 利用“加权重”功能:在功能框增加提示词,并进行加权重调节,权重数值越大,越优先。 9. 辅助功能:如翻译功能可一键将提示词翻译成英文,还有删除所有提示词、会员加速等功能。 10. 模型选择与参数设置:根据需求选择合适的模型和采样方法,合理设置采样迭代步数和比例等参数。
2025-03-10
什么是AI agent
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 此外,心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,还存在专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。 从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,往后,我们都将其称之为 AI Agent。
2025-03-10
如何从零到一成为AI产品经理
要从零到一成为 AI 产品经理,可以参考以下步骤: 1. 入门级: 通过 WaytoAGI 等开源网站或相关课程了解 AI 概念。 使用 AI 产品并尝试动手实践应用搭建。 2. 研究级: 技术研究路径:深入研究某一技术领域。 商业化研究路径:根据需求场景选择解决方案,或利用 Hugging face 等工具手搓出一些 AI 应用来验证想法。 3. 落地应用: 拥有成功落地应用的案例,产生商业化价值。 同时,AI 产品经理需要懂得技术框架,不一定要了解技术细节,但要对技术边界有认知,最好能知道一些优化手段和新技术的发展。产品经理要关注的还是场景、痛点、价值。 此外,还可以参考一些实际案例,比如 Kelton 作为 Owner 从 01 打造过两款 AIGC 产品,也完成过 LLM 评测体系的从零搭建。 在技术方面,对于纯小白,可以从最基础的小任务开始,让 AI 按照 best practice 写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,学会必备的调试技能。还可以通过和 AI 的对话,逐步明确项目需求,让 AI 帮助梳理出产品需求文档。
2025-03-10
我想要制作一款小游戏,上架到抖音和微信,请你给我列举出需要用到的ai和软件
以下是制作小游戏并上架到抖音和微信可能需要用到的 AI 和软件: AI 方面:可以利用 AI 描述需求生成游戏代码,例如向云雀 3.5 等模型描述需求来辅助生成代码。还可以让 AI 处理图片、绘制角色形象等。 软件工具: 图像托管网站:用于上传游戏中的图片,选择无需登录、兼容性强的网站。 代码解释网站:有专门解释代码改游戏 bug 的网站,部分有免费额度。 GitHub:用于游戏发布,需要注册账号,设置游戏名,选择公共或锁定,上传文件等。 Zion:支持小程序、Web、AI 行为流全栈搭建,APP 端全栈搭建 2025 上线。 Coze:可作为后端服务。 微信开发者工具:用于微信小程序的开发。
2025-03-10
我想让ai通过文字生成某一类风格的图片,可以给示例
以下是关于让 AI 通过文字生成某一类风格图片的示例和相关信息: 一、关键词相关 在生成图片时,图片内容通常分为二维插画和三维立体两种主要表现形式。为得到想要的图片,以下几个方面很重要: 1. 主题描述 可以描述场景、故事、元素、物体或人物的细节及搭配。 对于场景中的人物,应独立描述,避免用长串文字,以免 AI 识别不到。 大场景中多个角色的细节不太容易通过关键词生成。 2. 设计风格 设计师可能难以直接表达设计风格,可找风格类关键词参考或用垫图/喂图,让 AI 结合主题描述生成相应风格的图片。 某些材质的关键词使用有较多门道,需针对特定风格进行“咒语测试”。 二、工具 Ideogram 2.0 相关 1. 特点 设计能力强,文字生成效果好且准确(仅限英文),图像生成效果优于 Flux&Dalle·3。 具有精准文本生成、多样化风格、创意控制、开发者友好、支持手机端、免费使用额度等特点。 2. 基本操作界面 3. 示例 磨铁文化 Xiron 的字体设计 字体版权:AI 生成文字并非使用真实字体,而是基于学习创造类似风格的文字。 字体生成错误:可通过多次生成提示、使用编辑器修改、更换版本等方式纠正。 3D 风格海报设计、复古海报、网页设计等示例。
2025-03-10
ai什么工作原理
AI 的工作原理通常涉及以下几个方面: 1. 对于生成式 AI(GenAI),它是基于深度学习技术和机器学习算法。通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,从而实现对输入数据的分析、理解和生成。例如,语言模型 ChatGPT、图像模型 DALLE 等都是通过这种方式工作的。 2. 像 GPT4VAct 这样的多模态 AI 助手,通过视觉理解技术识别网页上的元素,模拟人类浏览网页时的行为,如点击链接、填写表单、滚动页面等。 3. 深度神经网络在识别物体时,简单细胞检测特征,复杂细胞汇总信息产生结果,通知更高层词简单细胞,逐级识别。 4. 大语言模型如 LLM 是基于“概率”生成下一个字,基于概率分布的统计模型。如果遇到没学过的问题,仍会基于概率进行生成,可能会出现“胡说八道”的情况,这种现象被称为“幻觉”。 总之,AI 的工作原理依赖于数据、算法和算力,通过对大量数据的学习和训练,来实现各种任务和功能。
2025-03-10
ai是啥运行原理
AI 的运行原理主要包括以下方面: 1. 模仿人类智力活动:是一种模仿人类智力活动的信息处理系统,通过训练能够还原人类思维系统,从而实现对人类智力活动的模仿。 2. 深度学习和大数据技术:通过深度学习、大数据等技术,在一定程度上能够“自主创作”。这种创作方式是对人类学习、创作和表达过程的学习,其创作过程与人类智力活动在某种意义上高度相似,反映出人类干预和控制的烙印。 3. 特定的技术架构:例如 FLUX.1 AI 的工作原理基于混合架构,结合了变换器和扩散技术,能够根据文本提示生成准确的图像。它采用尖端技术,如流匹配和优化,以生成高质量图像。 4. 基于数据学习:如 GenAI 是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。
2025-03-10
可以帮我输出一张图,解释人工智能的工作原理?
以下是关于人工智能工作原理的解释: 在音频生成方面,以谷歌的 V2A 系统为例: 首先,将视频输入编码为压缩表示。 然后,基于扩散模型从随机噪声中迭代改进音频,这一过程由视觉输入和自然语言提示引导,以生成与提示紧密配合的同步逼真音频。 最后,对音频输出进行解码,转化为音频波形,并与视频数据相结合。 在生成式人工智能的整体领域中: 监督学习用于标记事物,一直占据较大比例。 生成式 AI 由监督学习技术搭建,2010 2020 年是大规模监督学习的十年,为现代人工智能奠定了基础。 以生成文本为例,大语言模型通过使用监督学习不断预测下一个词语来生成新的文本内容,这需要千亿甚至万亿级别的单词数据库。 此外,大语言模型在写作、修改文本、翻译等方面有应用,但也存在编造故事产生错误信息的问题,需要鉴别信息准确性。人工智能作为一种通用技术,有大量的运用空间,如基于网络界面应用和基于软件程序应用等。
2025-03-10
请给我Auto-GPT的相关信息资料:例如他是什么,他能干什么,他的工作原理
AutoGPT 是一个基于 GPT4 语言模型的开源应用程序。 它能做的事情包括: 当用户输入一个目标后,自主执行任务。 递归地开发和调试代码。 自动化任务,如帮助发展市场、制定营销策略、建立网站等。 创建自主的 AI 代理,如聊天机器人和流程自动化。 完成各种任务,如生成新任务、完成复杂任务、自我改进等。 根据代码仓库以及公开的代码仓库提示可能的输入,增强 IDE 的补全功能。 其工作原理主要为:分解用户提供的任务,选择需要使用的工具,执行任务,整合结果。您可以通过以下地址访问:
2025-03-08
Monica和Openai的记忆功能是如何让大模型产生记忆的?是什么原理?
大模型的记忆功能实现方式较为复杂,不同的模型可能有所不同。 OpenAI 的模型中,大模型 LLM 扮演了“大脑”的角色,其记忆功能可能通过“Agent = LLM + 规划 + 记忆 + 工具使用”的基础架构来实现。但需要注意的是,对于 ChatGPT 这类模型,实际上其本质上并没有直接的记忆功能。它能理解之前的交流内容,是因为每次将之前的对话内容作为新的输入重新提供给模型。这种记忆功能并非由大型模型直接实现,而是通过在别处进行存储来达成。 如果对话内容过长,可能会影响模型的整体性能。解决这个问题的一个简单方法是启动另一个对话框。对于之前的数据,通常只能进行总结。
2025-03-01
推理模型的技术原理
推理模型是一种新的范式,专注于解决复杂、多步骤的问题。其技术原理主要包括以下方面: 1. 思考输入意图:通过对输入内容的深入理解,明确问题的核心和需求。 2. 逐步提供答案:不像传统模型一次性给出结果,而是分步骤进行推理和回答。 3. 擅长领域:在解谜和高级数学等具有挑战性的任务中表现出色。 4. 与传统模型的区别:传统模型可能更倾向于直接给出结果,而推理模型会通过逐步思考来提供答案。 5. 成本和易错性:推理模型成本高昂且容易出错,适用场景有限。 6. 模型变体:如 DeepSeek 推出的多种变体(如 R1Zero 和 R1Distill)展示了不同的训练策略和性能表现。 7. 思考过程:类似于人类的慢思考过程,结合行业特点给出重要事项和先后顺序。 8. 运算原理:快思考是概率预测,脱口而出但不一定对;慢思考在概率预测基础上做二层逻辑,即链式思维,展开问题找多条路径并互相验证。 9. 适用场景:指令遵循领域 instruct 模型效果好,推理和创造性问题适合用慢思考的推理模型。
2025-03-01