Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

ai是啥运行原理

Answer

AI 的运行原理主要包括以下方面:

  1. 模仿人类智力活动:是一种模仿人类智力活动的信息处理系统,通过训练能够还原人类思维系统,从而实现对人类智力活动的模仿。
  2. 深度学习和大数据技术:通过深度学习、大数据等技术,在一定程度上能够“自主创作”。这种创作方式是对人类学习、创作和表达过程的学习,其创作过程与人类智力活动在某种意义上高度相似,反映出人类干预和控制的烙印。
  3. 特定的技术架构:例如 FLUX.1 AI 的工作原理基于混合架构,结合了变换器和扩散技术,能够根据文本提示生成准确的图像。它采用尖端技术,如流匹配和优化,以生成高质量图像。
  4. 基于数据学习:如 GenAI 是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。
Content generated by AI large model, please carefully verify (powered by aily)

References

2024AIGC法律风险研究报告(更新版).pdf

从客观表现形式来看,AI生成物与人类创造的智力成果并无实质上的差别,人工智能生成物在语言风格、叙事结构、词组构造、语法构建和行文方式上高度符合人类创作的文字作品的特征表达,二者都是可以被人类所理解的思想、情感和认知的表达。5从运行原理来看,人工智能是一种模仿人类智力活动的信息处理系统,通过对其训练,能够还原人类思维系统,从而实现对人类智力活动的模仿。其次是通过深度学习、大数据等技术,人工智能在一定程度上能够“自主创作”,由于5杨利华.人工智能生成物著作权问题探究[J].现代法学,2021,43(04):102-114.19AIGC法律风险研究报告这种创作方式本就是通过对人类学习、创作和表达过程的学习,AI的创作过程与人类智力活动在某种意义上高度相似,本身就反映出人类干预和控制的烙印,体现出一定程度的创作“智力”性。

大模型的快思慢想:适配自己的LLM使用场景II--在Mac/Edge设备及微信上运行Flux

FLUX.1[dev]是开源模型,不可商用,直接从FLUX.1[pro]蒸馏而来,具备相似的图像质量和提示词遵循能力,但更高效。它在HuggingFace上提供,可以在Replicate或fal.ai等平台上试用。FLUX.1[schnell]是开源模型,可商用,专门为本地开发和个人使用量身定制,生成速度最快,内存占用也最小。它在Apache 2.0许可下公开提供,适合快速原型制作和个人项目。FLUX.1的训练参数高达120亿,远超SD3 Medium的20亿。它在图像质量、提示词跟随、尺寸适应、排版和输出多样性等方面超越了Midjourney v6.0、DALL·E 3(HD)和SD3-Ultra等流行模型,定义了新的图像合成的最先进水平。FLUX.1 AI的工作原理基于混合架构,结合了变换器和扩散技术,能够根据文本提示生成准确的图像。它采用尖端技术,如流匹配和优化,以生成高质量图像。FLUX.1 AI的关键特性包括尖端性能、文本处理能力、复杂构图能力和改进的人手生成。它支持在Replicate、fal.ai和Comfy UI等平台上使用,并且有明确的定价详情和使用限制。此外,FLUX.1 AI支持用户根据自己的数据集进行微调,以生成特定风格或主题的图像。本文我们尝试分别在没有N卡,不使用类似Comfy UI这样复杂的工作流搭建工具上使用Mac Mini M1上运行FLUX.1[schnell]。然后我们尝试在边缘设备Raspberry PI5B上看看是否可行,最后我们使用dify+CoW项目在微信上搭建一个通过微信发送提示词来画图的应用实例。[heading3]

2024AIGC法律风险研究报告(更新版).pdf

在引入AIGC的概念之前,本报告将先解释另一相关的热门词条“GenAI”,全称Generative AI,即生成式AI。GenAI是一种基于深度学习技术(deep learning algorithm),利用机器学习(machine learning)算法从已有数据中学习并生成新的数据或内容的AI应用。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,实现对输入数据的分析、理解和生成。GenAI为游戏、娱乐和产品设计等应用提供了新颖且有创意的解决方案,如自动写作、虚拟现实、音乐创作等,甚至协助科学研究开辟了新的可能性。目前典型的GenAI包括OpenAI推出的语言模型ChatGPT、GPT-4、图像模型DALL-E以及百度推出的文心一言、阿里云推出的通义千问等。虽然生成式AI是一种非常强大的技术,能够应用于诸多专业领域;但其在数据处理过程中存在多重潜在合规风险,如未经授权收集信息、提供虚假信息、侵害个人隐私等。AIGC(全称AI-Generated Content)指利用GenAI创建的内容,如图像、视频、音频、文本和三维模型。具体来讲,AIGC工具使用机器学习算法,通常以自然语言处理为基础,分析大型文本数据集,并学习如何生成风格和语气相似的新内容。国内目前主要是在《网络安全法》《数据安全法》以及《个人信息保护法》的框架下,由《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》共同监管AIGC行业。

Others are asking
ai写程序
以下是关于使用 AI 写程序的相关内容: 1. 对于技术纯小白: 从最基础的小任务开始,让 AI 按照最佳实践写一个 say hello 的示例程序,并解释每个文件的作用及程序运行的逻辑,以学会必备的调试技能。 若学习写 chrome 插件,可让 AI 按照最佳实践生成简单的示范项目,包含全面的典型文件和功能,并讲解每个文件的作用和程序运行的逻辑。若使用 o1mini,可在提示词最后添加生成创建脚本的要求,并请教如何运行脚本(Windows 机器则是 create.cmd)。 2. 明确项目需求: 通过与 AI 的对话逐步明确项目需求。 让 AI 帮助梳理出产品需求文档,在后续开发时每次新起聊天将文档发给 AI 并告知在做的功能点。 3. 在独立游戏开发中的经验: 单独让 AI 写小功能没问题,但对于复杂的程序框架,可把不方便配表而又需要撰写的简单、模板化、多调用 API 且牵涉小部分特殊逻辑的代码交给 AI。 以 Buff 系统为例,可让 AI 仿照代码写一些 Buff。但目前 Cursor 生成复杂代码需要复杂的前期调教,ChatGPT 相对更方便。 教 AI 时要像哄小孩,及时肯定正确的,指出错误时要克制,不断完善其经验。 4. 相关资源和平台: AI 写小游戏平台:https://poe.com/ 图片网站:https://imgur.com/ 改 bug 的网站:https://v0.dev/chat 国内小游戏发布平台:https://open.4399.cn/console/ 需要注意的是,使用 AI 写程序时,对于技术小白来说,入门容易但深入较难,若没有技术背景可能提不出问题,从而影响 AI 发挥作用。
2025-04-19
学AI上钉钉
以下是在钉钉上学 AI 的相关内容: 从 AI 助教到智慧学伴的应用探索: 登录钉钉客户端,在右上角依次选择钉钉魔法棒、AI 助理、创建 AI 助理。进入创建 AI 助理页面后,填写 AI 助理信息,设置完成即可创建成功。 AI 领导力向阳乔木:未提及具体的在钉钉上学 AI 的操作方法。 基于 COW 框架的 ChatBot 实现步骤: 创建应用: 进入,登录后点击创建应用,填写应用相关信息。 点击添加应用能力,选择“机器人”能力并添加。 配置机器人信息后点击发布,发布后点击“点击调试”,会自动创建测试群聊,可在客户端查看。点击版本管理与发布,创建新版本发布。 项目配置: 点击凭证与基础信息,获取 Client ID 和 Client Secret 两个参数。 参考项目,将相关配置加入项目根目录的 config.json 文件,并设置 channel_type:"dingtalk",注意运行前需安装依赖。 点击事件订阅,点击已完成接入,验证连接通道,会显示连接接入成功。 使用:与机器人私聊或将机器人拉入企业群中均可开启对话。
2025-04-19
有哪些好用的法律ai
以下是一些好用的法律 AI 应用场景和示例: 1. 诉讼策略制定: AI 将基于商标法等相关条款和案例法,为商标侵权案件提供诉讼策略,包括对原告商标权利的分析、被告侵权行为的评估、关键证据搜集建议、法律抗辩点及和解或调解策略。 其他例子: 为专利侵权案件制定诉讼策略,分析专利有效性、被告侵权行为及抗辩理由,提出证明侵权和计算损害赔偿的建议。 针对劳动合同纠纷案件,分析员工权益和雇主责任,提出诉讼策略,包括主张权益、证据收集重点及证明雇主违约行为。 在知识产权许可诉讼中,分析许可协议条款和双方权利义务,提出诉讼策略,包括证明许可协议违反、计算损失赔偿及可能的合同解除条件。 模拟法庭,如模拟商业合同违约的法庭审理,分析双方论点、证据和法律依据,预测判决结果,给出优化法庭陈述和证据呈现的建议。 2. 法律意见书撰写: AI 根据案件背景、证据材料和法律法规,自动撰写初步法律意见书,包含案件事实梳理、法律分析和结论。 其他例子: 针对商业秘密泄露案件,分析法律责任和赔偿范围,撰写法律意见书,提供应对策略。 为计划上市的公司提供关于公司治理结构的法律意见书,确保符合相关法规要求。 就消费者权益保护案件提供法律意见,分析商家赔偿责任和消费者维权途径,制定应对措施。 起草股权转让协议,包括转让方和受让方信息、股权转让份额、价格、支付方式和时间表、先决条件、双方权利义务、保密、违约责任和争议解决条款等。 3. 指令风格和技巧: 可指定 AI 模仿某位资深律师的逻辑严谨和言简意赅的风格,使其提供的信息更符合专业律师的沟通和表达习惯。 运用 PEMSSC 方法,如选择个性化的风格、给出参考或逻辑结构、从多个角度思考、进行总结概括、使用分隔符号区分等。 个性化风格:选择幽默且富有洞察力的风格,融入创新视角。 参考和逻辑结构:在提供法律建议时,采用 SWOT 分析法或 4P 原则等逻辑结构。 多角度思考:在分析商事诉讼时,从市场趋势、竞争对手行为、战略规划、财务状况和市场前景等角度思考诉讼策略。
2025-04-18
AI术语解释
以下是一些常见的 AI 术语解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。属于技术范畴。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。属于通识范畴。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。属于技术范畴。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。属于技术范畴。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。属于通识范畴。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。属于技术范畴。 TPU(张量处理单元):谷歌开发的一种微处理器,专门用于加速机器学习工作负载。属于技术范畴。 Training Data(训练数据):用于训练机器学习模型的数据集。属于技术范畴。 Transfer Learning(迁移学习):机器学习中的一种方法,其中对新问题使用预先训练的模型。属于技术范畴。 Validation Data(验证集):机器学习中使用的数据集的子集,独立于训练数据集和测试数据集。用于调整模型的超参数(即架构,而不是权重)。属于技术范畴。 Knowledge Distillation(数据蒸馏):数据蒸馏旨在将给定的一个原始的大数据集浓缩并生成一个小型数据集,使得在这一小数据集上训练出的模型,和在原数据集上训练得到的模型表现相似。在深度学习领域中被广泛应用,特别是在模型压缩和模型部署方面。可以帮助将复杂的模型转化为更轻量级的模型,并能够促进模型的迁移学习和模型集成,提高模型的鲁棒性和泛化能力。属于技术范畴。 RAG(检索增强生成):检索增强生成。属于技术范畴。 Forward Propagation(前向传播):在神经网络中,输入数据被馈送到网络并通过每一层(从输入层到隐藏层,最后到输出层)以产生输出的过程。网络对输入应用权重和偏差,并使用激活函数生成最终输出。属于技术范畴。 Foundation Model(基础模型):在广泛数据上训练的大型 AI 模型,旨在适应特定任务。属于技术范畴。 GAN(通用对抗网络):一种机器学习模型,用于生成类似于某些现有数据的新数据。使两个神经网络相互对抗:一个“生成器”,创建新数据,另一个“鉴别器”试图将数据与真实数据区分开来。属于技术范畴。 Generative AI/Gen AI(生成式 AI):AI 的一个分支,专注于创建模型,这些模型可以根据现有数据的模式和示例生成新的原创内容,例如图像、音乐或文本。属于通识范畴。 GPU(图形处理单元):一种特殊类型的微处理器,主要用于快速渲染图像以输出到显示器。在执行训练和运行神经网络所需的计算方面也非常高效。属于产品范畴。
2025-04-18
有没有能根据描述,生成对应的word模板的ai
目前有一些可以根据描述生成特定内容的 AI 应用和方法。例如: 在法律领域,您可以提供【案情描述】,按照给定的法律意见书模板生成法律意见书。例如针对商业贿赂等刑事案件,模拟不同辩护策略下的量刑结果,对比并推荐最佳辩护策略,或者为商业合同纠纷案件设计诉讼策略等。 在 AI 视频生成方面,有结构化的提示词模板,包括镜头语言(景别、运动、节奏等)、主体强化(动态描述、反常组合等)、细节层次(近景、中景、远景等)、背景氛围(超现实天气、空间异常等),以及增强电影感的技巧(加入时间变化、强调物理规则、设计视觉焦点转移等)。 一泽 Eze 提出的样例驱动的渐进式引导法,可利用 AI 高效设计提示词生成预期内容。先评估样例,与 AI 对话让其理解需求,提炼初始模板,通过多轮反馈直至达到预期,再用例测试看 AI 是否真正理解。 但需要注意的是,不同的场景和需求可能需要对提示词和模板进行针对性的调整和优化,以获得更符合期望的 word 模板。
2025-04-18
作为AI小白,需要一些AI常用专业术语的名词解释
以下是一些 AI 常用专业术语的名词解释: Agents(智能体):一个设置了一些目标或任务,可以迭代运行的大型语言模型。与大型语言模型在像 ChatGPT 这样的工具中的通常使用方式不同,Agent 拥有复杂的工作流程,模型本质上可以自我对话,无需人类驱动每一部分的交互。 ASI(人工超级智能):尽管存在争议,但通常被定义为超越人类思维能力的人工智能。 Attention(注意力):在神经网络的上下文中,有助于模型在生成输出时专注于输入的相关部分。 Bias(偏差):AI 模型对数据所做的假设。“偏差方差权衡”是模型对数据的假设与给定不同训练数据的模型预测变化量之间必须实现的平衡。归纳偏差是机器学习算法对数据的基础分布所做的一组假设。 Chatbot(聊天机器人):一种计算机程序,旨在通过文本或语音交互模拟人类对话。通常利用自然语言处理技术来理解用户输入并提供相关响应。 CLIP(对比语言图像预训练):由 OpenAI 开发的 AI 模型,用于连接图像和文本,使其能够理解和生成图像的描述。 Gradient Descent(梯度下降):在机器学习中,是一种优化方法,根据模型损失函数的最大改进方向逐渐调整模型的参数。 Hallucinate,Hallucination(幻觉):在人工智能的背景下,指模型生成的内容不是基于实际数据或与现实明显不同的现象。 Hidden Layer(隐藏层):神经网络中不直接连接到输入或输出的人工神经元层。 Hyperparameter Tuning(超参数调优):为机器学习模型的超参数(不是从数据中学习的参数)选择适当值的过程。 Inference(推理):使用经过训练的机器学习模型进行预测的过程。 Instruction Tuning(指令调优):机器学习中的一种技术,其中模型根据数据集中给出的特定指令进行微调。 Latent Space(潜在空间):在机器学习中,指模型创建的数据的压缩表示形式。类似的数据点在潜在空间中更接近。 Compute(计算):用于训练或运行 AI 模型的计算资源(如 CPU 或 GPU 时间)。 CNN(卷积神经网络):一种深度学习模型,通过应用一系列过滤器来处理具有网格状拓扑(例如图像)的数据。通常用于图像识别任务。 Data Augmentation(数据增强):通过添加现有数据的略微修改的副本来增加用于训练模型的数据量和多样性的过程。 Double Descent(双降):机器学习中的一种现象,其中模型性能随着复杂性的增加而提高,然后变差,然后再次提高。 EndtoEnd Learning(端到端学习):一种不需要手动设计功能的机器学习模型。该模型只是提供原始数据,并期望从这些输入中学习。 Expert Systems(专家系统):人工智能技术的应用,为特定领域的复杂问题提供解决方案。 XAI(可解释的人工智能):Explainable AI,人工智能的一个子领域专注于创建透明的模型,为其决策提供清晰易懂的解释。
2025-04-18
学习AI怎么在工作中使用,提高工作效率,有必要从技术原理开始学习吗
学习 AI 在工作中使用以提高工作效率,不一定需要从技术原理开始学习。以下是一些相关的案例和建议: 案例一:GPT4VAct 是一个多模态 AI 助手,能够模拟人类通过鼠标和键盘进行网页浏览。其应用场景在于以后互联网项目产品的原型设计自动化生成,能使生成效果更符合用户使用习惯,同时优化广告位的出现位置、时机和频率。它基于 AI 学习模型,通过视觉理解技术识别网页元素,能执行点击和输入字符操作等,但目前存在一些功能尚未支持,如处理视觉信息程度有限、不支持输入特殊键码等。 案例二:对于教师来说,有专门的 AI 减负指南。例如“AI 基础工作坊用 AI 刷新你的工作流”,从理解以 GPT 为代表的 AI 工作原理开始,了解其优势短板,学习写好提示词以获得高质量内容,并基于一线教师工作场景分享优秀提示词与 AI 工具,帮助解决日常工作中的常见问题,提高工作效率。 建议:您可以根据自身工作的具体需求和特点,有针对性地选择学习方向。如果您只是想快速应用 AI 提高工作效率,可以先从了解常见的 AI 工具和应用场景入手,掌握基本的操作和提示词编写技巧。但如果您希望更深入地理解和优化 AI 在工作中的应用,了解技术原理会有一定帮助。
2025-04-15
从最基本的原理开始讲
以下是为您从最基本的原理开始讲解的相关内容: 强化学习: 从最开始的 K 臂抽奖机器入手讲解了强化学习的基本原理,然后切入到 Qlearning 中学习如何使用 Q 表来进行强化学习,最后再借助神经网络将 Q 表替换成用函数来拟合计算 Q 值。 参考文章: https://lilianweng.github.io/posts/20180123multiarmedbandit/ https://yaoyaowd.medium.com/%E4%BB%8Ethompsonsampling%E5%88%B0%E5%A2%9E%E5%BC%BA%E5%AD%A6%E4%B9%A0%E5%86%8D%E8%B0%88%E5%A4%9A%E8%87%82%E8%80%81%E8%99%8E%E6%9C%BA%E9%97%AE%E9%A2%9823a48953bd30 https://zh.wikipedia.org/wiki/%E8%92%99%E5%9C%B0%E5%8D%A1%E7%BE%85%E6%96%B9%E6%B3%95 https://rl.qiwihui.com/zh_CN/latest/partI/index.html https://github.com/ty4z2008/Qix/blob/master/dl.md https://hrl.boyuai.com/ http://zh.d2l.ai/ 苏格拉底辩证法及其第一性原理: 这里所说的“辩证法”,是一种通过提问和回答,深入挖掘、质疑和明确观念的艺术,是始于苏格拉底的、源头上的“辩证法”。这门艺术可通过一系列问题,不断挑战人们对世界的既定认知,揭示其中的矛盾和不足,从而引领人们学会自我反思并走向真理。把 AI 作为方法,就是要用辩证法以对话方式引导出 AI 被预训练的世界级的知识和推理能力,然后使其变成我们可以重复调用的“专家级团队”。既然先进的大语言模型是预训练的、以自然语言对话为交互的,又因为人们创造“概念”是为了对事物达成共识,并能更好地交流,所以我们就选择从对话开始,追本溯源,探索如何对话、如何训练对话能力及如何操纵概念——直达认知事物的第一性原理,然后再回到应用上来。 Stable Diffusion: 从艺术和美学的角度来看,扩散模型可以被理解为一种创作和表达过程,其中的元素通过互动和影响,形成一种动态的、有机的整体结构。 前向扩散过程是一个不断加噪声的过程。例如,在猫的图片中多次增加高斯噪声直至图片变成随机噪音矩阵。对于初始数据,设置 K 步的扩散步数,每一步增加一定的噪声,如果设置的 K 足够大,就能够将初始数据转化成随机噪音矩阵。扩散过程是固定的,由 Schedule 算法进行统筹控制。同时扩散过程也有一个重要的性质:可以基于初始数据 X0 和任意的扩散步数 Ki,采样得到对应的数据 Xi 。 反向扩散过程和前向扩散过程正好相反,是一个不断去噪的过程。将随机高斯噪声矩阵通过扩散模型的 Inference 过程,预测噪声并逐步去噪,最后生成一个小别墅的有效图片。其中每一步预测并去除的噪声分布,都需要扩散模型在训练中学习。
2025-04-14
用通俗易懂的动画描述人工智能工作原理
人工智能的工作原理可以通过以下动画来描述: 在一个动画场景中,首先有一个传统工作流的部分,就像精心搭建的积木城堡,每一块积木的位置和形状都被精确设计和控制,这代表着传统工作流的可控性和高成本、慢速度。 然后是 AI 工作流的部分。想象一下,有一团混乱的色彩在飞舞,这团色彩代表着随机和不可控。但在这混乱中,有一种力量在尝试引导和塑造,就像在狂风中努力抓住风筝线一样,这就是在随机性中寻找可控性。 比如在一个生成音频与视频同步的例子中,动画展示了一个系统。首先,系统将视频输入编码成压缩的表示形式,就像把一大包东西压缩成一个小包裹。然后,扩散模型从随机噪声中不断改进音频,就像在混沌中逐渐塑造出清晰的声音。这个过程受到视觉输入和自然语言提示的引导,最终生成与提示紧密配合的同步逼真音频。最后,音频输出被解码,变成音频波形,并与视频数据完美结合。 总的来说,传统工作流在可控中寻找创新的随机,而 AI 工作流更多是在随机中寻找可控,两者各有优劣,结合起来能创造出更出色的成果。
2025-04-14
我是一个没有技术背景且对AI感兴趣的互联网产品经理,目标是希望理解AI的实现原理并且能够跟开发算法工程师沟通交流,请给我举出AI模型或者机器学习的分类吧。
以下是 AI 模型和机器学习的分类: 1. AI(人工智能):是一个广泛的概念,旨在使计算机系统能够模拟人类智能。 2. 机器学习:是人工智能的一个子领域,让计算机通过数据学习来提高性能。包括以下几种类型: 监督学习:使用有标签的训练数据,算法学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:是机器学习的一个子领域,模拟人脑创建人工神经网络处理数据,包含多个处理层,在图像识别、语音识别和自然语言处理等任务中表现出色。 4. 大语言模型:是深度学习在自然语言处理领域的应用,目标是理解和生成人类语言,如 ChatGPT、文心一言等。同时具有生成式 AI 的特点,能够生成文本、图像、音频和视频等内容。 2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。生成式 AI 生成的内容称为 AIGC。
2025-03-26
生成式人工智能原理是什么
生成式人工智能的原理主要包括以下几个方面: 1. 基于深度学习技术和机器学习算法:通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,从而实现对输入数据的分析、理解和生成。 2. 监督学习:例如在生成文本时使用大语言模型,通过监督学习不断预测下一个词语,经过大量的数据训练,从而生成新的文本内容。这通常需要千亿甚至万亿级别的单词数据库。 3. 从大量现有内容中学习:包括文本、音频和视频等多模式的内容,这个学习过程称为训练,其结果是创造“基础模型”,如为聊天机器人提供支持的大型语言模型(LLM)。基础模型可用于生成内容并解决一般问题,也可以使用特定领域的新数据集进一步训练以解决特定问题。
2025-03-26
LLM的原理
LLM(大语言模型)的工作原理如下: 以“我今天吃了狮子头和蔬菜”这句话为例,在 Transformer 中,会由 Attention 层对其加入更多信息补充,如“狮子头是一道菜”“今天是星期六”等,这些补充信息作为输入给到下一个 Attention 层,层与层之间,哪些信息补充、保留、传递,由模型自主学习,最终模型把海量数据以关系网形式“消化”并保留重要相关性。 形象地说,就像人阅读文章时的连贯性注意力过程,在阅读理解时,脑子里会消化吸收记忆,记忆的不是点状知识,而是网状经验。 大模型以词向量和 Transformer 模型学习海量知识,把知识作为向量空间中的关系网存储,接受输入时通过向量空间中的匹配进行输出。 观察大模型回复,是一个字一个字流式输出的,因为大模型确实在一个字一个字地推理生成内容。比如输入法输入联想,根据输入的单个字推测下一个字,加入上下文能帮助模型理解下一个字。但存在两个问题:一是全量数据计算算力吃不消,二是仅算字的概率易被不相干信息干扰,此时词向量机制和 Transformer 模型中的 Attention 自注意力机制解决了难题。 另外,RAG 对大语言模型的作用就像开卷考试对学生,事实性知识与 LLM 的推理能力相分离,被存储在容易访问和及时更新的外部知识源中,分为参数化知识(模型训练中学习得到,隐式储存在神经网络权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。
2025-03-25
我自己想做一个英语背单词的游戏,让AI写出Markdown代码运行后,发现问题很大,但是我有不知如何修改这些代码。所以我觉得自己应该懂Markdown 代码语言。但是我不知道Markdown是最适合的编程语言吗?
Markdown 语言不太适合用于编写复杂的英语背单词游戏。虽然 Markdown 简单易用,常用于文档格式化,但在实现游戏逻辑和功能方面存在较大局限性。 如果您想开发英语背单词游戏,更适合使用编程语言,如 Python 等。在处理代码问题时,您可以参考以下方法: 1. 对于编程小白,向 AI 提供代码范例,尤其是新进入代码节点的 IDE 中的范例,减少对 AI 所写代码的改动。 2. 向 AI 说清楚输入变量与输出变量的类型。 3. 说明与工作流中匹配或想要的变量名称,以减少二次修改。 4. 列出输入变量的具体书写形式,对于复杂形式可使用特定方法获取。 5. 说清楚代码要实现的功能,复杂功能尽量将运行逻辑描述清楚,多用变量名称指代涉及的变量。 如果代码运行效果不尽人意,可把当前的代码、输入变量、预期结果提供给 AI,并告知错误的结果或者报错信息,让 AI 帮忙寻找问题并提供修改方案。提问时可参考以下方式: 以上是我目前的 python 代码,我的输入变量。 但是代码运行后的实际结果却是。 另外,在游戏开发与修改过程中,还需注意文件的存放要求、功能优化、平台上传等方面的问题。例如,三个重要文件需在一个文件夹,本地内置图像、音乐等也需在同一文件夹。游戏功能可增加关卡、调整金币获取和技能点花费、解决 Bug 等。研究将游戏发布到 4399 开放平台时,需注册、实名制,审核较严格。获取游戏素材可从官网免费下载或淘宝购买抠好的素材。
2025-03-18
给我推荐一个家庭用的私人部署deepseek电脑配置,要求价格在5W一下,能够比较流畅的运行,还有采用那一个版本的模型
很抱歉,您提供的内容中没有关于家庭用私人部署 deepseek 电脑配置的相关信息。如果您需要配置一台价格在 5 万以下、能流畅运行的家庭用电脑,以下是一些建议: CPU:可以选择英特尔酷睿 i9 或 AMD 锐龙 9 系列的高端处理器。 显卡:选择 NVIDIA GeForce RTX 40 系列的高端显卡,如 RTX 4080 或 RTX 4070Ti。 内存:32GB 或 64GB 的 DDR5 内存。 存储:1TB 或 2TB 的 NVMe SSD 作为系统盘,再加上大容量的机械硬盘用于数据存储。 主板:选择与所选 CPU 兼容的高端主板,以确保稳定性和扩展性。 关于模型版本,Midjourney 的 V5 模型是较新且先进的版本,具有更广泛的风格范围、更高的图像质量、更详细的图像等优点。您可以通过添加“v 5”参数或使用“/settings”命令并选择 MJ Version 5 来使用该模型。
2025-03-17
给我推荐一个家庭用的私人部署deepseek电脑配置,要求价格在5W一下,能够比较流畅的运行,还有采用那一个版本的模型
以下是为您推荐的家庭用私人部署 deepseek 电脑配置,价格在 5 万以下,能够较流畅运行: CPU:Intel Core i913900K 或 AMD Ryzen 9 7950X 显卡:NVIDIA GeForce RTX 4080 或 RTX 4070Ti 内存:32GB 或 64GB DDR5 高频内存 硬盘:1TB NVMe M.2 固态硬盘 + 4TB 机械硬盘 主板:支持所选 CPU 的高端主板,如 Z790 或 X670 系列 电源:850W 及以上的高品质电源 关于模型版本,Midjourney 最新的模型是 V5 版本,于 2023 年 3 月 15 日发布。使用此模型,您可以在提示词末尾添加 v 5 参数,或使用 /settings 命令并选择 MJ Version 5。该模型具有很高的连贯性,擅长解释自然语言提示,分辨率更高,并支持如 tile 重复图案等高级功能。它在风格范围、图像质量、细节表现、对提示的响应以及图像提示性能等方面都有显著改进。
2025-03-17
给我推荐一个家庭用的私人部署deepseek电脑配置,要求价格在5W一下,能够比较流畅的运行
对于家庭用的私人部署 deepseek 电脑配置,在 5 万元以下的预算,以下是一个推荐配置: CPU:Intel Core i913900K 或 AMD Ryzen 9 7950X 主板:选择与所选 CPU 兼容的高端主板,如华硕、技嘉等品牌的 Z790 或 X670 系列 内存:32GB 或 64GB DDR5 高频内存 硬盘:1TB NVMe M.2 固态硬盘作为系统盘,再加上 4TB 以上的机械硬盘用于数据存储 显卡:NVIDIA GeForce RTX 4070Ti 或 AMD Radeon RX 7900 XTX 电源:850W 及以上的高品质电源 机箱:选择散热良好、空间宽敞的机箱 请注意,电脑配置的选择还需要考虑您的具体需求和使用场景,以上配置仅供参考。
2025-03-17
我有个计算流体力学相关的数值模式,代码是C++写的,几万行,有多个文件,各个文件之间是相互关联,现在想对代码的运行效率、代码规范等进行优化升级,有什么AI工具推荐
目前在您所描述的这种对大规模、相互关联的 C++代码进行运行效率和代码规范优化升级的场景中,暂时没有特别直接适用的 AI 工具。不过,您可以考虑使用一些传统的代码分析和优化工具,例如: 1. ClangTidy:这是一个用于 C++代码的静态分析工具,可以帮助发现代码中的潜在问题,并提供一些改进建议。 2. Valgrind:用于检测内存管理错误和性能问题。 同时,您也可以利用一些代码版本管理工具,如 Git,来更好地跟踪和管理代码的修改。
2025-03-08
能在局域内网,没有网络,离线的场景使用的AI编程工具,可以是单独运行的,也可以是JetBrains IDEs中作为插件使用的
以下是一些可以在局域内网、没有网络、离线场景使用的 AI 编程工具: 1. PyCharm:是 JetBrains 推出的智能代码补全工具,支持 Java、Python 和 JavaScript 等多种语言。因其高准确性著称,帮助开发人员节省编程时间。价格:起价每月 24.90 美元。 2. AIXcoder:AI 驱动的编程助手,支持 Java、Python 和 JavaScript 等语言。它提供了自动任务处理、智能代码补全、实时代码分析以及输入时的错误检查功能。价格:暂无信息。 3. Ponicode:AI 驱动的代码工具,旨在帮助开发人员优化编码流程。利用自然语言处理和机器学习,根据用户的描述生成代码。由 CircleCI 维护。 4. Jedi:开源的代码补全工具,主要作为 Python 静态分析工具的插件运行,适用于各种编辑器和 IDE。价格:免费。 此外,还有以下相关工具: 1. Cursor:网址:https://www.cursor.com/ ,通过对话获得代码。 2. Deepseek:网址:https://www.deepseek.com/zh ,方便国内访问,网页登录方便,目前完全免费。 3. 通义灵码:在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“通义灵码”进行安装(目前免费)。 4. JetBrains 自身的助手插件:在 Pytharm 中,“文件”“设置”“插件”红色框位置搜索“Jetbrains AI assistant”进行安装(收费,目前有 7 天免费试用)。 5. AskCodi:一款 AI 代码助手,提供各种应用程序用于代码生成、单元测试创建、文档化、代码转换等。由 OpenAI GPT 提供支持,可以作为 Visual Studio Code、Sublime Text 和 JetBrains 的 IDE 的扩展/插件使用。 6. ODIN(Obsidian 驱动信息网络):是一个插件,可以在 Obsidian 中使用。它提供了一些功能,包括通过图形提示栏进行 LLM 查询、图形可视化、下拉菜单功能等。安装 ODIN 需要先安装 Obsidian 并按照指示进行插件的安装和启用。
2025-02-21