直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

智能识别图片或文本内容,格式化录入表格中

回答

以下是智能识别图片或文本内容并格式化录入表格的方法:

  1. 可以使用通义听悟、飞书妙记、钉钉闪记进行录音转文字,以钉钉闪记为例:
    • 第一步打开钉钉闪记。
    • 结束录音后点击“智能识别”。
    • 点击智能摘要,获得本次会议的纪要。
    • 如果需要更多内容,复制所有文案或下载文本文件到https://kimi.moonshot.cn/GPT、GLM、通义千问等大语言模型对话框中,再将会议内容发送。
  2. 该场景对应的关键词库(12 个):会议主题、参与人员、讨论议题、关键观点、决策、时间、地点、修改要求、文本格式、语言风格、列表、段落。
  3. 提问模板(3 个):
    • 第一步:用飞书会议等软件整理好会议记录,并分段式发给 ChatGPT 生成总结:
      • 请根据以下会议资料,整理会议的关键信息,包括:会议主题、参与人员、讨论议题、关键观点和决策。
      • 会议资料:
        • 时间:XXX 年 XXX 月 XXX 日
        • 地点:XXXX
        • 参与人员:XXX、XXX
        • 会议主题:XXXX
        • 讨论内容:
          • Speaker1:XXX
          • Speaker2:XXX
          • Speaker3:XXX
    • 第二步:检查生成的总结:
      • 请根据我提供的会议补充信息和修改要求,对 XXX 部分进行修改:
        • 会议补充信息:XXXX
        • 修改要求:XXXX
    • 第三步:优化文本格式和风格
      • 请将生成的总结,以 XXX 形式呈现(例如:以列表的形式、以段落的形式、使用正式/非正式的语言风格)
      • 请给上述会议总结,提供修改意见,并根据这个修改意见做最后的调整
内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

办公:会议总结

复制所有文案或下载文本文件到[https://kimi.moonshot.cn/](https://kimi.moonshot.cn/)GPT,GLM,通义千问等大语言模型对话框中,再将会议内容发送[heading3]该场景对应的关键词库(12个):[content]会议主题、参与人员、讨论议题、关键观点、决策、时间、地点、修改要求、文本格式、语言风格、列表、段落。[heading3]提问模板(3个):[content]第一步:用飞书会议等软件整理好会议记录,并分段式发给ChatGPT生成总结:提问模板:请根据以下会议资料,整理会议的关键信息,包括:会议主题、参与人员、讨论议题、关键观点和决策。会议资料:1、时间:XXX年XXX月XXX日2、地点:XXXX3、参与人员:XXX、XXX4、会议主题:XXXX5、讨论内容:Speaker1:XXXSpeaker2:XXXSpeaker3:XXX第二步:检查生成的总结:提问模板:请根据我提供的会议补充信息和修改要求,对XXX部分进行修改:1、会议补充信息:XXXX2、修改要求:XXXX第三步:优化文本格式和风格提问模板:1、请将生成的总结,以XXX形式呈现(例如:以列表的形式、以段落的形式、使用正式/非正式的语言风格)2、请给上述会议总结,提供修改意见,并根据这个修改意见做最后的调整

其他人在问
目前有自动化可以抽取/格式化文档 然后抽取知识图谱的应用么?
目前,确实存在可以自动化抽取和格式化文档,进而构建知识图谱的应用。这些应用通常结合了自然语言处理(NLP)、机器学习、深度学习等技术来实现信息抽取和知识图谱的自动化构建。以下是一些相关的应用和技术: 1. DeepKE:DeepKE是一个开源的中文知识图谱抽取框架,支持实体识别、关系抽取和属性抽取。它提供了一个统一的框架,可以在不同场景下实现不同的功能,如命名实体识别(NER)、关系抽取(RE)和属性抽取(AE)。 2. 华为云知识图谱构建平台:华为云提供了一站式的知识图谱构建平台,该平台支持从非结构化数据中抽取信息,并构建知识图谱。 3. 自动化信息抽取:自动化信息抽取技术是构建知识图谱的基础,它能够从大规模数据中获取结构化的命名实体及其属性或关联信息。 4. 基于规则的关系抽取:基于规则的关系抽取是一种从文本数据中识别和提取实体之间关系的自动化过程,主要依赖于预定义的规则或模式。 5. 产业政策知识图谱的自动化构建:有研究提出了自动化的产业政策知识图谱构建框架,用于梳理政策文本,这表明自动化技术可以应用于特定领域的知识图谱构建。 6. 大模型与知识图谱结合:大模型结合知识图谱的构建,主要应用于对非结构化文档的信息抽取,以改善图谱构建过程中的信息抽取困难。 这些技术和应用展示了自动化抽取和格式化文档,以及构建知识图谱的可行性。它们通过减少人工参与,提高了构建知识图谱的效率和准确性。不过,需要注意的是,尽管自动化技术在知识图谱构建中发挥着重要作用,但仍然需要领域专家的参与来确保抽取结果的准确性和相关性。此外,自动化构建知识图谱的过程中可能会遇到一些挑战,如实体消歧、关系多样性、文本歧义性等问题,这些问题可能需要进一步的人工干预或更高级的算法来解决。
2024-04-17
LlamaIndex 对比 langchain Extraction 哪个对提取自然语言中的格式化数据更好一些?
如果您需要从自然语言文本中提取格式化数据,LLamaIndex 可能是一个更好的选择,因为它提供了各种 Pydantic 程序,可以帮助您将输入的文本字符串转换为结构化的 Pydantic 对象。 然而,如果您的任务不涉及自然语言,或者您更熟悉 LangChain 的工作方式,那么 LangChain Extraction 也可能是一个不错的选择,因为它可以帮您提取非自然语言文本中的格式化数据。
2024-04-01
什么工具能进行AI数据表格处理
以下是一些能够进行 AI 数据表格处理的工具: 1. Excel Labs:这是一个 Excel 插件,新增了基于 OpenAI 技术的生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了多种办公软件,用户通过聊天形式告知需求,Copilot 自动完成任务,包括 Excel 中的数据分析和格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 此外,以下是一些 AI 相关的产品数据表格排行: |AI 产品数据表格_排行|AI 产品数据表格_产品名|AI 产品数据表格_分类|AI 产品数据表格_4 月访问量(万 Visit)|相对 3 月变化| |||||| |1||表格|175|0.036| |2|Highcharts|表格|127|0.257| |3|Numerous.ai|表格|73.4|0.911| |4|Coefficient|表格|69|0.213| |5|GPTExcel|表格|37|1.139| |6|Rows AI|表格|34|0.115| |7|SheetGod|表格|26|0.016| |8|AI Excel Bot|表格|25.3|0.103| |9|OpenAI in Spreadsheet|表格|17|0.091| |10|GPT Workspace|表格|17|0.189|
2024-11-10
表格数据分析
以下是关于表格数据分析的相关内容: ChatGPT 助力数据分析: 第一个用户提示:限定 SELECT SQL,要求不要用 SELECT 查询全部列,仅回复一条 SELECT SQL 语句,至少查询两列(数据项、数据值),不能直接查询长类型字段,可用 count/substring 等函数处理。 系统提示是表结构信息,对难以理解的字段可告知 GPT 其意义,若有多个表可分开描述。 需校验 GPT 生成的 SQL,不通过直接返回提示“抱歉,不支持此类请求”,通过再执行 SQL 查询数据。 数据分析的用户提示:提示数据分析,限定返回的 JSON 格式(conclusion、keyMap、title),keyMap 用于数据 key 的映射以渲染图表,根据结果数据的维度选择不同的 prompt 传递给 GPT,且结果数据 tableData 已通过 SQL 查询,不能让 GPT 再次生成,以免耗时。 生成式 AI 季度数据报告 2024 月 1 3 月: 数据来源:Similarweb、Visit,单位:万,变化公式:3 月/2 月 1 100%。 包括数据分析(446 万)、天花板潜力(1000 亿美元)、对标公司(oracle)、总体趋势(快速增长,88.19%)、月平均增速(70 万 PV/月)、原生产品占比(高)、竞争情况(Top1、Top3 占比,马太效应、网络效应强弱,大厂是否入局及占比,技术门槛)、Top1 公司(非大厂)的相关信息等。 还提供了 23 年 12 月至 24 年 3 月月访问量排行榜及变化情况、赛道月访问总量及构成、23 年 4 月访问量 Top10 等数据。 58 数据分析 161 万: 包含名称、二级分类、三级分类、网址、2 月至 11 月的数据及 11/5 月的变化计算等信息,如帆软数据、RATH、rows.com、亚信科技数智产品、神策数据等。
2024-11-10
AI表格数据处理
以下是关于 AI 表格数据处理的相关信息: 人工智能的分类: AI 分为 ANI(弱人工智能)和 AGI(通用人工智能)。ANI 得到巨大发展,可做如智能音箱、网站搜索、自动驾驶、工厂与农场应用等特定任务;AGI 则能做任何人类可以做的事,但目前还未取得巨大进展。 机器学习与数据: 监督学习是从输入到输出的过程。近期监督学习快速发展得益于数据快速增长、神经网络规模发展以及算力快速发展。数据集是以表格形式出现的数据集合,每一列代表特定变量,每一行对应某一成员的数据集问题。数据获取方式包括手动标注、观察行为、网络下载。使用数据时,可将搜集的数据展示或提供给 AI 团队,以协助梳理。数据分为结构化数据(可放在巨大表格中)和非结构化数据(如图片、视频、文本,机器处理更难)。 Excel 中的 AI 工具: 目前有几种增强 Excel 数据处理和分析能力的工具和插件,如 Excel Labs(基于 OpenAI 技术,新增生成式 AI 功能)、Microsoft 365 Copilot(整合办公软件,通过聊天形式完成任务)、Formula Bot(提供数据分析聊天机器人和公式生成器功能)、Numerous AI(支持 Excel 和 Google Sheets,可生成公式、文本内容等)。未来可能会有更多 AI 功能集成到 Excel 中,提高工作效率和智能化水平。 表格 Top10 的 AI 产品数据: |排名|产品名|分类|6 月访问量(万 Visit)|相对 5 月变化| |||||| |1|Highcharts|表格|235|0.389| |2|Fillout.com|表格|186|0.147| |3|Coefficient|表格|46|0.251| |4|Numerous.ai|表格|41|0.087| |5|SheetGod|表格|31|0.033| |6|GPTExcel|表格|25|0.364| |7|酷表 ChatExcel|表格|18|0.159| |8|GPT Workspace|表格|17|0.213| |9|OpenAI in Spreadsheet|表格|12|0.314| |10|Ajelix AI Excel Tools|表格|10|0.145|
2024-11-05
对于表格访问读写 ,有什么AI好用的工具
以下是一些在表格访问读写方面好用的 AI 工具: 1. Excel Labs:这是一个 Excel 插件,新增了生成式 AI 功能,基于 OpenAI 技术,允许用户直接在 Excel 中利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了 Word、Excel、PowerPoint、Outlook、Teams 等办公软件,通过聊天形式,用户告知需求后,Copilot 将自动完成如数据分析或格式创建等任务。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户可通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还可根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 这些工具通过 AI 技术提升了 Excel 的数据处理能力,随着技术发展,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和数据处理的智能化水平。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-01
使用AI总结表格数据
以下是对您提供的表格数据和学习笔记的总结: 表格数据总结: 这是一份关于 AI 产品 2024 年 1 至 3 月长视频的总结数据,包含了产品名称(如 Glarity、Eightify 等)以及 12 月至 3 月每个月的数据情况(如 12 月、1 月、2 月、3 月的数据),还有 3 月变化和 12 月至 3 月的变化情况。 学习笔记总结: 人工智能分为 ANI(弱人工智能)和 AGI(通用人工智能),ANI 发展迅速但 AGI 进展不大。ANI 只能做特定的事,如智能音箱、网站搜索、自动驾驶等。 机器学习中的监督学习是从输入到输出,近期监督学习快速发展得益于数据增长、神经网络规模发展和算力提升。 数据集通常以表格形式出现,每列代表特定变量,每行对应成员。获取数据的方法有手动标注、观察行为和网络下载。使用数据时可先展示给 AI 团队,数据可能存在不正确或缺失的情况,且分为结构化和非结构化数据,非结构化数据机器处理更难。
2024-10-31
有可以生成表格 或者流程图的ai吗
以下是一些可以生成表格或流程图的 AI 工具: 1. Lucidchart: 注册并登录: 选择模板:在模板库中搜索“项目管理流程图”。 编辑图表:根据项目需求添加和编辑图形和流程步骤。 优化布局:利用 AI 自动布局功能,优化图表的外观。 保存和分享:保存图表并与团队成员分享,或导出为 PDF、PNG 等格式。 2. Microsoft Visio: 简介:Microsoft Visio 是专业的图表绘制工具,适用于复杂的流程图、组织结构图和网络图。其 AI 功能可以帮助自动化布局和优化图表设计。 功能: 集成 Office 365,方便与其他 Office 应用程序协同工作。 丰富的图表类型和模板。 支持自动化和数据驱动的图表更新。 官网: 3. : 简介: 是一个免费且开源的在线图表绘制工具,适用于各种类型的示意图绘制。 功能: 支持本地和云存储(如 Google Drive、Dropbox)。 多种图形和模板,易于创建和分享图表。 可与多种第三方工具集成。 官网: 利用这些 AI 工具,您可以快速、高效地创建专业的示意图,满足各种工作和项目需求。请注意,内容由 AI 大模型生成,请仔细甄别。
2024-10-29
有哪些可以阅读多字数文本(doc,pdf等格式)的ai
以下是一些可以阅读多字数文本(如 doc、pdf 等格式)的 AI 产品: 1. 沉浸式翻译: 主打在所有网页双语翻译、PDF 文档对照阅读。 可以一键开启网页中 Youtube 视频的双语字幕。 插件安装地址:https://immersivetranslate.com/ 2. Kimi AI: 由月之暗面科技有限公司开发。 最大特点在于超长文本(支持最多 20 万字的输入和输出)的处理和基于文件、链接内容对话的能力。 用户可以上传 TXT、PDF、Word 文档、PPT 幻灯片、Excel 电子表格等格式的文件,Kimi AI 能够阅读并理解相关内容,为用户提供基于文件内容的回复。 此外,以下是一些可以翻译 PDF 的 AI 产品: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML / TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 请注意,内容由 AI 大模型生成,请仔细甄别。
2024-11-13
有可以更具提供的文本和照片生成视频的AI吗?
以下是一些可以根据提供的文本和照片生成视频的 AI 工具: 1. Pika:一款出色的文本生成视频 AI 工具,擅长动画制作并支持视频编辑。目前内测免费,其生成服务托管在 Discord 中。操作步骤包括加入 Pika Labs 的 Discord 频道,在“generate”子区输入指令生成或上传本地图片生成视频,对不满意的效果可再次生成优化。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新的插件,在图片基础上直接生成视频,它是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看:https://www.waytoagi.com/category/38 。 内容由 AI 大模型生成,请仔细甄别。
2024-11-11
python安装后文本文档改为".py"后跳转不到IDLE
很抱歉,目前知识库中没有关于“python 安装后文本文档改为‘.py’后跳转不到 IDLE”这一问题的相关内容。但通常情况下,出现这种情况可能是以下原因导致的: 1. 文件关联设置问题:您的系统可能没有正确将.py 文件与 IDLE 关联,您可以检查系统的文件关联设置。 2. IDLE 配置问题:IDLE 的配置可能存在异常,您可以尝试重新安装或配置 IDLE。 3. 环境变量问题:Python 的环境变量设置不正确也可能导致此问题,您需要确认环境变量是否正确配置。 建议您逐一排查以上可能的原因,以解决该问题。
2024-11-10
免费的英文长文本翻译ai工具
以下是为您推荐的免费英文长文本翻译工具: 1. DeepL(网站):,点击页面「翻译文件」按钮,上传 PDF、Word 或 PowerPoint 文件即可。 2. 沉浸式翻译(浏览器插件):,安装插件后,点击插件底部「更多」按钮,选择「制作双语 BPUB 电子书」、「翻译本地 PDF 文件」、「翻译 THML / TXT 文件」、「翻译本地字幕文件」。 3. Calibre(电子书管理应用):,下载并安装 calibre,并安装翻译插件「Ebook Translator」。 4. 谷歌翻译(网页):,使用工具把 PDF 转成 Word,再点击谷歌翻译「Document」按钮,上传 Word 文档。 5. 百度翻译(网页):,点击导航栏「文件翻译」,上传 PDF、Word、Excel、PPT、TXT 等格式的文件,支持选择领域和导出格式(不过进阶功能基本都需要付费了)。 6. 彩云小译(App):下载后点击「文档翻译」,可以直接导入 PDF、DOC、DOCX、PPT、PPTX、TXT、epub、srt 等格式的文档并开始翻译(不过有免费次数限制且进阶功能需要付费)。 7. 微信读书(App):下载 App 后将 PDF 文档添加到书架,打开并点击页面上方「切换成电子书」,轻触屏幕唤出翻译按钮。 以下是免费的会议内容转文字工具: 1. :飞书的办公套件之一。 2. :阿里推出的 AI 会议转录工具。 3. :讯飞旗下智慧办公服务平台。 4. :转录采访和会议纪要。 更多会议记录工具请访问网站:https://waytoagi.com/sites/category/29 以下是一些常见的文章润色 AI 工具: 1. Wordvice AI:集校对、改写转述和翻译等功能于一体的 AI 写作助手,基于大型语言模型提供全面的英文论文润色服务。 2. ChatGPT:由 OpenAI 开发的大型语言模型,可用于学生和写作人员的多方面写作辅助。 3. Quillbot:人工智能文本摘要和改写工具,可用于快速筛选和改写文献资料。 4. HyperWrite:基于 AI 的写作助手和大纲生成器,可帮助用户在写作前进行头脑风暴和大纲规划。 5. Wordtune:AI 驱动的文本改写和润色工具,可以帮助用户优化文章的语言表达。 6. Smodin:提供 AI 驱动的论文撰写功能,可以根据输入生成符合要求的学术论文。 总的来说,这些 AI 工具涵盖了文章润色的各个环节,包括校对、改写、大纲生成、内容生成等,可以有效提高写作效率和质量。科研人员和学生可以根据自身需求选择合适的工具进行使用。 以上内容由 AI 大模型生成,请仔细甄别。
2024-11-08
能够读取文本数字最多的大模型是哪一个
目前能够读取文本数字较多的大模型有以下几种: Claude2 模型的上下文上限是 100,000 个 token。 ChatGPT16k 模型的上下文上限是 16,000 个 token。 ChatGPT432k 模型的上下文上限是 32,000 个 token。 需要注意的是,token 限制会同时对一次性输入和一次对话的总体上下文长度生效。例如,一次性输入的文本长度以及一次对话中累计的上下文长度都受到相应的限制。当达到上限时,并非停止对话,而是会遗忘最前面的对话内容。
2024-11-08
大模型预测文本
大模型的构建过程通常包括以下步骤: 1. 收集海量数据:如同教孩子成为博学多才的人,让其阅读大量书籍、观看纪录片、与人交谈一样,对于 AI 模型,要收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:就像为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是一个复杂的神经网络,比如 Transformer 架构,这种架构擅长处理序列数据如文本。 4. 训练模型:如同孩子开始阅读和学习,AI 模型开始“阅读”提供的数据,反复尝试预测句子中的下一个词,通过不断重复这个过程,逐渐学会理解和生成人类语言。 大模型存在一些问题: 1. 输出结果具有不可预测性,静态的训练数据导致知识存在截止日期,无法即时掌握最新信息,通用的基础大模型无法满足实际业务需求。 2. 知识具有局限性,模型自身的知识源于训练数据,对于实时性、非公开或离线的数据无法获取。 3. 存在幻觉问题,会在没有答案时提供虚假信息、过时或通用的信息,从可信度低非权威来源提供结果等。 4. 数据安全性是企业关注的重点,企业不愿承担数据泄露风险,将私域数据上传第三方平台训练。 而 RAG 是解决上述问题的有效方案,它能让大模型从权威、预先确定的知识来源中检索、组织相关信息,更好地控制生成的文本输出,用户也能深入了解 LLM 生成最终结果的过程。RAG 可与微调结合使用,两者不冲突。RAG 类似于为模型提供教科书,适用于回答特定询问或解决特定信息检索任务,但不适合教模型理解广泛领域或学习新语言、格式或样式。微调类似于让学生内化知识,适用于模型需要复制特定结构、样式或格式的情况。参考资料:《RetrievalAugmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)
2024-11-05