Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

吴恩达中文课程

Answer

以下是关于吴恩达中文课程的相关信息:

Content generated by AI large model, please carefully verify (powered by aily)

References

LLM开源中文大语言模型及数据集集合

面向开发者的LLM入门课程:地址:[https://github.com/datawhalechina/prompt-engineering-for-developers](https://github.com/datawhalechina/prompt-engineering-for-developers)简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,主要包括:吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版,吴恩达《Building Systems with the ChatGPT API》课程中文版,吴恩达《LangChain for LLM Application Development》课程中文版等。提示工程指南:地址:[https://www.promptingguide.ai/zh](https://www.promptingguide.ai/zh)简介:该项目基于对大语言模型的浓厚兴趣,编写了这份全新的提示工程指南,介绍了大语言模型相关的论文研究、学习指南、模型、讲座、参考资料、大语言模型能力以及与其他与提示工程相关的工具。LangChain🦜️🔗中文网,跟着LangChain一起学LLM/GPT开发:地址:[https://www.langchain.asia](https://www.langchain.asia/)简介:Langchain的中文文档,由是两个在LLM创业者维护,希望帮助到从刚进入AI应用开发的朋友们。LLMs九层妖塔:地址:[https://github.com/km1994/LLMsNineStoryDemonTower](https://github.com/km1994/LLMsNineStoryDemonTower)简介:ChatGLM、Chinese-LLaMA-Alpaca、MiniGPT-4、FastChat、LLaMA、gpt4all等实战与经验。

子瞻:Prompt框架

这里是我个人已知的一些资料(当然,仅仅是今天临时收集的一些优质的,后续发现更好的,第一时间进行补充)!但是一个人的力量终归是有限的,欢迎大家补充优质的文章!共同进步!破局是我第一个加入的社群,也是我唯一加入的社群,不得不说,真的受益匪浅!不仅大牛云集,内容优质,而且,已经有230篇精华帖,而我的这篇帖子,仅仅算是中游水平![heading3]提示词网站[content]这些网站基本我是从3月一个一个慢慢发现并收藏到的[heading3]重要学习网站[content]开源网站learn prompting开源网站提示工程指南OpenAI官网GPT最佳实践OpenAI官方开源cookbook从小七姐那搬来的每日更新最新AI文献!!当然,不一定是与Prompt相关的吴恩达课程(全英文)如何提高文本生成质量(145分钟,慎点)陆奇演讲,推荐(醍醐灌顶)开源:ChatGPT资料汇总学习,持续更新......[heading3]高质量文章[content]大型语言模型的提示工程完整介绍人工智能提示工程不是未来Prompt编写模式:如何将思维框架赋予机器,以设计模式的形式来思考promptLLM支持的应用程序架构的视觉指南如何编写有效的GPT-3或GPT-4提示150个让AI更强大的最佳ChatGPT提示(已更新)OpenAI官方文章ChatGPT在做什么...为什么它能够成功通向AGI之路:大型语言模型(LLM)技术精要

目录:吴恩达讲Prompt

https://github.com/zard1152/deepLearningAI/wiki[ChatGPT提示工程中文翻译版(仅用于学习分享)](https://fieghf3pzz6.feishu.cn/wiki/MazPw5eo5iW95gkvWAhcSTxdnSc)[openai官方《提示词工程课》超详细中文笔记](https://ec26ubh65w.feishu.cn/docx/PuULdQP3wojyZYxn157cnsDXnqe)[GitHub-Kevin-free/chatgpt-prompt-engineering-for-developers:吴恩达《ChatGPT Prompt Engineering for De](https://github.com/Kevin-free/chatgpt-prompt-engineering-for-developers)[heading2]介绍[content]有两类大语言模型:基础LLM:基础大型语言模型经过训练,可以根据文本预测下一个词。训练数据通常基于大量来自互联网和其他来源的数据,以推断出最有可能出现的下一个词。指令微调LLM:指令调优的大型语言模型是当前大型语言模型研究和实践的主要发展方向。指令调优的大型语言模型经过训练,能够遵循指令。为了让系统更有帮助并遵循指令,通常会进一步使用一种名为人类反馈强化学习(RLHF)的技术来优化。因为指令调优的大型语言模型经过训练,更有助于提供有用的、无害的回答。[heading2]原则与技巧[content]两个提示的关键原则:1)原则1:尽可能保证下达的指令“清晰、没有歧义”2)原则2:给大模型思考的时间,以及足够的时间去完成任务

Others are asking
吴恩达中文课程
以下是关于吴恩达中文课程的相关信息: 面向开发者的 LLM 入门课程: 地址: 简介:一个中文版的大模型入门教程,围绕吴恩达老师的大模型系列课程展开,包括吴恩达《ChatGPT Prompt Engineering for Developers》课程中文版等。 目录: https://github.com/zard1152/deepLearningAI/wiki 介绍: 有两类大语言模型:基础 LLM 和指令微调 LLM。基础 LLM 经过训练可根据文本预测下一个词,指令微调 LLM 经过训练能遵循指令,为让系统更有帮助并遵循指令,通常会进一步使用人类反馈强化学习(RLHF)技术来优化。 原则与技巧: 两个提示的关键原则:尽可能保证下达的指令“清晰、没有歧义”;给大模型思考的时间,以及足够的时间去完成任务。
2025-03-05
吴恩达
吴恩达(Andrew Ng)是在人工智能领域极具声誉的科学家和教育者。 他在机器学习、统计学和人工智能领域贡献卓著: 曾在斯坦福大学任副教授,领导过谷歌的大脑项目(Google Brain)。 担任过百度公司首席科学家并领导百度研究院。 以深度学习和大规模机器学习系统的研究闻名,推动了人工智能技术的商业应用和普及,是多个人工智能和机器学习开源项目(如 TensorFlow 和 Caffe)的倡导者。 致力于普及人工智能教育,其教授的机器学习课程在斯坦福大学和 Coursera 上广受欢迎,吸引全球数百万学生参与。 在红杉 AI Ascent 2024 会议中,吴恩达是与会的人工智能领导者之一。 在相关研究中,吴恩达逐渐意识到利用大量训练数据与快速计算能力的重要性,其想法在一些论文中得到支持。 内容由 AI 大模型生成,请仔细甄别。
2025-03-05
吴恩达AI课程
以下是关于吴恩达 AI 课程的相关信息: 吴恩达和 OpenAI 合作推出了免费的 Prompt Engineering(提示工程师)课程。课程主要内容是教您书写 AI 提示词,最后会教您利用 GPT 开发一个 AI 聊天机器人。 原版网址:https://www.deeplearning.ai/shortcourses/chatgptpromptengineeringfordevelopers/ B 站版本: 【合集·AI Course哔哩哔哩】https://b23.tv/ATc4lX0 https://b23.tv/lKSnMbB 翻译版本: 推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/promptengineeringfordevelopers/ 课程一共 9 集全部已经翻译完成,并且改成了双语字幕,字幕文件也已经上传了。 视频下载地址:https://pan.quark.cn/s/77669b9a89d7 OpenAI 开源了教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html 纯文字版本: 2023 年 8 月 24 日历史更新: 吴恩达最新的《》短课程上线,课程内容包括了解何时对 LLM 应用微调、准备数据以进行微调、根据您自己的数据训练和评估 LLM。 《》非常深入浅出地介绍了基于大语言模型的 AI Agents,从记忆检索到决策推理,再到行动顺序的选择,真实展现了 Agent 的智能化进程。 吴恩达(Andrew Ng)是一位在人工智能领域享有盛誉的科学家和教育者。他在机器学习、统计学和人工智能领域做出了重要贡献,并且是在线教育平台 Coursera 的联合创始人。吴恩达曾在斯坦福大学担任副教授,并领导了谷歌的大脑项目(Google Brain)。此外,他还曾担任百度公司首席科学家,并领导百度研究院。吴恩达以其在深度学习和大规模机器学习系统方面的研究而闻名,他在这些领域的工作推动了人工智能技术的商业应用和普及。他还是多个人工智能和机器学习开源项目的倡导者,包括 TensorFlow 和 Caffe。除了在学术界和工业界的贡献,吴恩达还致力于普及人工智能教育。他教授的机器学习课程是斯坦福大学和 Coursera 上最受欢迎的在线课程之一,吸引了全球数百万学生的参与。通过他的教学和研究工作,吴恩达对人工智能领域的发展产生了深远的影响。内容由 AI 大模型生成,请仔细甄别。
2025-02-15
吴恩达
吴恩达(Andrew Ng)是在人工智能领域极具影响力的科学家和教育者。 他在机器学习、统计学和人工智能领域贡献卓著: 曾在斯坦福大学任副教授,领导过谷歌的大脑项目(Google Brain)。 担任过百度公司首席科学家,并领导百度研究院。 以其在深度学习和大规模机器学习系统方面的研究闻名,推动了人工智能技术的商业应用和普及。是多个人工智能和机器学习开源项目的倡导者,如 TensorFlow 和 Caffe。 致力于普及人工智能教育,其教授的机器学习课程在斯坦福大学和 Coursera 上广受欢迎,吸引全球数百万学生参与。 在红杉 AI Ascent 2024 会议中,吴恩达是与会的人工智能领导者之一。 在相关研究中,吴恩达逐渐意识到利用大量训练数据与快速计算的能力被低估,其想法在一些论文中得到支持。 内容由 AI 大模型生成,请仔细甄别。
2025-02-15
吴恩达有《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》下载资源
以下是吴恩达《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》的相关资源: B 站: 学习笔记: 飞书: 下的相关课程
2025-02-07
吴恩达人工智能课
吴恩达(Andrew Ng)是人工智能领域享有盛誉的科学家和教育者。他在机器学习、统计学和人工智能领域有重要贡献,是在线教育平台 Coursera 的联合创始人。曾在斯坦福大学任副教授,领导过谷歌的大脑项目(Google Brain),还曾担任百度公司首席科学家并领导百度研究院。 吴恩达以深度学习和大规模机器学习系统方面的研究闻名,推动了人工智能技术的商业应用和普及。他是多个人工智能和机器学习开源项目的倡导者,如 TensorFlow 和 Caffe。 他致力于普及人工智能教育,其教授的机器学习课程在斯坦福大学和 Coursera 上极受欢迎,吸引全球数百万学生参与。 在课程方面,吴恩达有《面向所有人的生成式 AI 入门课程 Generative AI for Everyone》,在 B 站可搜索对应关键词获取资源,相关学习笔记可参考 。推荐直接使用 Jupyter 版本学习,效率更高:https://github.com/datawhalechina/promptengineeringfordevelopers/ ,视频下载地址:https://pan.quark.cn/s/77669b9a89d7 ,OpenAI 开源了教程:https://islinxu.github.io/promptengineeringnote/Introduction/index.html 。 内容由 AI 大模型生成,请仔细甄别。
2025-02-07
sd的关键词可以用中文吗
在 Stable Diffusion 中,通常只能识别英语关键词。但不用担心,您可以直接使用翻译工具将中文关键词翻译成英语后输入。比如,若您想生成一个漂亮的小姐姐站在大街上,可以写成“1 girl, beautiful, standing, street”这样的形式。输入关键词时,常用一个个单词并用英文状态下的逗号隔开。不过,对于中文字体的处理,也有一些方法,如将中文字做成白底黑字存成图片样式,再使用文生图的方式等。在输入关键词时,还可以先写一些提升照片质量的词语,使生成的照片更加精致。
2025-03-06
中文可以用sd吗
中文可以使用 Stable Diffusion(SD)。以下是使用 SD 制作中文文字的一些方法和步骤: 1. 将中文字做成白底黑字,存成图片样式。 2. 使用文生图的方式,使用大模型真实系,作者用的 realisticVisionV20_v20.safetensorsControlNet 预设置。 3. 输入关键词,如奶油的英文单词“Cream+Cake”(加强质感),反关键词:“Easynegative”(负能量),反复刷机,得到满意的效果即可。 4. 同理可输出 C4D 模型,可自由贴图材质效果,如“3d,blender,oc rendering”。 5. 如果希望有景深效果,也可以打开“depth”(增加阴影和质感)。 6. 打开高清修复,分辨率联系 1024 以上,步数:29 60。 SD 是 Stable Diffusion 的简称,是由初创公司 StabilityAI、CompVis 与 Runway 合作开发,2022 年发布的深度学习文本到图像生成模型。它主要用于根据文本的描述产生详细图像,是一种扩散模型(diffusion model)的变体,叫做“潜在扩散模型”(latent diffusion model;LDM)。其代码模型权重已公开发布,可以在大多数配备有适度 GPU 的电脑硬件上运行。当前版本为 2.1 稳定版(2022.12.7),源代码库:github.com/StabilityAI/stablediffusion 。
2025-03-06
sd可以用中文输入吗
SD3stable diffusion3 已开源,艺术实现更自由。Qwen2 接上 SD3 Medium 支持中文输入,会自动优化并输出英文提示词。相关资源如下: 下载地址(huggingface 比较慢,多放几个百度云盘): 工作流:https://github.com/ZHOZHOZHO/ComfyUIWorkflowsZHO Qwen2 插件:https://github.com/ZHOZHOZHO/ComfyUIQwen2 SD3 dreambooth 脚本:https://github.com/huggingface/diffusers/blob/sd3/examples/dreambooth/README_sd3.md 、https://github.com/bghira/SimpleTuner/tree/feature/sd3 另外,关于 SD 做中文文字有持续更新的教程: 制作思路可参考 Nenly 同学的视频教程:【“牛逼”的教程来了!一次学会 AI 二维码+艺术字+光影光效+创意 Logo 生成,绝对是 B 站最详细的 Stable Diffusion 特效设计流程教学!AI 绘画进阶应用哔哩哔哩】https://b23.tv/c33gTIQ 群友自制的详细视频教程步骤: 1. 将中文字做成白底黑字,存成图片样式。 2. 使用文生图的方式,使用大模型真实系,作者用的 realisticVisionV20_v20.safetensorsControlNet 预设置。 3. 输入关键词,如奶油的英文单词,Cream+Cake(加强质感),反关键词:Easynegative(负能量),反复刷机,得到满意的效果即可。 4. 同理可输出 C4D 模型,可自由贴图材质效果,3d,blender,oc rendering。 5. 如果希望有景深效果,也可以打开 depth(增加阴影和质感)。 6. 打开高清修复,分辨率联系 1024 以上,步数:2960。 当然 https://firefly.adobe.com/也可以,但 SD 感觉可操控性更强,尤其是中文字体。
2025-03-06
中文可用的ai制图
以下是一些中文可用的 AI 制图工具及使用步骤: 1. Creately 简介:在线绘图和协作平台,利用 AI 功能简化图表创建过程,适合绘制流程图、组织图、思维导图等。 功能:智能绘图功能,可自动连接和排列图形;丰富的模板库和预定义形状;实时协作功能,适合团队使用。 官网:https://creately.com/ 2. Whimsical 简介:专注于用户体验和快速绘图的工具,适合创建线框图、流程图、思维导图等。 功能:直观的用户界面,易于上手;支持拖放操作,快速绘制和修改图表;提供多种协作功能,适合团队工作。 官网:https://whimsical.com/ 3. Miro 简介:在线白板平台,结合 AI 功能,适用于团队协作和各种示意图绘制,如思维导图、用户流程图等。 功能:无缝协作,支持远程团队实时编辑;丰富的图表模板和工具;支持与其他项目管理工具(如 Jira、Trello)集成。 官网:https://miro.com/ 使用 AI 绘制示意图的步骤: 1. 选择工具:根据具体需求选择合适的 AI 绘图工具。 2. 创建账户:注册并登录该平台。 3. 选择模板:利用平台提供的模板库,选择适合需求的模板。 4. 添加内容:根据需求添加并编辑图形和文字,利用 AI 自动布局功能优化图表布局。 5. 协作和分享:若需要团队协作,可邀请团队成员一起编辑。完成后导出并分享图表。 此外,还有以下相关信息: AI 作图的创作方法与实操演示:趣味性可通过反差、反逻辑、超现实方式带来视觉冲击,美感需在美术基础不出错前提下形式与内容结合。纹身图创作要强调人机交互,对输出图片根据想象进行二次和多次微调,确定情绪、风格等锚点再发散联想。以魔法少女为例,发散联想其服饰、场景、相关元素等,并可采用反逻辑反差方式。提示词编写要用自然语言详细描述画面内容,避免废话词,Flux 对提示词的理解和可控性强。实操演示准备按赛题需求先确定中式或日式怪诞风格的创作引子,从汉服女孩入手,逐步联想其颜色、发型、妆容、配饰、表情、背景等元素编写提示词。还包括人物、动物、景观图像生成的讨论。 美图 WHEe 推出中文 AI 海报生成工具:支持文字可编辑图层,用户可拖动文字位置、更改字体并控制排版。内置模板,操作简单,适合小白与专业用户,效率提升显著。目前仍在内测中,支持体验申请。官网:http://whee.com 内测申请:https://oc.meitu.com/whee/5924/index.html 原推文:https://x.com/imxiaohu/status/1881235335595872470
2025-03-06
在 WaytoAGI 的工具网站上列出的文字转语音工具, 哪个是最适合生成中文语音的?
在 WaytoAGI 的工具网站上,以下几个文字转语音工具在生成中文语音方面各有特点: 1. Eleven Labs:https://elevenlabs.io/ 是一款功能强大且多功能的 AI 语音软件,能高保真地呈现人类语调和语调变化,并能根据上下文调整表达方式。 2. Speechify:https://speechify.com/ 是一款人工智能驱动的文本转语音工具,可作为多种平台的应用使用,能将文本转换为音频文件。 3. Azure AI Speech Studio:https://speech.microsoft.com/portal 提供了支持 100 多种语言和方言的语音转文本和文本转语音功能,还提供了自定义的语音模型。 4. Voicemaker:https://voicemaker.in/ 可将文本转换为各种区域语言的语音,并允许创建自定义语音模型,易于使用。 此外,还有免费的 GPTSoVITS 和 BertVITS2 两个开源模型,它们也能很好地生成中文语音。这两个项目均免费且好用,直接找到需要的音色,输入文字点击“合成语音”生成后就能下载。 需要注意的是,内容由 AI 大模型生成,请仔细甄别。
2025-03-05
Prompts(提示词)| 社区内prompt框架课程收录
以下是关于 Prompt(提示词)的相关内容: 一、Prompt 之道:清晰表达 1. 如何清晰表达 各种框架能帮助您将脑海中的想法通过特定角度描述出来,比如明确要做的事情、背景、目标、任务、数据和输出等。这些框架虽表述不同,但作用相似,能比空想更高效。 您可以在使用框架时,换不同预设角度描述同一物体。例如,去年有人用 langGPT 的框架模拟善解人意的老师讲解任何学科的概念。 2. 拓展阅读 :社区内 prompt 框架课程收录 :各个场景提示词收录 此外,还有李继刚关于文生文中 prompt 的道、术、用的万字说明,相关链接如下: https://mp.weixin.qq.com/s/R8UbrixkKHXE4dnVt0VMvw 豆包网页端:https://www.doubao.com/chat/?channel=browser_landing_page 豆包桌面客户端:
2025-03-06
微信机器人相关课程
以下是关于微信机器人的相关课程: 日程安排: 6 月 19 日 20:00 开始:从零到一,搭建微信机器人。 6 月 20 日 20:00 开始:Coze 接入、构建你的智能微信助手。 6 月 23 日 20:00 开始:微信机器人插件拓展教学。 6 月 24 日 20:00 开始:虚拟女友“李洛云”开发者自述。 6 月 25 日 20:00 开始:FastGPT:“本地版 coze"部署教学。 6 月 27 日 20:00 开始:Hook 机制的机器人使用和部署教学。 共学快闪第三期活动总结: 关于虚拟聊天机器人的讨论。 创建聊天机器人:可在平台创建自己的 bot,并互相交流和沟通。新客户可用 COS 作为 API 来搭建。 举办 cost 活动:包括图文赛道和创意赛道,参与者可投稿参赛并有奖金。 评估指标和体系:提出了 helpfulness、拟人性、语言流畅度和优雅性、OC 等评估指标,并讨论了机评和人评混合的评估方式,以及一些相对主观的指标,如后验的对话轮速、对话轮次、用户的使用留存和频率等。 问题汇总和整理:提供了问题汇总文档,记录了 119 条常见问题和解决方案。 微信机器人的搭建:搭建过程是逐步的,可能会遇到卡点,最早有专人在群里回复。前两天的分享在知识库首页,通过第三轮 agent 供学,可跟着教程搭建出不错的机器人。 机器人的能力:可实现小的商业化目的,如搭建客服机器人、进行群管理等。 课程相关:微信机器人课程全免费,梦飞带大家完成的课程已在知识库,可扫码直达学习。 prompt 的相关内容:prompt 属于商业机密,无法分享。赵悦普及了大模型回复速度与输出字符数据相关的知识。 大事件记录: 皇子:零成本、零代码搭建一个智能微信客服,保姆级教程。 安仔:不用黑魔法,小白也能做一个对接 GPT 大模型的微信聊天机器人。 张梦飞:【保姆级】一步一图,手把手教你把 AI 接入微信。 张梦飞:FastGPT + OneAPI + COW 带有知识库的机器人完整教程。 张梦飞:基于 Hook 机制的微信 AI 机器人,无需服务器,运行更稳定,风险更小。 张梦飞:【保姆级教程】这可能是你在地球上能白嫖到的,能力最强的超级微信机器人!一步一图,小白友好。 在自己的电脑上部署 COW 微信机器人项目。
2025-03-05
李宏毅课程
以下是关于李宏毅《生成式 AI 导论 2024》课程的详细信息: 课程介绍:这是台湾大学李宏毅教授的生成式 AI 课程,涵盖生成式 AI 的基本概念、发展历程、技术架构和应用场景等内容,共 12 讲,每讲约 2 小时。 学习目标:掌握生成式 AI 的基本概念和常见技术,能够使用相关框架搭建简单的生成式模型,了解其发展现状和未来趋势。 学习内容: 什么是生成式 AI:包括定义、分类、与判别式 AI 的区别及应用领域。 生成式模型:基本结构、训练方法、评估指标以及常见模型的优缺点。 生成式对话:基本概念、应用场景、系统架构和关键技术,以及基于生成式模型的对话生成方法。 预训练语言模型:发展历程、关键技术、优缺点及其在生成式 AI 中的应用。 生成式 AI 的挑战与展望:面临的挑战、解决方法、未来发展趋势和研究方向。 学习资源: 教材:《生成式 AI 导论 2024》,李宏毅。 参考书籍:《深度学习》,伊恩·古德费洛等。 在线课程:李宏毅的生成式 AI 课程。 开源项目:OpenAI GPT3、字节跳动的云雀等。 学习方法:未明确提及。 课程目录: 第 0 讲:课程说明(17:15 有芙莉蓮雷)(2024 年 2 月 24 日) 第 1 讲:生成式 AI 是什么?(2024 年 2 月 24 日) 第 2 讲:今日的生成式人工智慧厉害在哪里?从「工具」变为「工具人」(2024 年 3 月 3 日) 第 3 讲:训练不了人工智慧?你可以训练你自己—神奇咒语与提供更多资讯(2024 年 3 月 3 日) 第 4 讲:训练不了人工智慧?你可以训练你自己—拆解问题与使用工具(2024 年 3 月 10 日) 待更新…… 第 0 讲具体内容: 知道:有能力自己开发、何时需要自己开发、何时可以用现成的人工智能。 目标:了解生成式 AI 背后的原理和更多可能性,作为你魔术师的开始。包括体验用生成式 AI 打造应用、体验训练自己的生成式 AI 模型、负面体验(花时间:大模型是以周为单位来训练;结果不可以控制:养花养小动物)。 影响模型能力的指标很多,但是常规会看参数的量级来评估,量级指数级增长,FOMO,这就是朱啸虎的立场来源。如 2019 年 GPT2.0 15b 参数,2024 年 GPT3.5 70b 参数。 课程地址:https://www.youtube.com/watch?v=AVIKFXLCPY8
2025-03-04
设计面向青少年的AI课程大纲,核心是围绕以DeepSeek技术专题为核心的各类技术到应用的设计
很抱歉,目前没有关于以 DeepSeek 技术专题为核心设计面向青少年的 AI 课程大纲的相关内容。但我可以为您提供一个通用的以技术到应用为思路的 AI 课程大纲框架供您参考: 一、课程简介 介绍课程的目标、重要性以及学习 AI 对青少年的益处。 二、基础知识 1. 什么是 AI 及其发展历程 2. 常见的 AI 应用领域 三、DeepSeek 技术基础 1. DeepSeek 技术的原理 2. 相关算法和模型 四、技术应用实践 1. 利用 DeepSeek 技术进行图像识别项目 2. 基于 DeepSeek 的自然语言处理应用 五、案例分析 1. 成功运用 DeepSeek 技术的实际案例 2. 案例中的创新点和可借鉴之处 六、创新与拓展 1. 鼓励学生提出基于 DeepSeek 技术的新应用想法 2. 小组讨论和展示 七、课程总结与回顾 复习重点知识,总结学习成果。 您可以根据实际需求和教学条件对上述大纲进行调整和完善。
2025-03-01
如何把ai作为培训技术手段,建立和制作港口企业管理人员、职能技术专业人员、技能人员以及理货、驾驶、起重人员培训课程
以下是为您提供的关于将 AI 作为培训技术手段建立和制作港口企业各类人员培训课程的一些建议: 首先,参考相关法律法规,如《2020 年国家人工智能倡议法案》,其中提到要为人工智能研究和发展提供持续、一致和协调的支持,包括通过拨款、合作协议、测试平台以及获取数据和计算资源等方式。 对于港口企业管理人员、职能技术专业人员、技能人员以及理货、驾驶、起重人员的培训课程制作,可以利用以下方法: 1. 支持开发自愿性的标准、最佳实践和基准,以确保培训课程的质量和有效性。 2. 为各级教育项目提供支持,在正式和非正式的学习环境中,让员工能够使用和与人工智能系统互动,并适应其对社会和经济的潜在变革性影响。 3. 支持跨学科的研究、教育和培训项目,促进学生和研究人员学习人工智能的方法和系统,培养跨学科的视角和合作,涵盖计算机科学、数学、统计学、工程、社会科学、心理学、行为科学、伦理学、安全、法律学术等相关领域的专家。 需要注意的是,在实际操作中,应根据港口企业的具体需求和人员特点,有针对性地设计和优化培训课程。
2025-02-28