Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

AI医疗

Answer

AI 在医疗领域有广泛的应用,包括以下方面:

  1. 医学影像分析:AI 可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。
  2. 药物研发:加速药物研发过程,如识别潜在药物候选物和设计新治疗方法。
  3. 个性化医疗:分析患者数据,为每个患者提供个性化治疗方案。
  4. 机器人辅助手术:控制手术机器人,提高手术精度和安全性。

在医疗健康生物制药的研究方面,AI 也发挥着重要作用,取得了以下最新进展:

  1. AI 提前三年诊断胰腺癌。
  2. 两名高中生与医疗技术公司合作,发现与胶质母细胞瘤相关的新靶基因。
  3. AI 帮助抗衰老,筛查出高效的药物候选物。
  4. 使用 AI 寻找阿尔兹海默症的治疗方法。
  5. AI 帮助早期诊断帕金森。

在蛋白质结构预测和蛋白质合成方面,过去两周有大量突破:

  1. AlphaFold 是一种表现出色的 AI 系统,为科学家和药物开发提供巨大帮助。
  2. Meta 的蛋白质结构预测 AI 模型 ESMFold 已进行 7 亿次预测。
  3. 多伦多大学研究人员开发新的 AI 系统,创造出自然界中不存在的蛋白质。
  4. 华盛顿大学的 David Baker 教授团队开发基于 DALL-E 的人工智能系统 RF Diffusion,用于生成合适的蛋白质结构。
  5. 洛桑联邦理工学院的科学家们开发基于神经网络的新工具 PeSTo,可预测蛋白质相互作用。
  6. 萨里大学开发人工智能系统,用于识别个体细胞中的蛋白质模式。
  7. 肯特大学的研究团队使用名为 talin 的蛋白质制成凝胶,目标是将其制成防弹材料。

相关文献参考:

  1. https://www.sciencedaily.com/releases/2023/05/230504121014.htm
  2. https://www.wevolver.com/article/pesto-a-new-ai-tool-for-predicting-protein-interactions
  3. https://www.sciencedirect.com/science/article/pii/S0958166923000514
Content generated by AI large model, please carefully verify (powered by aily)

References

问:请问 AI 有哪些应用场景?

人工智能(AI)已经渗透到各行各业,并以各种形式改变着我们的生活。以下是一些人工智能的主要应用场景:1.医疗保健:医学影像分析:AI可以用于分析医学图像,例如X射线、CT扫描和MRI,以辅助诊断疾病。药物研发:AI可以用于加速药物研发过程,例如识别潜在的药物候选物和设计新的治疗方法。个性化医疗:AI可以用于分析患者数据,为每个患者提供个性化的治疗方案。机器人辅助手术:AI可以用于控制手术机器人,提高手术的精度和安全性。2.金融服务:风控和反欺诈:AI可以用于识别和阻止欺诈行为,降低金融机构的风险。信用评估:AI可以用于评估借款人的信用风险,帮助金融机构做出更好的贷款决策。投资分析:AI可以用于分析市场数据,帮助投资者做出更明智的投资决策。客户服务:AI可以用于提供24/7的客户服务,并回答客户的常见问题。3.零售和电子商务:产品推荐:AI可以用于分析客户数据,向每个客户推荐他们可能感兴趣的产品。搜索和个性化:AI可以用于改善搜索结果并为每个客户提供个性化的购物体验。动态定价:AI可以用于根据市场需求动态调整产品价格。聊天机器人:AI可以用于提供聊天机器人服务,回答客户的问题并解决他们的问题。4.制造业:预测性维护:AI可以用于预测机器故障,帮助工厂避免停机。质量控制:AI可以用于检测产品缺陷,提高产品质量。供应链管理:AI可以用于优化供应链,提高效率和降低成本。机器人自动化:AI可以用于控制工业机器人,提高生产效率。5.交通运输:

医疗:健康生物制药的研究

chatgpt,google bard在日常工作生活中很有用,这些技术也极大加速了医疗健康生物制药的研究,ai已经在抗癌,抗衰老,早期疾病防治等的研究应用中起着重要作用。以下是一些最新的进展:1、ai提前三年诊断胰腺癌,如果当年有这个,也许乔布斯还在世:https://hms.harvard.edu/news/ai-predicts-future-pancreatic-cancerImage:Rasi Bhadramani/iStock/Getty Images Plus2、两名高中生与医疗技术公司Insilico Medicine及其人工智能平台PandaOmics合作,发现了与胶质母细胞瘤相关的三个新靶基因,这些基因对于有效对抗这种癌症至关重要:https://finance.yahoo.com/news/teenage-geniuses-ai-uncover-cancer-163541619.html3、ai帮助抗衰老;由Integrated Biosciences领导的一项最新研究通过使用人工智能筛查了超过800,000种化合物,专家们发现了三种高效的药物候选物,其药理学性质优于目前已知的抗衰老物质:https://www.earth.com/news/artificial-intelligence-identifies-new-anti-aging-compounds/4、使用ai寻找阿尔兹海默症的治疗方法;亚利桑那大学与哈佛大学共同利用人工智能对健康神经元在疾病进展过程中的分子变化研究,以识别阿尔茨海默病的原因和潜在药物靶点。https://medicalxpress.com/news/2023-05-scientists-ai-drug-alzheimer.html5 ai帮助早期诊断帕金森;悉尼新南威尔士大学的科学家与波士顿大学研究人员使用神经网络分析患者体液中的生物标志物,在帕金森病的第一个症状出现前几年就可以发现该疾病。

医疗:蛋白质结构预测和蛋白质合成

chatgpt引发的范式转移涉及各个行业,过去两周在蛋白质结构预测和合成又有大量突破。用于生成漂亮图片的AI也可以帮助科学家研究并设计新的蛋白质。这意味着能够以更快速度开发药物用于治疗癌症、制造胰岛素、治疗多发性硬化症和管理自身免疫性疾病等。过去两周在蛋白质结构预测和蛋白质合成方面ai的重大进展:1、AlphaFold是一种在蛋白质结构预测方面表现出色的AI系统,由DeepMind开发,其预测准确度超过其他系统,为科学家和药物开发提供了巨大帮助。2、Meta的蛋白质结构预测ai模型:ESMFold,截至目前已经进行了7亿次预测3、多伦多大学研究人员开发了一种新的AI系统,利用类似stable diffusion,midjourney的生成扩散技术创造出自然界中不存在的蛋白质。4、华盛顿大学的David Baker教授的团队开发了基于DALL-E的人工智能系统RF Diffusion,用于根据科学家的需求生成合适的蛋白质结构。5、洛桑联邦理工学院的科学家们开发了一种基于神经网络的新工具PeSTo,可以预测蛋白质如何与其他物质相互作用,速度快、且通用性强。6、在surrey大学开发了一种人工智能系统,用于识别个体细胞中的蛋白质模式,这一进展可以用于理解肿瘤的差异并开发药物。7、肯特大学的研究团队使用名为talin的蛋白质制成凝胶,该凝胶具有吸收冲击的能力,他们的目标是将talin蛋白质制成防弹材料。文献参考https://www.sciencedaily.com/releases/2023/05/230504121014.htmhttps://www.wevolver.com/article/pesto-a-new-ai-tool-for-predicting-protein-interactionshttps://www.sciencedirect.com/science/article/pii/S0958166923000514

Others are asking
AI目前在美国和欧盟的发展与应用情况
以下是关于 AI 目前在美国和欧盟的发展与应用情况的综合回答: 在知识产权方面: 国际知识产权保护协会(AIPPI)与美国的立法观点相似,否认将 AI 包含进“作者”的范畴,但其生成的内容能否取得版权注册取决于生成物所体现创造性的多少。 欧盟认为人工智能生成的内容必须受到知识产权法律框架的保护,且可以通过对欧洲现有法律的解释解决人工智能的版权问题。 在人工智能工具的使用和流量方面: 大多数顶级人工智能公司位于美国,少数位于亚洲。 所有欧盟国家合计产生了 39 亿流量,占总量的 16.21%。欧洲以及澳大利亚和加拿大在人工智能投资和采用方面落后。 欧盟已经制定了第一个人工智能监管法案,但最近的研究表明当前的许多人工智能模型不符合欧盟对人工智能的监管。 在行业发展方面: 英伟达(NVIDIA)仍是全球最强大的公司之一,享受着市值达到 3 万亿美元的辉煌时刻,而监管机构也正在调查生成式人工智能(GenAI)内部的权力集中问题。 虽然全球治理努力陷入僵局,但国家和地区的人工智能监管继续推进,美国和欧盟通过了几份有争议的立法法案。 在研究进展方面: 前沿实验室的性能正在趋同,但 OpenAI 在推出 o1 后保持了其领先地位,规划和推理成为主要的研究前沿。 基础模型展示了它们超越语言的能力,多模态研究推动了数学、生物学、基因组学、物理科学和神经科学的发展。 在安全问题方面: 世界各地的政府模仿英国在人工智能安全方面建立国家能力,成立研究所并研究关键国家基础设施的潜在漏洞。 每一个提出的破解「修复」方案都失败了,研究人员开始关注更复杂、长期的攻击。
2025-03-06
怎么在AI文生图中精准的输出想要的文字
要在 AI 文生图中精准输出想要的文字,可以参考以下方法: Recraft 模型: 提供提示词加上文本位置,因为模型获得的输入数据越多,越容易产生精确输出。遵循指令比仅理解提示词更容易。 Tusiart 模型: 定主题:明确生成图片的主题、风格和表达的信息。 选择基础模型 Checkpoint:根据主题选择内容贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找内容重叠的 lora 以控制图片效果及质量。 ControlNet:可控制图片中特定的图像,如人物姿态、生成特定文字等,属于高阶技能。 局部重绘:下篇再学。 设置 VAE:选择 840000 即可。 Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 负向提示词 Negative Prompt:用英文写避免产生的内容,同样用单词和短语组合,用英文半角逗号隔开,不用管语法。 采样算法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 采样次数:选 DPM++2M Karras 时,采样次数在 30 40 之间。 尺寸:根据个人喜好和需求选择。 Liblibai 模型: 定主题:明确生成图片的主题、风格和表达的信息。 选择 Checkpoint:根据主题选择内容贴近的模型,如麦橘、墨幽的系列模型。 选择 lora:寻找内容重叠的 lora 以控制图片效果及质量。 设置 VAE:选择 840000 即可。 CLIP 跳过层:设成 2 。 Prompt 提示词:用英文写需求,使用单词和短语组合,用英文半角逗号隔开,不用管语法和长句。 负向提示词 Negative Prompt:用英文写避免产生的内容,同样用单词和短语组合,用英文半角逗号隔开,不用管语法。 采样方法:一般选 DPM++2M Karras,也可参考模型作者推荐的采样器。 迭代步数:选 DPM++2M Karras 时,迭代步数在 30 40 之间。 尺寸:根据个人喜好和需求选择。 生成批次:默认 1 批。
2025-03-06
处理excel表格的AI
以下是一些处理 Excel 表格的 AI 工具和相关信息: 1. Excel Labs:这是一个 Excel 插件,基于 OpenAI 技术,新增了生成式 AI 功能,可在 Excel 中直接利用 AI 进行数据分析和决策支持。 2. Microsoft 365 Copilot:微软推出的 AI 工具,整合了包括 Excel 在内的多种办公软件,用户通过聊天形式告知需求,Copilot 自动完成任务,如数据分析、格式创建等。 3. Formula Bot:提供数据分析聊天机器人和公式生成器两大功能,用户能通过自然语言交互式地进行数据分析和生成 Excel 公式。 4. Numerous AI:支持 Excel 和 Google Sheets 的 AI 插件,除公式生成外,还能根据提示生成相关文本内容、执行情感分析、语言翻译等任务。 这些工具通过 AI 技术提升了 Excel 的数据处理能力,未来可能会有更多 AI 功能集成到 Excel 中,进一步提高工作效率和智能化水平。 此外,对于 Excel 与飞书多维表格的比较: Excel 有手就会,但 VBA 进阶版功能门槛高。 对于一些重复工作,AI 能处理 Excel 但较麻烦,而飞书多维表格在某些数据处理功能上能让人偷懒解决。 常见应用场景包括数据整理与分析、内容生成与优化、自动化建议等,两者都能帮助整理数据、做计算、做图表等,但多维表格在某些方面更便捷。
2025-03-06
纯小白,要如何入行Ai Agent
对于纯小白入行 AI Agent,以下是一些建议: 1. 学习与实践并进:像元子一样,从简单的需求表达开始,逐渐熟练掌握,多尝试不同的 AI 工具,选定自己感兴趣的方向,如 AI Agent。可以参考社区小伙伴的 100 天 AI 之路,如《雪梅 May 的 AI 学习日记》。 2. 勇于提问:不要害怕问“笨”问题,多直接向 AI 提问。 3. 注重积累:解决一个小问题也是进步,不积跬步无以至千里。 4. 多试多练:这是掌握 AI Agent 的关键,还可以加入社区共同学习。 5. 学以致用:将 AI 融入生活和工作,学完就用,保持学习的动力和持久性。 在实际操作方面,参考一泽 Eze 的方法: 1. 梳理思路:理解 Prompt 工程中通过逻辑思考从知识经验中抽象关键方法与要求的理念,并将其应用于 Coze 中创建 AI Agent。 2. 搭建工作流驱动的 Agent 分为三个步骤: 规划:制定任务的关键方法,包括总结任务目标与执行形式,将任务分解为可管理的子任务,确立逻辑顺序和依赖关系,设计每个子任务的执行方法。 实施:在 Coze 上搭建工作流框架,设定每个节点的逻辑关系,详细配置子任务节点,并验证每个子任务的可用性。 完善:整体试运行 Agent,识别功能和性能的卡点,通过反复测试和迭代,优化至达到预期水平。然后从制定关键方法与流程,梳理「结构化外文精读专家」Agent 的任务目标。
2025-03-06
AI 提示词怎么使用
AI 提示词的使用方法如下: 1. 星流一站式 AI 设计工具: 输入框中可输入提示词,使用图生图功能辅助创作。 提示词用于描绘画面,输入语言方面,星流通用大模型与基础模型 F.1、基础模型 XL 使用自然语言(如一个长头发的金发女孩),基础模型 1.5 使用单个词组(如女孩、金发、长头发),支持中英文输入。 可进行提示词优化,启用后能扩展提示词,更生动地描述画面内容。 写好提示词的方法包括:点击提示词上方官方预设词组进行生图;提示词内容准确,包含人物主体、风格、场景特点、环境光照、画面构图、画质等;调整负面提示词,点击提示框下方的齿轮按钮弹出负面提示词框,帮助 AI 理解不想生成的内容;利用“加权重”功能,在功能框增加提示词并进行加权重调节,权重数值越大越优先;还具有翻译功能可一键将提示词翻译成英文,以及删除所有提示词和会员加速等辅助功能。 2. Adobe Firefly AI 视频功能: 在“文生视频(Text to Video)”和“图生视频(Image to Video)”中,尽量使用更多词汇具体描述光线、摄影、色彩、氛围和美学风格。 提示词公式为镜头类型描述+角色+动作+地点+美学风格。镜头类型描述包括相机视角及移动方式;角色描述涵盖角色身份、外貌、穿着和情绪;动作描述角色在场景中的行为;地点描述包括位置、天气和地形;美学风格描述包括镜头类型、氛围、景深等。构建提示词时,建议限制主题数量,过多主题可能让 Firefly 困惑。 3. 一泽 Eze: 1 句提示词+1 个品牌 Logo 可生成超级符合品牌调性的创意名片,整个流程简单,输入提示词和 Logo 即可。 提示词的主要目的是“设计符合品牌调性的创意名片”,借助大模型可让 AI 自动推敲设计思路生成创意 Demo。 注意事项包括:“创意名片生成”已支持在 Artifacts 中正确回显上传的 Logo,为更好直出效果,Logo 建议使用清晰、底图透明的 PNG 格式;若生成结果不符合预期,可尝试让模型重新生成或和 AI 对话提出修改意见。
2025-03-06
八岁孩子如何开始学习AI
对于八岁孩子开始学习 AI,以下是一些建议: 1. 从编程语言入手:可以先学习 Python、JavaScript 等编程语言,掌握编程语法、数据结构、算法等基础知识,为后续学习 AI 打下基础。 2. 尝试使用 AI 工具和平台:体验如 ChatGPT、Midjourney 等生成工具,探索面向儿童的 AI 教育平台。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等),以及在各领域的应用案例。 4. 参与相关实践活动:例如参加简单的 AI 创意设计活动,尝试用 AI 技术解决一些小问题,培养动手能力。 5. 关注 AI 发展动态:通过适合儿童的方式,了解 AI 领域的最新进展和影响。 需要注意的是,八岁孩子的认知和理解能力有限,学习过程应注重趣味性和引导性,避免过于复杂和枯燥。
2025-03-06
临床医疗deepseek使用手册
以下是关于 DeepSeek 在临床医疗方面的使用手册: 使用案例: 借助 AI 分析好的文章: 找出最喜欢的文章,投喂给 deepseek R1(适合大多数有推理模型的 AI)。 第一次询问:请从写作角度分析这篇文章。 第二次询问:请再从读者角度分析这篇文章。 第三次询问:这篇文章还存在什么缺点和不足,有什么改善和提升的空间。 对作者进行侧写,分析成长背景、个人经历和知识结构对文章的影响。 让 AI 对自己写的文章点评:“现在我希望你是一名资深中文写作教师/小学语文老师/中学语文老师/公文写作培训师,拥有 30 年教育经验,是一名传授写作技巧的专家。请先阅读我提供给你的文章,然后对文章进行分析,然后教我如何提升写作水平。请给出详细的优缺点分析,指出问题所在,并且给出具体的指导和建议。为了方便我能理解,请尽量多举例子而非理论陈述。” 根据文章内容对作者心理侧写:“我希望你扮演一个从业 20 多年,临床诊治过两千多例心理分析案例的人性洞察和意识分析方面的专家,精通心理学、人类学、文史、文化比较。先阅读后附文章全文,然后对作者进行人格侧写。要尖锐深刻,不要吹捧包装,不要提出一些只能充当心理安慰的肤浅的见解。包括作者的基本画像、核心性格特质、认知与价值观、潜在心理动机、行为模式推测、矛盾与盲点、文化符号映射。” 提升 DeepSeek 能力的方法: 用 Coze 做效果对比测试。 使用步骤: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 Deepseek。 认真阅读开场白之后,正式开始对话。 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(有难度)和 Markdown(运行不太稳定)。 特别鸣谢: 李继刚:【思考的七把武器】在前期为我提供了很多思考方向。 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源。 Claude 3.5 Sonnet:最得力的助手。
2025-02-13
目前最好的用于医疗的AI
目前在医疗领域,有以下一些出色的 AI 应用: 1. 蛋白质结构预测和合成方面: AlphaFold 是由 DeepMind 开发的 AI 系统,在蛋白质结构预测方面准确度超过其他系统,为科学家和药物开发提供巨大帮助。 Meta 的蛋白质结构预测 AI 模型 ESMFold 截至目前已经进行了 7 亿次预测。 多伦多大学研究人员开发了利用类似 Stable Diffusion、Midjourney 的生成扩散技术创造出自然界中不存在的蛋白质的新 AI 系统。 华盛顿大学的 David Baker 教授的团队开发了基于 DALLE 的人工智能系统 RF Diffusion,用于根据科学家的需求生成合适的蛋白质结构。 洛桑联邦理工学院的科学家们开发了基于神经网络的新工具 PeSTo,可以预测蛋白质如何与其他物质相互作用,速度快且通用性强。 在 Surrey 大学开发了一种人工智能系统,用于识别个体细胞中的蛋白质模式,这一进展可用于理解肿瘤的差异并开发药物。 肯特大学的研究团队使用名为 talin 的蛋白质制成凝胶,该凝胶具有吸收冲击的能力,目标是将其制成防弹材料。 2. 疾病诊断与预测、药物研发以及个性化医疗方面: 麻省理工学院利用 AI 发现了新型广谱抗生素 Halicin,它能有效杀灭对现有抗生素产生耐药性的细菌,且不会使细菌产生新的耐药性。研究者通过训练集让 AI 学习分子特点,总结规律,从大量分子中识别出符合要求的分子,之后实验证明其有效性,很快将用于临床。 为了在医疗保健中产生真正的改变,AI 应像人类一样学习,投资创建模型生态系统,例如“专家”AI,通过学校教育和经验获得有助于在复杂情况下确定最佳答案的直觉。不应仅仅依靠大量数据和生成模型解决所有问题,而应通过堆叠模型进行训练,如先训练生物学、化学模型,再添加特定于医疗保健或药物设计的数据点。
2025-02-10
在医疗场景,现在有哪些应用
在医疗场景中,AI 有以下应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能够加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术的精度和安全性。 5. 疾病的诊断与预测:例如利用大模型进行疾病的早期诊断和病情发展预测。 6. 新药物发现:如麻省理工学院利用 AI 发现新型广谱抗生素 Halicin。 7. 中医应用:将人工智能与中医结合,辅助看诊,提高诊疗效率,未来有望实现 24 小时独立问诊开药。 8. 医学问答:像 DoctorGPT 这样的模型,能够准确回答各种医学问题。
2025-01-20
AI医疗
AI 在医疗领域有广泛的应用: 1. 医学影像分析:可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:能加速药物研发过程,如识别潜在药物候选物和设计新治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化治疗方案。 4. 机器人辅助手术:用于控制手术机器人,提高手术精度和安全性。 在医疗健康生物制药的研究方面,AI 也发挥着重要作用,取得了一些最新进展: 1. 提前三年诊断胰腺癌。 2. 两名高中生与医疗技术公司合作发现与胶质母细胞瘤相关的新靶基因。 3. 帮助筛选抗衰老的高效药物候选物。 4. 用于寻找阿尔兹海默症的治疗方法。 5. 帮助早期诊断帕金森。 为了在医疗保健中产生真正的改变,AI 应像人类一样学习。成为医疗领域顶尖人才通常需要多年密集信息输入和实践学习,AI 也应投资创建模型生态系统,如“专家”AI,通过分层训练模型,而非仅依靠大量数据和生成模型解决所有问题。就像医学生从基础课程开始,科学家需要多年化学和生物学学习及实践指导,这种学习方式有助于培养处理细微差别决策的直觉。
2025-01-07
关于医疗辅助诊断的AI有哪些
以下是一些关于医疗辅助诊断的 AI 应用: 1. 医学影像分析:AI 可用于分析 X 射线、CT 扫描和 MRI 等医学图像,辅助诊断疾病。 2. 药物研发:用于加速药物研发过程,比如识别潜在的药物候选物和设计新的治疗方法。 3. 个性化医疗:通过分析患者数据,为每个患者提供个性化的治疗方案。 4. 机器人辅助手术:控制手术机器人,提高手术的精度和安全性。 5. 平安好医生 APP 中的 AI 医疗诊断辅助系统:辅助医生进行疾病诊断,提高诊断准确性。用户上传症状描述和检查报告后,系统能给出初步的诊断建议和治疗方案,为医生提供参考。
2025-01-02
举例说明,医疗人工智能应用的风险及其法理防范
医疗人工智能应用存在以下风险: 1. 可能对受欧盟法律保护的公共利益和基本权利造成损害,包括身体、心理、社会或经济方面的损害。 2. 在决定是否给予、拒绝、减少、取消或收回医疗保健服务等福利时,可能对人们的生计产生重大影响,并侵犯基本权利,如社会保护权、不受歧视权、人的尊严权或有效补救权。 3. 用于评估自然人信用分数或信用度的人工智能系统可能导致对个人或群体的歧视,并延续历史上的歧视模式或造成新形式的歧视性影响。 法理防范措施包括: 1. 为所有高风险人工智能系统制定统一的规则,这些规则应与《宪章》保持一致,是非歧视性的,并符合欧盟的国际贸易承诺,同时考虑相关的伦理准则。 2. 明确价值链上相关经营者的作用和具体义务,促进对法规的遵从,确保法律的确定性。 3. 在特定条件下,明确高风险人工智能系统提供者的责任和义务。 需要注意的是,欧盟法律规定的用于检测提供金融服务过程中的欺诈行为以及用于计算信贷机构和保险企业资本要求的尽职审慎目的的人工智能系统,以及用于自然人健康和人寿保险风险评估和定价的人工智能系统,在符合一定条件时不视为高风险系统。
2025-01-02