Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

普通人 怎么利用ai赚钱

Answer

以下是一些普通人利用 AI 赚钱的方式:

  1. 电商:婴儿的四维彩超 AI 预测
    • 思路和玩法:通过 AI 工具将宝宝的四维彩超还原出现实模样进行变现。孕妇妈妈在孕期 22 - 26 周会进行四维彩超检查,很多准爸爸妈妈期待宝宝模样,从而衍生出市场需求。在小红书、抖音等公域平台发布相关笔记吸引咨询。
    • 操作流程:客户提供四维彩超图原图,在 Midjourney 里进行垫图和特定描述词,整个流程不超 10 分钟出图。
    • 变现方式:在抖音、快手、视频号、小红书上批量发布相关视频或图文,将客户引到私域接单变现。但要注意平台引流需隐蔽,避免被检测限流或封号。
  2. AI 产业中的应用层
    • 基础设施层:布局投入确定性强,但资金和资源门槛高,普通人若无强资源应谨慎入局,可考虑“合作生态”切入机会。
    • 技术层:技术迭代快,小规模团队或个人需慎重考虑技术迭代风险,基础通用大模型不建议普通个体和小团队考虑。
    • 应用层:是时代赋予的广阔蓝海,当前针对行业/细分领域的成熟应用产品不多,对于普通个体和小团队有超级机会和巨大发展空间。
Content generated by AI large model, please carefully verify (powered by aily)

References

电商:婴儿的四维彩超AI预测

源地址:https://mp.weixin.qq.com/s/7xxYE2B5tFJEVknzfTH79Q作者:刘驴这是非常适合普通人作为一个副业的项目,上手也特别的简单,先给大家简单说下它的思路和玩法大白话就是通过AI工具,提前把宝宝的四维彩超还原出现实中模样进行变现,如下图:因为孕妇妈妈在孕期22-26周会进行一次四维彩超检查,作为排畸的筛查,而检查出的四维彩超只能看到宝宝大概的轮廓在这期间,很多准爸爸妈妈是非常期待自己宝宝的模样的,所以就衍生出了这类的市场需求基本上只要在小红书、抖音等公域平台发布相关的笔记,很快就会有人来咨询拿我AI变现陪跑学员做的账号来说,当天刚起的抖音号,发了3篇笔记半个小时就有几十上百个点赞因为是新起的号,需要先把号养两天去引流才会安全些其次,四维彩超AI预测的操作流程也很简单,客户给到你四维彩超图原图后,直接拿到Midjourney里进行垫图+特定的描述词,整个流程不超过10分钟就能出图接下来就是变现了,因为受众群体多是宝妈,这类群体的变现方式是非常多的,只针对四维彩超图这块是很简单,而且单价还不低哦,可以看图:所以基本上你在抖音、快手、视频号,小红书上,批量发布四维彩超生成AI宝宝照片的视频或图文,就会有客户来咨询,然后把人引到私域上就能接单变现但是需要注意在平台引流要隐蔽一些,不然容易被平台检测,轻则限流,重则封号处理

走入AI的世界

我们来简要概括说说这张图中每一层的商机洞察(以下内容仅代表个人观点,供参考):1.目前来看,基础设施层布局投入的确定性最强,以发展的眼光看,当前算力缺口巨大,但这部分涉及到海量的资金投入,入行资源门槛较高,作为关键的基础设施,国内未来更多的将会由“国家队”扛起重任。普通人如果没有强资源需谨慎入局,因为很可能你无法快速对接到客户资源,等不到赚钱就现金流断裂,可以更多的考虑“合作生态”的切入机会。2.技术层当前仍然处于技术爆炸时刻,相关技术的迭代速度可以夸张点用“日新时异”来形容,迭代进步飞速,如果你或你的团队规模不大,但又有志于做这一层相关的事情,须慎重考虑“技术迭代风险”的问题(例如基于某种开源模型更进一步训练垂直领域模型,很可能等你训练出来的时候,更强更新的开源模型已经发布,让你的工作意义大打折扣),至于基础的通用大模型,非巨无霸公司就不是很建议考虑了,搞基础大模型的研发是一件十分烧钱的事情,且众多互联网大厂,AI独角兽,知名高校都已悉数下场神仙打架,完成了布局,开启了“百模大战”,但竞争的终局,只会有少数赢家。应用界不需要那么多同质化的大模型,最后多半是赢家通吃的局面。3.应用层是一片时代赋予我们的广阔蓝海,尽管2024年这个方向的从业者在飞速增加,也涌现出一批做垂直产业/行业/细分领域垂直模型或大模型应用的产品,但坦诚的讲,以我们自身的深度实践和用户的切实需求来看,当前针对行业/细分领域的成熟应用产品并不多,让人哇塞的“杀手级”应用更是凤毛麟角。对于普通个体和小团队,强烈推荐重点思考和布局应用层,这一层拥有超级机会和巨大发展空间。

陈财猫:如何用 AI 写出比人更好的文字?

第二类人由于AI,获得了一些好处。我自己本人其实算是ai的受益者。AI是生产力工具,我已经离不开它了,我实际上靠着AI做了很多以前绝对做不到的事情。但是,与此同时,我仍然需要投入大量的时间和精力工作,因为AI只能降本增效,只能起到较为次要的辅助工具的位置。写代码60秒,debug 60分钟,虽然离不开它,还能做出厉害的东西,但是使用它完成繁重工作时仍感觉非常痛苦。对于剩下的另一小部分人来说,他们则是AI的受害者。他们对AI之所以非常愤怒,是因为AI破坏了他们赖以生存的根本。他们拥有的技能逐渐失效,而AI却没有创造足够多的新的生存空间。鲁迅有一句话:“人类有一个大缺点,就是常常要饥饿”,这些人也是人,肚子会饿。而接下来很有可能没饭吃了。AI目前又没有办法给每个人稳定发钱。旧有的世界正在崩塌,而新的世界却尚未建立,所以他们感到难过。我是一个非常坚定的AGI believer,所以最后是我对AI发展的一些期望和想象。虽然我现在在经过逻辑思考后只能重仓内容创作赛道,但是我认为,也希望这一定不会是一个永久的事情。选择内容创作赛道只是因为AI的能力尚未到达临界点。虚假的AGI是写诗画画,给你女儿起个像样的名字,用符号构建虚假的美好世界让你暂时逃离现实苦难,但逃离后第二天还要继续痛苦。真实的AGI应该做出重大科学发现,治愈疾病,消除饥饿和肥胖,每个月给每个人发几万元,让人类自由从事想做的事。不管是编程还是其他。我希望AI目前能力再进一步,干点实在的,改变每个人的生活,这是我对AI的期许。谢谢大家。总结

Others are asking
假如你是一名测试工程师,要写一个关于《AI智能体输入输出验证》专利申请书,申请书的内容包括以下几点: 1、发明名称(一种xxxxxxxx算法/架构/设计/外观等等等等) 2、发明背景技术 3、具体的技术方案描述 4、本发明的有益效果
以下是为您生成的关于《AI 智能体输入输出验证》的专利申请书内容: 发明名称:一种基于 Coze 工作流的 AI 智能体输入输出验证算法 发明背景技术: 在当前的 AI 应用中,构建和测试智能体的功能至关重要。特别是在处理复杂的任务,如生成思维导图时,需要确保输入和输出的准确性和有效性。然而,现有的技术在配置子任务节点和验证其可用性方面存在不足,导致效率低下和结果不稳定。 具体的技术方案描述: 1. 对于生成思维导图的任务,首先确定处理方式为“单次”,因为一次精读任务仅需生成一张思维导图。 2. 在输入方面,<generateTreeMind>插件节点仅需设置{{query_text}}变量,格式为 string 字符串,通过引用“标题、导语、大纲”节点的{{enTreeMind}}变量来提供输入。 3. 在输出方面,观察输出区的众多字段,根据字段名称、「查看示例」中的示例说明或试运行来确定所需的字段。对于生成图片格式的思维导图,确定 pic 为所需的输出。 4. 完成任何一个节点的配置后,进行试运行测试。具体步骤包括:点击「测试该节点」,按格式要求输入待测试的内容(对于 array 等其他格式,自行对话 AI 或搜索网络确认格式要求),点击「展开运行结果」,检查输入、输出项是否有误。若有误,依次检查“测试输入内容”、“节点配置”以及优化“提示词”,以提升对生成内容的约束力。 本发明的有益效果: 1. 提高了 AI 智能体在处理生成思维导图等任务时输入输出配置的准确性和效率。 2. 通过明确的步骤和规范的测试流程,有效减少了错误和不确定性,提升了智能体的稳定性和可靠性。 3. 能够更好地满足用户在复杂任务中的需求,为相关领域的应用提供了更优质的解决方案。
2025-03-04
介绍AI进阶操作
以下是关于 AI 进阶操作的介绍: 在 Obsidian 中使用 AI 工具的进阶配置方法包括: 1. 笔记仓库嵌入大模型(Copilot) 2. 笔记内容作为 RAG 嵌入大模型(Smart Conections) 3. 笔记内使用大模型编写内容 在 Liblibai 中,有以下进阶概念和功能: 1. 迭代步数:调整图片内容的次数,并非越多越好,效果提升非线性。 2. 尺寸:影响图片生成的大小,需适中选择,高清图可设置中等尺寸并用高分辨率修复。 3. 生成批次:用本次设置重复生成的图批次数。 4. 每批数量:每批次同时生成的图片数量。 5. 提示词引导系数:影响图像与 prompt 的匹配程度,过高会使图像质量下降。 6. 随机数种子:固定后可对图片进行“控制变量”操作。 7. ADetailer:面部修复插件,高阶技能。 8. ControlNet:控制图片中特定图像,高阶技能。 9. 重绘幅度:图生图时,幅度越大,输出图与输入图差别越大。 此外,杭州站的 AI 活动聚焦在动手操作上,共分为 5 天进行,被定义为带领大家进阶玩转 AI 的实操落地活动,从学习写 prompt 到生成图片再到分组成立项目,活动形式丰富多样,难度和节奏层层递进。
2025-03-04
关于换脸的AI
以下是关于 AI 换脸的详细介绍: AI 换脸可以通过以下步骤实现: 1. 选择云服务解决方案,如 AutoDL(官网:https://www.autodl.com/home )。注册完成后,在算力市场中选择能接受价格且 GPU 配置较高的算力服务器。 2. 通过模型镜像启动 GPU 服务器:在算法社区查找 facefusion 镜像,选择合适的镜像启动。 3. 启动实例并打开相关工具:点击右下角的创建实例按钮,创建并启动实例。点击快捷工具中顶部的 JupyterLab 打开工具,新打开一个终端窗口,在终端窗口中输入命令执行相关操作。 4. 打开 facefusion 软件:返回实例列表,点击自定义服务按钮,通过新的浏览器窗口访问 facefusion 提供的 UI 界面。 5. 在 facefusion 软件界面上传准备好的图片、视频,在右侧可看到预览效果,点击下方的开始按钮执行换脸处理。 执行完成后,在输出位置会出现处理后的视频,输出窗口右上角有下载按钮可导出视频到本地。 本次 GPU 服务器的使用花费情况: 1. 时间:大约 10 分钟左右。 2. 制作数字人视频:免费。 3. 数字人换脸:约 0.8 元。 有多个 AI 产品可以实现换脸效果,这里介绍的开源、免费的解决方案是 facefusion,其开源地址:https://github.com/facefusion/facefusion 。但本地化安装需要一定编程知识,且对计算机配置有要求,执行速度可能较慢,因此不推荐本地化安装。
2025-03-04
这个网站有学习AI绘画的教程吗
以下是一些学习 AI 绘画的教程资源: 视频教程: 「AI 绘画」软件比较与 stable diffusion 的优势: 「AI 绘画」零基础学会 Stable Diffusion: 「AI 绘画」革命性技术突破: 「AI 绘画」从零开始的 AI 绘画入门教程——魔法导论: 「入门 1」5 分钟搞定 Stable Diffusion 环境配置,消灭奇怪的报错: 「入门 2」stable diffusion 安装教程,有手就会不折腾: 「入门 3」你的电脑是否跑得动 stable diffusion?: 「入门 4」stable diffusion 插件如何下载和安装?: 从 0 入门 AI 绘画教程: 线上教程: AI 线上绘画教程:
2025-03-04
AI办公
AI 办公领域目前有以下相关内容: 360AI 办公:核心价值主张为每天 6 毛钱,尽享 200+AI 权益,产品能力包括 AI 图片、AI 文档、AI 写作、AI 音视频、AIPPT、AI 翻译、模版大全、办公工具。 在 toB 领域,智能办公产品价值主要体现在办公垂域场景中,比如快速总结群聊内容或会议信息,为写公文提供结构模板参考等。
2025-03-04
如果我想基于一条视频的视频风格,结合我自己的视频内容创作需求,生成一条新的demo视频,怎么使用AI更加高效和达到我想要的效果?
要基于一条视频的风格结合自己的需求生成新的 demo 视频,您可以参考以下步骤,更高效地达到想要的效果: 1. 准备内容 先准备一段视频中播放的内容文字,比如产品介绍、课程讲解、游戏攻略等。您也可以利用 AI 来生成这段文字。 2. 制作视频 使用剪映 App 进行简单处理。电脑端打开剪映 App,点击“开始创作”。 选择顶部工具栏中的“文本”,点击默认文本右下角的“+”号,为视频添加一个文字内容的轨道。 在界面右侧将准备好的文字内容替换默认文本内容,这将为数字人提供语音播放的内容以及生成与文字内容相对应的口型。 另外,如果您想用 AI 把小说做成视频,可以按照以下流程: 1. 小说内容分析 使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述 根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成 使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作 将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作 利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成 使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理 对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整 观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享 完成所有编辑后,输出最终视频,并在所需平台上分享。 需要注意的是,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-03-04
适合普通人(没有ai开发经验) 的ai发展方向有哪些
对于没有 AI 开发经验的普通人,以下是一些适合的 AI 发展方向: 1. 基础知识学习: 了解 AI 背景知识,包括人工智能、机器学习、深度学习的定义及其之间的关系。 回顾 AI 的发展历程和重要里程碑。 掌握数学基础,如统计学(熟悉均值、中位数、方差等统计概念)、线性代数(了解向量、矩阵等基本概念)、概率论(基础的概率论知识,如条件概率、贝叶斯定理)。 2. 算法和模型: 熟悉监督学习(如线性回归、决策树、支持向量机)。 了解无监督学习(如聚类、降维)。 知晓强化学习的基本概念。 3. 评估和调优: 学会如何评估模型性能,包括交叉验证、精确度、召回率等。 掌握模型调优的方法,如使用网格搜索等技术优化模型参数。 4. 神经网络基础: 理解神经网络的基本结构,包括前馈网络、卷积神经网络、循环神经网络。 熟悉常用的激活函数,如 ReLU、Sigmoid、Tanh。 如果偏向技术研究方向: 1. 巩固数学基础,如线性代数、概率论、优化理论等。 2. 掌握机器学习基础,包括监督学习、无监督学习、强化学习等。 3. 深入学习深度学习,如神经网络、卷积网络、递归网络、注意力机制等。 4. 涉足自然语言处理(语言模型、文本分类、机器翻译等)、计算机视觉(图像分类、目标检测、语义分割等)等领域。 5. 关注前沿领域,如大模型、多模态 AI、自监督学习、小样本学习等。 6. 进行科研实践,包括论文阅读、模型实现、实验设计等。 如果偏向应用方向: 1. 具备编程基础,如 Python、C++等。 2. 掌握机器学习基础,如监督学习、无监督学习等。 3. 熟悉深度学习框架,如 TensorFlow、PyTorch 等。 4. 应用于自然语言处理、计算机视觉、推荐系统等领域。 5. 做好数据处理,包括数据采集、清洗、特征工程等。 6. 进行模型部署,如模型优化、模型服务等。 7. 参与行业实践,包括项目实战、案例分析等。 此外,无论您是技术爱好者还是内容创作者,都可以: 技术爱好者: 1. 从小项目开始,如搭建简单博客或自动化脚本,尝试使用 AI 辅助编码。 2. 探索 AI 编程工具,如 GitHub Copilot 或 Cursor 等。 3. 参与 AI 社区,如 Stack Overflow 的 AI 板块或 Reddit 的 r/artificial 子版块。 4. 构建 AI 驱动的项目,如开发聊天机器人或图像识别应用。 内容创作者: 1. 利用 AI 辅助头脑风暴,获取创意方向。 2. 建立 AI 写作流程,从生成大纲到扩展段落等。 3. 探索多语言内容,借助 AI 辅助翻译和本地化。 4. 用 AI 工具优化 SEO,调整标题、元描述和关键词使用。
2025-03-02
普通人怎么学习AI
普通人学习 AI 可以参考以下步骤: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,如图像、音乐、视频等,可根据自身兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,通过实践巩固知识,尝试使用各种产品做出作品。 在知识库分享实践后的作品和文章。 5. 体验 AI 产品: 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人,了解其工作原理和交互方式。 此外,还可以参考以下方法: 1. 万能公式法:问 AI【一个(xxx 职业)需要具备哪些知识?】,AI 就可给出知识框架,然后根据知识框架每一个小点去问,就能让 AI 工具帮你指数级深度思考。 2. 寻找优质信息源:像没有技术背景的普通人,学习或了解 AI 最好的信息源在「即刻」App 的“”等免费圈子里。 3. 信息爆炸之做减法的小 tips: 只掌握最好的产品,少关注新产品测评(除非远超 ChatGPT)。 只解决具体问题,不做泛泛了解。从问题中来,到问题中去。 只关注核心能力,不关注花式玩法,用 AI 扬其长避其短。 只关注理清需求和逻辑,不死记硬背提示词。 先关注提升认知/洞察,然后再谈技巧。 对于纯 AI 小白,如果还在观望 AI 不知从何入手,可以参考《雪梅 May 的 AI 学习日记》。其学习模式是输入→模仿→自发创造。学习资源免费开源,可去 waytoAGI 社区发现自己感兴趣的 AI 领域,学习最新内容。
2025-02-26
那普通人要研发机器狗从哪方面开始学习?
对于普通人想要研发机器狗,以下这些 AI 相关的基础知识是很有帮助的: 1. 了解 AI 的概念:AI 即人工智能,是让计算机模拟人类智能的技术。 2. 掌握机器学习:这是电脑找规律学习的方式,包括监督学习、无监督学习和强化学习。 监督学习:使用有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归任务。 无监督学习:处理没有标签的数据,让算法自主发现规律,例如聚类任务,像将一堆新闻文章按主题或内容特征分组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训练小狗。 3. 深度学习:这是一种参照人脑构建神经网络和神经元的方法,由于有很多层所以称为深度。神经网络可用于监督学习、无监督学习和强化学习。 4. 熟悉生成式 AI:能够生成文本、图片、音频、视频等内容形式。 5. 了解 LLM(大语言模型):对于生成式 AI,生成图像的扩散模型不属于大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解,像上下文理解、情感分析、文本分类等,但不太擅长文本生成。 6. 关注技术里程碑:例如 2017 年 6 月谷歌团队发表的论文《Attention is All You Need》,首次提出了 Transformer 模型,它基于自注意力机制处理序列数据,不依赖循环神经网络或卷积神经网络。 这些基础知识能为您研发机器狗提供理论支持和技术思路。
2025-02-26
普通人怎么研发制作机器狗?
普通人研发制作机器狗具有很大的挑战性,需要具备多方面的知识和技能。以下是一些关键的步骤和要点: 首先,要了解具身智能的概念。具身智能是将机器学习算法适配至物理实体,与物理世界交互的人工智能范式。人形机器人是具身智能的代表产品,而机器狗作为一种具身智能体,其研发涉及到“本体”(硬件载体)、“智能”(大模型、语音、图像、控制、导航等算法)、“环境”(本体所交互的物理世界)三要素的高度耦合。 不同的环境需要不同形态的硬件本体来适应。例如,崎岖不平的地面更适用四足机器人(机器狗)。在具身智能体与环境的交互中,智能算法可以通过本体的传感器感知环境,做出决策以操控本体执行动作任务,从而影响环境。 在研发过程中,还需要关注以下方面: 1. 感知决策行动反馈的四个模块,形成一个闭环,以实现机器狗的有效行动。 2. 模拟训练环境的运用,例如像 Jim 团队在模拟环境中训练机器狗,并通过特定的代理和技术,将其转移到现实世界中。 3. 脑电波控制技术,如 MIT 研究团队通过特殊眼镜读取脑电波和眼动来控制波士顿动力机器狗,这为控制方式提供了新的思路。 然而,对于普通人来说,要完成机器狗的研发制作,还需要足够开放的环境、大规模预训练数据和强大的基础模型,这是非常困难的。但如果您有强烈的兴趣和决心,可以通过学习相关的专业知识,逐步积累经验来尝试。
2025-02-26
普通人的AI之路
普通人在 AI 领域有很多创造奇迹的机会和途径: 1. 参与 AI 艺术节:例如第一届 AI 艺术节 AIAF 面向全球创作者和 AI 爱好者发起了以“爱恨情仇”为命题的共同创作行动,收到了大量投稿,其中有相当比例的优秀作品来自此前并非从事视觉创作的跨界人士。 2. 让 AI 走进工作和生活: 万能公式法:问 AI 【一个(xxx 职业)需要具备哪些知识?】,获取知识框架,再针对小点提问,辅助深度思考。 寻找优质信息源:像没有技术背景的普通人,可在「即刻」App 的“”等免费圈子获取前沿信息,也可在必要时溯源至 Twitter 和相关官网。同时,为应对信息爆炸,可尝试只掌握最好的产品、解决具体问题、关注核心能力、关注需求和逻辑、先提升认知等技巧。 3. 了解 AGI 相关内容:如阅读 AGI 万字长文,了解 AI 多模态大爆发、应用现状、发展方向、可能带来的影响等多方面内容。
2025-02-21
普通人怎么学习ai赚钱
以下是为普通人学习 AI 赚钱提供的一些指导: 对于零基础小白: 1. 网上有很多基础课程可供选择,例如科普类教程。 2. 阅读 OpenAI 的官方文档,理解每个参数的作用和设计原理,避免在面试中出现知识盲区。 3. 推荐使用一些练手的 Prompt 工具。 岗位技能要求: 1. 具备综合的个人能力,包括市场调研、观察目标群体工作流、创造并拆解需求、选型现有 AI 解决方案做成产品来解决需求、抽象并集成成为一个互联网 APP 产品、写 PRD、画 APP 产品原型图、组织团队进行 APP 产品开发。 案例分享: 1. 二师兄在房地产行业从业二十年,计算机零基础。他从二月开始学习 AI 绘画,三月啃完相关教程并开始炼丹,四月尝试 AI 变现项目,五月加入 Prompt battle 社群学习 Midjourney。 需要注意的是,公司招聘 AI 提示词工程师岗位时,通常不会多招其他懂 AI 的岗位,因此需要个人具备较为全面和敏捷的能力。同时,若想将 AI 用于赚钱,还需不断探索和实践,找到适合自己的变现途径。
2025-02-21
AI能不能帮人写小说赚钱
AI 可以帮助人写小说赚钱。例如,南瓜博士上个月参加了一场 AI 创作微信小说的比赛,尽管在提交过程中出现了一些小失误,但仍凭借 AI 的帮助获奖。此外,使用 AI 可以草拟各种类型的初稿,如博客文章、论文、宣传材料、演讲、讲座、剧本、短篇小说等。通过与 AI 系统互动,提高提示质量,能让写作效果更好。还可以将自己的文本粘贴到 AI 中,要求其改进内容、提供针对特定受众的建议、创建不同风格的草稿等。AI 也能帮助完成一些任务,如写邮件、创建销售模板、提供商业计划的下一步等。总之,合理利用 AI 能在写作方面提供支持,从而有机会通过写小说获得收益。
2025-03-02
使用AI写网络小说,并且通过网络小说平台发布赚钱的可行性及步骤
使用 AI 写网络小说并通过网络小说平台发布赚钱是具有一定可行性的,以下是相关步骤: 一、准备阶段 1. 确定目标读者群体,了解他们的喜好和需求,以便创作出更符合市场的作品。 2. 选择适合的 AI 写作工具,例如 ChatGPT 等。 二、写作阶段 1. 利用 AI 工具生成小说的初步框架和情节,包括角色设定、故事发展等。 2. 对 AI 生成的内容进行修改和完善,使其更具逻辑性、吸引力和独特性。 三、发布阶段 1. 选择合适的网络小说平台,了解其发布规则和要求。 2. 按照平台规定注册账号,并提交小说作品。 四、运营推广阶段 1. 积极与读者互动,回复评论和留言,根据读者反馈改进作品。 2. 利用社交媒体等渠道宣传自己的小说,提高知名度和影响力。 需要注意的是,虽然 AI 可以提供帮助,但最终的作品质量仍取决于作者的修改和完善。同时,不同的网络小说平台可能有不同的审核标准和版权政策,需要仔细了解和遵守。
2025-02-27
我是ai小白,该如何学习ai。并利用ai赚钱
以下是为 AI 小白提供的学习 AI 并利用其赚钱的建议: 一、学习 AI 1. 了解基本概念 阅读「」,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始学习之旅 参考「」中的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习 AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。 掌握提示词技巧,因其上手容易且实用。 4. 实践和尝试 理论学习后进行实践,巩固知识。 尝试使用各种产品制作作品,并在知识库分享实践成果。 5. 体验 AI 产品 与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解其工作原理和交互方式。 二、利用 AI 赚钱 目前利用 AI 赚钱的方式多样,例如: 1. 开发 AI 相关应用或服务,满足特定市场需求。 2. 利用 AI 提升工作效率,在现有工作中创造更多价值从而获得更高收入。 3. 为企业提供 AI 咨询和解决方案服务。 但要注意,成功利用 AI 赚钱需要深入的知识和技能积累,以及对市场需求的敏锐洞察。 此外,还可以参考《雪梅 May 的 AI 学习日记》,其中作者分享了适合纯小白的学习模式,即输入→模仿→自发创造。同时,学习资源大多免费开源,可减轻学习成本。另外,《【AI 学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)》中也有关于 AI 技术原理和相关概念的详细介绍,有助于建立知识框架。
2025-02-20
怎么用ai赚钱
以下是一些利用 AI 赚钱的方式和相关信息: 从 GPTs/GLMs 赚钱: 核心竞争力和护城河在于数据和服务上(定制化 Tools)。例如,像 WebPilot 的作者通过自己开发的搜索接口提供搜索服务接入 GPTs,或者像小红书写作专家的作者收集大量小红书数据和规则包装成 GPTs。但靠这种方式可能只能赚到一波红利的钱,并非长久之计。 利用以下 AI 工具创作赚钱: AI 研究工具:Claude、ChatGPT、Bing Chat、Perplexity 等。 图片处理:DallE、Leonardo、BlueWillow、Midjourney 等。 版权写作:Rytr、Copy AI、Wordtune、Writesonic 等。 设计:Canva、Clipdrop、Designify、Microsoft Designer 等。 网站搭建:10Web、Framer、Hostinger、Landingsite 等。 视频处理:Klap、Opus、Invideo、Heygen 等。 音频处理:Murf、LovoAI、Resemble、Eleven Labs 等。 SEO 优化:Alli AI、BlogSEO、Seona AI、Clearscope 等。 Logo 设计:Looka、LogoAI、Brandmark、Logomaster 等。 聊天机器人:Droxy、Chatbase、Voiceflow、Chatsimple 等。 自动化工具:Make、Zapier、Bardeen、Postman 等。
2025-02-12
AI怎么赚钱
以下是关于 AI 赚钱的一些分析和观点: 首先,对于 GPTs/GLMs 能否赚钱的问题,答案是能,但大多数人不能。以一个 AI 产品经理的角色复盘 2023 年的所见所闻所感来聊,从最俗气的角度“钱”出发,探讨 AI 赚钱(应用落地)这件事情。 在生成式 AI 方面,比如艺术创作,许多 AI 工具存在幻觉或处理请求时间长的问题。对于试图通过内容实现盈利的用户可能会更沮丧。为满足高级用户需求,预计许多公司将添加“专业版”套餐,如 ChatGPT 已做到的那样。 关于如何靠 GPTs/GLMs 赚钱,OpenAI 刚推出 GPTs 时,有人将其比作苹果时代的 AppStore。产品的核心竞争力和护城河在于数据和服务上(定制化 Tools),而非 Prompt。传统 SaaS 的能力会被碎片化并整合到各种 GPTs 里,OpenAI 成为真正的流量入口。例如,WebPilot 的作者通过自己开发的搜索接口提供搜索服务接入 GPTs,模仿者要么自己开发搜索服务,要么购买其 API 接口;小红书写作专家作者收集很多小红书数据和规则,通过 RAG 包装成 GPTs,模仿者得先搞到这些数据。也许能赚到红利的钱,但这不是长久赚钱的方法。
2025-02-10
利用deepseek写脚本短视频
以下是关于利用 DeepSeek 写脚本短视频的相关信息: 基于其他博主开源的视频生成工作流进行了功能优化,实现了视频全自动创建,并写了教程供参考。 功能方面,通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具包括 Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成)、飞书(消息)、飞书多维表格(字段捷径、自动化流程)。 大体路径为:通过 Coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频;发布 Coze 智能体到飞书多维表格;在多维表格中使用字段捷径,引用该智能体;在多维表格中创建自动化流程,推送消息给指定飞书用户。 此外,人们使用 DeepSeek 做了很多事情,例如脑爆活动方案、出会议纪要方案、本地搭超级 AI 助手、处理客户评论、分析总结复盘内容、生成专业软件使用过程、写小说框架、改简历、写论文、写小红书笔记、写周报、做设计头脑风暴、做网站等。 还有案例是让 DeepSeek 给海螺更大胆的想法,如特定的 Prompt 描述,结合海螺 AI 灵动自如的镜头运动,制作游戏恢弘场景,无需昂贵设备和团队,现在编剧“DeepSeek”+导演“你”+创作顾问“海螺 AI”,想象力是唯一边界。
2025-03-04
怎么利用大模型训练自己的机器人
利用大模型训练自己的机器人可以参考以下内容: OpenAI 通用人工智能(AGI)的计划显示,在互联网上所有的图像和视频数据上训练一个与人类大脑大小相当的 AI 模型,将足以处理复杂的机器人学任务。常识推理隐藏在视频和文本数据中,专注于文本的 GPT4 在常识推理上表现出色。Google 最近的例子展示了机器人学能力可从大型视觉/语言模型中学习,在语言和视觉训练基础上,只需最少的机器人学数据,视觉和文本任务的知识就能转移到机器人学任务上。特斯拉训练的“Optimus”通过人类示范学习抓取物体,若人类示范是先进机器人学性能所需的一切,在互联网上所有视频上训练的大模型肯定能实现惊人的机器人学性能。 梦飞提供了在自己的电脑上部署 COW 微信机器人项目的教程,程序在本地运行,若关掉窗口进程结束,想持续使用需保持窗口打开和运行。以 Windows10 系统为例,注册大模型可参考百炼首页:https://bailian.console.aliyun.com/ ,需更改"model"和添加"dashscope_api_key",获取 key 可参考视频教程。 张梦飞提供了从 LLM 大语言模型、知识库到微信机器人的全本地部署教程,部署大语言模型包括下载并安装 Ollama,根据电脑系统下载:https://ollama.com/download ,安装完成后将下方地址复制进浏览器中确认安装完成:http://127.0.0.1:11434/ 。下载 qwen2:0.5b 模型,Windows 电脑按 win+R 输入 cmd 回车,Mac 电脑通过 Command(⌘)+Space 键打开 Spotlight 搜索输入“Terminal”或“终端”,复制命令行粘贴回车等待下载完成。
2025-03-03
如何利用AI技术挣钱
利用 AI 技术挣钱的方式主要有以下几种: 1. 从 GPTs/GLMs 角度: 作为 AI 产品经理,以最俗气的“钱”的角度复盘 2023 年的所见所闻所感来探讨 AI 赚钱(应用落地)这件事。 参考 BeBeGPTs 收录的 GPTs 数据,但要注意数据可能存在少量错误和不完整。 2. 写作方面: 项目启动:确定目标客户群体,如大学生、职场人士、自媒体从业者等,并选择合适的 AI 写作工具。 准备阶段:学习并实践 AI 写作技术,构建团队。 商业模式构建:确定服务内容,如提供论文、报告、文案等直接写作服务,制定质量控制标准。 运营与推广:在淘宝等电商平台开设店铺,建立写作培训社群,通过社交媒体和线下活动进行品牌和社群建设,与其他团队合作。 项目优化与发展:持续关注 AI 技术进展,根据市场需求拓展新服务和产品,收集客户反馈优化服务。 3. 韦恩的“AI 应用”进阶: 变现方式:在公司给自己贴 AI 大神标签,在社交网络进行分享扩大影响力,承接项目开发。 二创方向:增加画板节点,结合公司 Logo 生成一系列公司主题的产品邮票,承接类似需求扩充工作流,修改提示词调整生图内容方向。 总之,技术很关键,创意更重要,好技术加上好创意才能成就好产品,祝您在 AI 应用之路越走越远,增加自己的收入。
2025-03-03
利用AI打造个人知识库
利用 AI 打造个人知识库可以通过以下方式实现: 1. 使用 GPT 打造个人知识库: 将大文本拆分成若干小文本块(chunk),通过 embeddings API 将小文本块转换成与语义相关的 embeddings 向量,并在向量储存库中保存这些向量和文本块作为问答的知识库。 当用户提出问题时,将问题转换成向量,与向量储存库中的向量比对,提取距离最小的几个向量对应的文本块,与问题组合成新的 prompt 发送给 GPT API。 例如对于“此文作者是谁?”的问题,可直观或通过比较 embeddings 向量得出关联度最高的文本块,如“本文作者:越山。xxxx。”“《反脆弱》作者塔勒布xxxx。”,最后发送给 GPT API 的问题类似于“此文作者是谁?从以下信息中获取答案:本文作者:越山。xxxx。《反脆弱》作者塔勒布xxxx。” 2. 搭建基于 GPT API 的定制化知识库: 涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互支持的 Token 有限,OpenAI 提供了 embedding API 解决方案。 Embeddings 是浮点数字的向量,两个向量之间的距离衡量关联性,小距离表示高关联度,大距离表示低关联度。 向量是用一串数字表示的量,在计算机科学中常用列表表示,向量间距离有多种计算方式,如欧几里得距离。 3. 小七姐提出的 AI 时代知识管理体系构建: 包括读书时看到有触动的文本作为书摘。 对书摘整理归纳、标记重点、打赏标签放入笔记系统,准备深度思考和实践。 基于笔记提到的 AI 对人的赋能模式展开深度实践,如通过 AI 信息杠杆迅速掌握相关知识。 基于实践生成自己的观点和决策,并打造成体系化的内容产品实现价值。 最终把碎片化知识在知识库中流转,从书摘变成体系化内容,把“别人说的话”变成“自己的智慧”。 希望以上内容能帮助您打造个人知识库。
2025-03-01
我想利用ai写一篇本科毕业论文,我该怎样使用?或者说有什么对ai的指令吗?
利用 AI 写本科毕业论文时,以下是一些相关的信息和示例供您参考: 有示例表明,如果向 LLM 提供关于个人背景的信息和指令,比如“根据以下关于我的信息,写一篇四段的大学申请论文:我来自西班牙巴塞罗那。尽管我的童年经历了一些创伤性事件,比如我 6 岁时父亲去世,但我仍然认为我有一个相当快乐的童年。在我的童年时期,我经常换学校,从公立学校到非常宗教的私立学校。我做过的最‘异国情调’的事情之一是在爱达荷州的双子瀑布与我的大家庭一起度过六年级。我很早就开始工作了。我的第一份工作是 13 岁时的英语老师。在那之后,以及在我的学习过程中,我做过老师、服务员,甚至建筑工人。”,LLM 可以为您生成论文。但需要注意的是,这并非提倡这种方式是道德的使用方式。 在教育领域也有相关例子,比如一位历史老师让 GPT 参与教学。通过不同的提示方式,GPT4 能产生差异较大的结果。例如,让 ChatGPT 扮演“一个经过训练、熟悉获奖研究生和本科生论文的高级语言模型”,并要求其从自我反思和大纲开始,生成的内容质量会更好。但随着学生在优化提示方面变得更擅长,在家完成写作作业时作弊会变得更容易。不过,让 LLM 进行角色扮演也使其成为有趣的教育工具,特别是作为历史模拟器。 需要强调的是,使用 AI 辅助撰写论文时,不能完全依赖其生成的内容,应遵守学术道德和规范,确保论文的原创性和学术诚信。
2025-02-28
利用大模型构建系统的工具
以下是关于利用大模型构建系统的工具的相关内容: 大模型的发展历程: 2017 年发布的 Attention Is All You Need 论文是起源。 2018 年,Google 提出 BERT,其创新性地采用双向预训练并行获取上下文语义信息和掩码语言建模,开创了预训练语言表示范式,参数规模为 110M 到 340M。 2018 年,OpenAI 提出 GPT,开创了仅使用自回归语言建模作为预训练目标而无需额外监督信号,展示了强大的语言生成能力,参数规模达 1750 亿。 2021 年,Meta 提出 Large LAnguage Model Approach(LLAMA),这是首个开源模型,为构建更大规模、更通用的语言模型提供了系统化的方法与工具,参数规模为十亿到千亿。 Inhai:Agentic Workflow:AI 重塑了我的工作流: 以 Kimi Chat 为例,它利用「网页搜索」工具在互联网上检索相关内容,并基于检索结果进行总结分析,给出结论。同时,PPT 中介绍了众多不同领域类型的工具,为大模型在获取、处理、呈现信息上做额外补充。 Planning:Agent 通过自行规划任务执行的工作流路径,面向简单或线性流程的运行。例如,先识别男孩姿势,再使用相关模型合成女孩图像,接着使用图像理解文本模型,最后语音合成输出。 Multiagent Collaboration:吴恩达通过开源项目 ChatDev 举例,可让大语言模型扮演不同角色相互协作,共同开发应用或复杂程序。 AI Agent 基本框架:OpenAI 的研究主管 Lilian Weng 提出“Agent=LLM+规划+记忆+工具使用”的基础架构,其中大模型 LLM 扮演 Agent 的“大脑”。规划包括子目标分解、反思与改进,将大型任务分解为较小可管理的子目标处理复杂的任务,反思和改进指对过去行动进行自我批评和自我反思,从错误中学习并改进未来步骤,提高最终结果质量。记忆用于存储信息。 开发:LangChain 应用开发指南 大模型的知识外挂 RAG: LangChain 是专注于大模型应用开发的平台,提供一系列组件和工具构建 RAG 应用: 数据加载器:从数据源加载数据并转换为文档对象,包含 page_content 和 metadata 属性。 文本分割器:将文档对象分割成多个较小的文档对象,方便后续检索和生成。 文本嵌入器:将文本转换为嵌入,用于衡量文本相似度实现检索。 向量存储器:存储和查询嵌入,通常使用索引技术加速检索。 检索器:根据文本查询返回相关文档对象,常见实现是向量存储器检索器。 聊天模型:基于大模型生成输出消息。 使用 LangChain 构建 RAG 应用的一般流程如下:(具体流程未给出)
2025-02-28