Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何让大模型输出结构化的数据

Answer

要让大模型输出结构化的数据,可以采取以下几种方法:

  1. 设计合理的 Prompt 工程:
    • 明确的待处理内容指引:在构建 Prompt 时,清晰地定义需要处理的文本,并使用标记框起来,让模型准确识别待处理内容范围。
    • 提供明确字段定义:具体化每个字段的名称、用途及要求,为模型提供清晰的提取方向。
    • 异常处理:设置异常处理原则,如规定缺失数据使用默认值填充,特殊数据类型符合标准格式,确保模型输出的完整性和一致性。
    • 要求结构化输出:指示模型以结构化格式(如 JSON)输出数据,便于后续处理和系统集成。
  2. 搭建工作流:
    • 模型选择:根据需求选择合适的大模型,如默认的豆包 32k 或更大的 kimi128k 等。
    • 配置参数:进行批处理,输入相关参数,如文章内容正文、url 链接和标题等。
    • 提示词输入:将相关内容一起送给大模型进行总结,并拼接成特定格式输出。
    • 汇总格式化最终输出内容:使用代码节点对大模型输出的内容进行最终格式化。
  3. 探索 JSON Output 应用:
    • 无模板的 Excel 导入:改变传统数据导入方式,通过 Prompt 读取想要的数据列。
    • AI 审核员:在人审环节前加 AI 审,提供相关知识和少量示例,输出简单结果。
    • 分类器:一个 Prompt 即可完成分类任务。
    • 应用于其它业务场景:如在一些业务场景中落地,提高效率。

但需要注意的是,过去大模型还不太成熟,应用过程可能会有一些困难。

Content generated by AI large model, please carefully verify (powered by aily)

References

大模型招投标文件关键数据提取方案

在使用大语言模型(LLM,如GPT)对预处理后的文本进行关键数据提取时,Prompt工程是方案的核心。Prompt工程的目标是设计合理的提示词,以最大化LLM的性能,从复杂的文本中准确、有效地提取出关键信息。[heading4]Prompt策略[content]策略01:明确的待处理内容指引在构建Prompt时,明确告诉模型它需要处理的内容是关键步骤之一。应清晰地定义需要处理的文本,并使用标记将其框起来。例如:通过这种方式,模型能够准确识别待处理的内容范围,并从中提取需要的信息。策略02:提供明确字段定义这是Prompt的关键部分,字段定义明确了需要提取的信息类型,以及每个字段应当填入的内容。每个字段的名称、用途及要求都要具体化,让模型有明确的提取方向。字段定义为LLM提供了标准,使它在解析文本时能够准确地提取所需信息并填充到对应字段。例如:这种方式,Prompt可以为LLM提供清晰的提取标准和目标。策略03:异常处理为确保LLM不输出多余信息,并在面对缺失或不明确的数据时进行合理处理,必须设置一些异常处理原则。例如,**如果某些字段信息在文本中缺失或未识别,Prompt应规定使用默认值(如“无”)填充。同时,针对日期、金额等特殊数据类型,应明确要求LLM符合标准格式(如YYYYMMDDHHMMSS或保留金额单位)。这一规则可以确保模型输出的完整性和一致性,不会因为部分数据缺失而导致结果异常。策略04:要求结构化输出为了便于后续处理和系统集成,Prompt应指示LLM以结构化的格式输出数据。结构化输出便于自动化处理,常见的格式如JSON,能够确保每个字段的内容都清晰定义,数据可被轻松解析和使用。例如,要求模型输出的JSON格式:

【拔刀刘】自动总结公众号内容,定时推送到微信(附完整实操教程)

使用大模型节点,批量总结文章内容模型选择:默认的豆包32k应该就够用,怕上下文长度不够的话,可以选择更大的模型,比如kimi128k配置参数:选择批处理批处理输入参数有两个:第9步中读取的文章内容正文、第8步代码处理后的url链接和标题下方的输入参数,有四个,如图所示,都选择该大模型节点输出的内容:content正文、title标题、url文章链接、author作者提示词输入如下内容,将这四部分内容一起送给大模型进行总结,最终拼接成markdown格式输出:[heading3]11、汇总格式化最终输出内容[content]使用代码节点,将大模型输出的内容进行最终输出的格式化。参数配置:输入:选择上一步输出的outputList点击「在IDE中编辑」,选择『Python』,输入如下代码:配置一下输出项,输出为result[heading3]12、公众号总结推送到微信[content]这块的节点是根据Server酱的API文档,自己写的插件,关于自建插件这个环节,请参看「相关资料」,输出配置可以参考下发截图。主要实现功能就是把上一步格式化好的内容,推送到用户的微信上。title:汇总公众号总结页面的标题,参数值选择「输入」,起个名字desp:页面主体内容,选择上一步最终输出内容key:引用开始节点的key

AI Agent产品经理血泪史(一):一年来我摸过的那些石头【Tools篇】

去年同期有个段子,说GPT-4能自己越狱。这事情当时被那些自媒体们越传越邪乎,但事实上,这事光靠大模型自己,是不现实的。因为它,真的没有办法直接触碰到真实世界,毕竟大模型连现在是何年何月何日都不知道。接着上面的例子讲其实只要能够让大模型按照我们想要的定义输出结构化的信息,我们就可以去做很多有趣的事情。JSON就是一个非常不错的选择我们基于这个思路也做了很多的探索,比如:1、无模板的Excel导入改变传统的数据导入方式,再也不用写复杂的业务逻辑了。只需要一个Prompt去读取想要的数据列就可以2、AI审核员在原先人审的环节前加一个AI审,给一些knowhow和fewshot,输出yes和no还是很简单的。3、分类器分类器的场景很多。以前搞个分类,大小得训练个模型吧,那个年代可真是算法的黄金年代啊。嗯,现在一个prompt就搞定了。4、其它一些业务场景落地好用,真的太好用了!但那个时候的大模型,还太不成熟了,上面的路子能通,但走起来磕磕碰碰。

Others are asking
怎么让AI识别对话,并生成结构化数据存储到我的软件系统里
要让 AI 识别对话并生成结构化数据存储到软件系统里,可以参考以下方法: 1. 基于结构化数据来 RAG:如果原始数据本身就是结构化、标签化的,不必将这部分数据做向量化。结构化数据的特点是特征和属性明确,可用有限标签集描述,能用标准查询语言检索。以餐饮生活助手为例,流程包括用户提问、LLM 提取核心信息并形成标准查询、查询结构化数据、LLM 整合回复。 2. 利用 Coze 平台设计 AI 机器人:创建好 Bot 后,从“个人空间”入口找到机器人,进行“编排”设计。Coze 平台常用的概念和功能包括提示词(设定 Bot 身份和目标)、插件(通过 API 连接集成服务)、工作流(设计多步骤任务)、触发器(创建定时任务)、记忆库(保留对话细节,支持外部知识库)、变量(保存用户个人信息)、数据库(存储和管理结构化数据)、长期记忆(总结聊天对话内容)。设计 Bot 时要先确定目的,比如“AI 前线”Bot 的目的是作为 AI 学习助手,帮助职场专业人士提升在人工智能领域的知识和技能,并提供高效站内信息检索服务。 注:Coze 官方使用指南见链接:https://www.coze.cn/docs/guides/welcome ,遇到疑问也可查阅该指南。
2025-02-18
生成一个完整的结构化提示词
以下是为您生成的关于结构化提示词的相关内容: 为 AI 视频生成设计的结构化提示词模板包含镜头语言、主体、细节、氛围等要素,适合生成具有电影感的大场景视频。完整提示词结构示例为:主题风格+镜头运动+主体描述+动态细节+背景环境+光影色调+情绪氛围(可附加技术参数:如时长、运镜速度、镜头焦距等) 样例驱动的渐进式引导法是让 AI 主动读懂您的想法。以 1 2 个正向样例作为起点,通过与 AI 的多轮对话,引导 AI 从样例中提炼隐含的生成要求,逐步完善提示词。例如教 AI 仿写爆文时,只需提供优秀样例,AI 会自动分析理解精髓并生成符合自身运作方式的指令。 其核心步骤包括: 1. 构建初始样例:创建符合期望输出的具体例子。 2. 评估样例,尝试提炼模板:让 AI 分析理解样例的结构和关键元素,并以专家视角优化样例。 3. 固定模板,强化要求说明:基于对初始样例的理解,让 AI 提出通用模板,通过测试 Prompt 验证可靠性。 4. 生成结构化提示词:将优化后的模板转化为结构化的提示词,用户适当调整并确认后投入使用。 在这个过程中,用户的角色主要是: 1. 提供尽可能与自己预期一致的初始样例。 2. 判断 AI 的输出质量。 3. 反馈改进建议,提供行动引导。 这种方法的优势在于简化了提示词设计过程,让非专业用户也能创建高质量的 Prompt。通过引导 AI 进行分析和优化,用户可以专注于判断输出质量和提供反馈,而不需要深入理解复杂的 Prompt 工程技巧。接下来,将通过一个实战案例“知识闪卡 AI”来逐步分享运用过程,帮助您直观了解如何使用该方法设计高质量的提示词。
2025-02-18
请把机器学习相关和大模型相关的知识点形成一个结构化的知识树,包括但是不限于算法、框架、工具、注意力机制等
以下是一个关于机器学习和大模型的结构化知识树: 一、基础数学知识 1. 线性代数 2. 概率论 3. 优化理论 二、机器学习基础 1. 监督学习 分类 回归 2. 无监督学习 聚类 3. 强化学习 三、深度学习 1. 神经网络 卷积网络 递归网络 注意力机制 2. Transformer 模型 四、自然语言处理 1. 语言模型 2. 文本分类 3. 机器翻译 五、计算机视觉 1. 图像分类 2. 目标检测 3. 语义分割 六、前沿领域 1. 大模型 2. 多模态 AI 3. 自监督学习 4. 小样本学习 七、工具与框架 1. TensorFlow 2. PyTorch 八、应用领域 1. 自然语言处理 2. 计算机视觉 3. 推荐系统 九、数据处理 1. 数据采集 2. 数据清洗 3. 特征工程 十、模型部署 1. 模型优化 2. 模型服务 十一、科研实践 1. 论文阅读 2. 模型实现 3. 实验设计 十二、行业实践 1. 项目实战 2. 案例分析
2025-02-11
AI提示词结构化和普通的提示词相比好处是什么
AI 提示词结构化与普通提示词相比具有以下好处: 1. 降低沟通难度:使与模型的交互更加清晰和易于理解。 2. 提高结果准确度:能够更精准地引导模型生成符合预期的输出。 3. 增强可读性和组织性:基于 Markdown 语法和角色法框架的结构化提示词,让复杂任务的分解更加直观。 然而,结构化提示词也存在一定的局限性,比如限制了更多可能性,不太适合解决过于主观、个人情绪的问题,也未必能完全搞定所有需求。在提示词的发展过程中,经历了从依赖 OpenAI 官方的基本技巧,到各种提示词框架的出现,再到明确任务目标、采用角色扮演方法、进行结构化提示词编写、测试和迭代,以及封装为智能体等阶段。
2025-02-10
未来类似deepseek这种推理大模型普及,结构化提示词是不是会成为过时的知识
未来类似 DeepSeek 这种推理大模型普及,结构化提示词不会成为过时的知识。 虽然未来模型可能在某些情况下无需提示词,仅通过简单对话就能理解用户意图,但基础的如何与模型对话的认知仍需具备,这就涉及提示词。例如李继刚老师的结构化提示词能让模型给出更优质、完整的答案。操作过程中有很多有意思的提示词,如“酷老师”“抬杠高手”等,近期提示词有升级,李继刚老师将其玩到新高度,cloud 等大语言模型可直接显示编译结果内容。输入特定提示词可生成卡片,小创业项目可利用并改变提示词形成独到见解或小应用。 从工程视角看,AI 提示词在游戏创作及优化中也有应用。此外,提示工程的本质是提供足够的信息来明确指定要求,即使模型在理解上下文方面变得更好,能够清晰地陈述目标始终很重要,仍需要明确预期结果的能力和技巧。未来可能会更多地利用提示工程来让模型为我们生成、调整提示词,对于没有太多提示工程经验的人来说,提示词生成器可以帮助他们。未来的提示可能更像是一种自省,模型会尝试理解用户真正在思考什么、需要什么。 在 R1 时代,使用 AI 提示词的关键在于提供足够的背景信息,而非复杂的结构。简单大白话仍然有效,但信息量不足则难以得到理想结果。示例和框架可帮助理清思路,但最终影响在于用户的思考和表达。利用乔哈里视窗分析信息需求,避免过度指令化,让 AI 自由思考,从而激发更高的创意和效果。“有用的不是技巧,而是你的思考!”
2025-02-07
我在一周前的文章[1]里说对 DeepSeek-R1 只需要说大白话,但在三天前的文章[2]里又用了看起来还挺复杂的结构化提示词。有伙伴问我到底咋回事。这就来解释下喽。
以下是关于 DeepSeekR1 提示词的相关信息: 历史更新: 字节跳动推出新技术 OmniHuman,利用单张图片和音频生成生动视频。 DeepSeek 的出现标志着算力效率拐点显现,其优化算法架构提升算力利用效率,AI 基础大模型参数量迎来拐点,2025 年是算法变革元年,其训练过程聚焦强化学习提升推理能力。 提示词方法论: 核心原理认知:包括多模态理解、动态上下文、任务适应性等 AI 特性定位,以及采用意图识别+内容生成双通道处理等系统响应机制。 基础指令框架:包括四要素模板、格式控制语法等。 进阶控制技巧:如思维链引导、知识库调用、多模态输出。 高级调试策略:包括模糊指令优化、迭代优化法。 行业应用案例:涵盖技术开发场景、商业分析场景。 异常处理方案:如处理信息幻觉、格式偏离、深度不足等情况。 效能监测指标:包括首次响应准确率、多轮对话效率、复杂任务分解等。 在 R1 时代,使用 AI 提示词关键在于提供足够背景信息,简单大白话有效但信息量不足难达理想结果,示例和框架可助理清思路,最终影响在于思考和表达,利用乔哈里视窗分析信息需求,避免过度指令化,让 AI 自由思考以激发更高创意和效果。
2025-02-07
如何用即梦输出纯色背景图
要使用即梦输出纯色背景图,您可以参考以下步骤: 1. 在即梦图片生成界面中导入参考图,参考选项为参考轮廓边缘,生图模型选择图片 2.0。 2. 输入提示词生成图片,生成多次后选择高清放大。提示词可以包括角色、细节描述、场景、风格材质等,例如:可爱的拟人小鹿角色,米白色鹿角,戴着时尚耳机,穿着红色唐装,衣服中国圆环纹理,喜气洋洋,充满春节过年的氛围。迪士尼皮克斯工作室风格的肖像摄影,色调柔和,模型展示有精细的光泽,白色干净背景,3D 渲染,柔焦 C4D 渲染风格,Blender,知识产权风格,最佳画质,8K,超级详细,简洁,可爱。 另外,关于生成纯色背景图,还有其他相关信息供您参考: 爆肝博主 ZHO 的更新记录中提到,利用 Playground v2.5 纯色背景生成,加上 BRIA RMBG 去除背景,然后再接上文字合成节点,就能直接出海报。第一阶段生成的图是透明背景的 PNG 格式,然后再连上背景生成作为第二阶段,这样可以简单平替还没公布代码的分图层模型 LayerDiffusion。 相关使用插件包括: 图像选择:https://github.com/chrisgoringe/cgimagepicker 背景去除:https://github.com/ZHOZHOZHO/ComfyUIBRIA_AIRMBG 文字合成:https://github.com/ZHOZHOZHO/ComfyUIText_ImageComposite 项目地址:https://github.com/layerdiffusion/sdforgelayerdiffusion 模型:https://huggingface.co/LayerDiffusion/layerdiffusionv1
2025-02-27
大模型输出和节点输出配置不匹配怎么解决
当大模型输出和节点输出配置不匹配时,您可以参考以下要点来解决: 1. 输入与输出的变量名称可自定义,按照自身习惯设定,以便识别字段含义。 2. 输入方面,因为取得的是开始节点中用户输入的{{BOT_USER_INPUT}},所以可直接选择引用。 3. 在提示词区域,由于需要 LLM 根据输入信息处理,所以需要两个双花括号,写明使用的输入项参数名,如{{input}}。 4. 输出方面,有几项子内容需要生成,就设置几项: 为了让大模型理解最终输出的形式要求,需要在用户提示词最后,添加输出格式段落,描述每个变量名称、输出内容、输出格式。 务必注意,变量名称、对应的输出内容、输出格式一定要前后完全一致,否则会输出失败,这一点很容易踩坑。 另外,虽然可以用大模型来实现变量类型的转换,比如选择“豆包·工具调用”,在大模型的高级设置中尽量把随机性调到最低,使其更严格遵循提示词。匹配好输入输出的名称与类型,提示词中注意用{{}}引用输入变量。但大模型节点效果不稳定,运行速度相对较慢,还可能带来额外花费。尤其当输出类型为 String 时,大模型容易画蛇添足地加上一些说明性文字,即使优化提示词去限制,也不一定每次都能限制住。一旦出现偏差,哪怕只是多一个字符,下游节点就可能无法正常运行,且对此调整手段有限。所以如果没有“代码恐惧症”,建议使用代码节点来实现。
2025-02-26
怎样分析一篇PDF文档中的信息并创建问答对,将问答对按行输出到多维表格?
以下是分析一篇 PDF 文档中的信息并创建问答对,按行输出到多维表格的一些要点: 1. 文档格式规范: Markdown:建议优先使用 Markdown 格式。 Word:优先采用 2007 版或之后的 Word 格式,使用全局样式,统一使用全局标题和段落样式,避免字符样式,使用段落样式保持文档格式一致性。 PDF:避免使用图片,将图像中的重要信息转录成文本并按规范组织,不包含嵌入压缩文件,保持文档单栏布局。 CSV:避免使用图片,不嵌入压缩文件,表头作为第一行。 2. 问答对内容规范: 推荐保存 FAQ(常见问题解答)中的问答对,问题表述清晰明确,答案简洁易懂,使用用户熟悉的术语,突出关键词,以提高检索召回准确度。 不推荐在 CSV 中上传复杂的关系型数据表,可能导致数据处理时间超长和失败。 希望这些要点对您有所帮助。若您想深入了解 RAG,可以进入知识库专区:
2025-02-25
我想通过在sciencedirect上输入关键词后,让AI帮助我整理该词条下文献的内容,输出当今的研究现状、现存问题、解决方法
目前在 ScienceDirect 上,还没有直接通过输入关键词让 AI 为您整理文献内容并输出研究现状、现存问题及解决方法的成熟功能。但您可以利用一些 AI 工具,如文献分析类的软件,先将从 ScienceDirect 下载的文献导入其中,然后让其协助您进行分析和总结。不过,在使用任何工具时,都需要您自己对结果进行评估和筛选,以确保准确性和可靠性。
2025-02-25
我想我的ai深度思考,他现在给我都太浅显,输出字符也有限制,给我推荐一个解决办法
以下是一些可能有助于解决您的 AI 深度思考和输出字符限制问题的办法: 1. 对于输出字符限制,如果使用的是 GPT3.5 等模型,可以将汉字数大致换算成 token 数,比如简单算法是一个 token 大概是 0.5 个汉字,或者每个汉字耗费 2 2.5 个 token。例如 1000 字大约是 2000 2500 个 token 左右。 2. 可以使用 OpenAI 的 Tokenizer 工具来计算 token 数,以便更准确地控制输出长度。 3. 在编写用户提示词时,注重写法。例如最简单的方法是模仿特定风格输出标题内容,要用特殊字符区分相关内容,包含示例、凝视者等内容,输出包含标题和正文。还可以用少量样本提示(两个样本),并试运行看结果。 4. 对于提高 AI 深度思考能力,可以参考一些相关的最佳实践资料,深入了解模型处理文本的原理和机制,例如 GPT 系列模型通过使用 tokens 来处理文本,模型能理解这些 tokens 之间的统计关系。
2025-02-25
有什么支持多模态输入和输出的C端产品
以下是一些支持多模态输入和输出的 C 端产品: 1. 宝玉日报:支持文本或音频输入,输出可为文本、音频或混合数据。价格方面,1 小时音频输入成本为$12.8,输出为$25.6。相关链接: 2. Imagic 发布的 AI 驱动的无代码应用构建工具:支持多模态输入输出,包括文本、图片、3D 和视频。创建出来的应用立刻就能使用和发布。相关链接:https://get.imagica.ai/s 3. 面壁智能推出的 MiniCPMo 2.6:具有多模态能力,如 OCR、视频理解、连续视频与音频流处理,实时直播与多模态上下文理解,支持 30 多种语言的文本和语音输入输出。资源链接: 4. 世界首个支持手持产品展示的 AI 数字人 Product Avatar:上传产品图片,数字人即可手持产品进行口播展示,支持多语言,覆盖 28 种语言,可快速生成产品宣传视频。相关链接:
2025-02-21
基础搭建的知识库效果很差,模型答案的幻觉很严重,我应该怎么改进?(Deepseek调用api接入本地faiss的rag库)
以下是一些改进基础搭建的知识库效果、减轻模型答案幻觉问题的建议: 1. 更换大模型:例如从 ChatGLM26B 替换成 baichuan213b,针对您的场景,后者的性能可能提升一倍左右。 2. 更换 embedding 模型:将 embedding 模型从 LangChain Chatchat 默认的 m3ebase 替换为 bgelargezh,后者可能更优。 3. 测试不同 Top k 的值:比较 Top 5、Top 10、Top 15 的结果,发现 Top 10 时效果可能最优。 4. 对文档名称进行处理:人工对文件进行重命名,上传相同文件构建知识库,同时在构建知识库时勾选【开启中文标题加强】选项,虽然重命名文件对结果的提升效果不明显,但勾选该选项后,回答的无关信息可能减少,效果有所提升。 RAG(RetrievalAugmented Generation)即检索增强生成,由检索器和生成器两部分组成。检索器从外部知识中快速找到与问题相关的信息,生成器利用这些信息制作精确连贯的答案,适合处理需要广泛知识的任务。 在大模型中,向量可想象成空间中的点位,每个词或短语对应一个点。系统通过查看词在虚拟空间中点的位置,寻找直线距离最近的点来检索语义上接近的词语或信息。理解向量后,当收到一个对话时,RAG 的完整工作流程为:检索器从外部知识中检索相关信息,生成器利用这些信息生成答案。 要优化幻觉问题和提高准确性,需要了解从“问题输入”到“得到回复”的过程,针对每个环节逐个调优,以达到最佳效果。
2025-02-27
大模型调用tools
目前,绝大多数小型本地开源大语言模型以及部分商用大模型接口通常不支持稳定的 tool calling 功能。现有的解决方案多为微调 LLM,但会浪费大量时间和算力。有一种新的方法,即仅使用提示词工程和精巧的代码设计,就能让 LLM 获得稳定的 tool calling 能力。 通过多个不具备 tool calling 能力的 LLM 进行实验,结果显示所有模型都能成功执行调用工具这一步,并正确输出能被正则表达式抓取的字典。但在使用 python 解释器任务上,ollama 量化版本的 llama38b 和 mistral7b 模型受限于代码生成水平,不能很好地输出正确代码,导致无法稳定完成计算任务。在搜索知识图谱任务上,所有模型都能让工具返回相关知识,但 ollama 量化版本的 qwen27b 和 mistral7b 模型受限于逻辑理解能力,不能稳定理解知识图谱中多个关系边之间的逻辑关系。实验证明提示词工程可让 LLM 获得 tool calling 能力,但能否利用工具返回的信息解决用户问题,仍受 LLM 自身智能水平限制,较大的模型(如 gemma29b)对工具返回结果的利用能力更稳定。 在大模型请求中,最大的两个变量是 Messages 和 Tools。Messages 里放的是 sys prompt、memory、user query;Tools 里放的是一些能力的 Json Scheme,两者组合形成整个完全的 Prompt。Agent 应用开发的本质是动态 Prompt 拼接,通过工程化手段将业务需求转述成新的 prompt。短期记忆是 messages 里的历史 QA 对,长期记忆是 summary 之后的文本再塞回 system prompt。RAG 是向量相似性检索,可放在 system prompt 里或通过 tools 触发检索。Action 是触发 tool_calls 标记,进入请求循环,拿模型生成的请求参数进行 API request,再把结果返回给大模型进行交互,没有 tool_calls 标记则循环结束。Multi Agents 则是更换 system prompt 和 tools。当然,想做深做好肯定还有很多坑需要踩。
2025-02-27
个人有没有必要本地部署deepseek模型
个人是否有必要本地部署 DeepSeek 模型取决于多种因素。 DeepSeek 模型的权重文件开源,可本地部署。其公司名为“深度求索”,网页和手机应用目前免费,但 API 调用收费。 在云端模型部署方面,有实操演示和使用方法讲解,包括登录 Pad 控制台、选择框架、资源、出价等,还介绍了查看部署状态和日志的方法,以及用 Postman 在线调试模型获取名称及后续使用方式。 在模型部署相关内容中,部署时使用 V1 chat completion s 接口,要注意模型名称、大小写等。同时布置了作业为成功部署大语言模型并调试,提交带钉钉昵称的截图。还讲解了 API 调用方法、费用、停止服务方式等,提醒注意保密 API key,若竞不到价可加价尝试进行本地蒸馏模型部署。 模型蒸馏方面,先介绍云平台部署情况,接着讲解模型蒸馏概念、方式,阐述其应用场景及修复模型幻觉的作用,并进行了实操演示。 综合来看,如果您对数据隐私有较高要求、需要定制化的模型服务、有足够的技术能力和资源来进行本地部署和维护,或者在网络不稳定的情况下使用,那么本地部署可能是有必要的。但如果您的需求相对简单,且不具备相关技术条件和资源,使用云端服务可能更为便捷。
2025-02-27
行业大模型构建
以下是关于行业大模型构建的相关信息: 优秀模型案例介绍: SuperCLUE2.0 是通用大模型综合性测评基准 SuperCLUE1.0 的能力延展,融合行业场景属性和大模型落地特点,为行业应用及开发者构建评估框架,促进大模型供需两侧的进一步对齐。 SuperCLUE 持续构建行业测评基准,包括已发布的汽车行业测评基准,以及筹备中的金融、教育、娱乐、手机、政务、医疗等行业测评基准。 SuperCLUE 持续构建专项测评基准,已发布的有 Safety 安全测评基准、Agent 智能体测评基准,筹备中的有个性化中文测评基准、角色扮演测评基准、中文多模态测评基准、RAG 检索增强测评基准、办公场景测评基准等。 优化路径: 广义上的大模型优化包括完整训练一个大模型,但从策略上建议先从提示词工程到微调开始,因为涉及大模型训练成本极高。在分析出问题所在后,可按需选用或综合运用缺失知识用 RAG、准确度或模式遵循度不足用微调等技术进行性能优化。 国内大模型落地情况: Gartner 预测到 2028 年至少有 15%的日常工作决策将由代理型 AI(AI 智能体)自主做出。 2024 年被称为国内大模型落地元年,“百模大战”后,国内大模型行业主要玩家包括百度、阿里、字节等科技大厂和创业“AI 六小虎”。 2024 年 1 至 11 月,国内大模型中标项目数量和金额大幅增长,中标项目共 728 个,是 2023 年全年的 3.6 倍;中标金额 17.1 亿元,是 2023 年全年的 2.6 倍。中标项目数前五的行业分别是运营商、能源、教育、政务、金融。 厂商方面,百度以 40 个中标项目数、2.74 亿元的中标金额排名所有厂商之首,科大讯飞居第二。在金融行业,百度也以 14 个中标数量、3734.4 万元中标金额排名第一,科大讯飞居第二。
2025-02-27
如何用AI构建政务模型
以下是关于如何用 AI 构建政务模型的相关信息: 行业、学术界、研究组织和全球合作伙伴正在寻找解决基础模型监管相关挑战的方法。例如,基础模型的开发者正在探索将对齐理论嵌入模型的方式,政府需要与 AI 研究社区密切合作,利用研究见解并完善监管框架。 英国致力于提升在基础模型方面的能力。基础模型是一种新兴的通用 AI 类型,训练数据量大,能适应多种任务,其快速发展给政府监管带来新挑战。 需建立一个中央职能,支持单个监管机构的视野扫描活动,以实现可适应、协作和值得信赖的监管机制。该职能有助于建立一个能适应新兴趋势、召集合作伙伴共同识别趋势,并确保监管框架能应对新兴趋势的监管制度。 要确保与国际监管框架的互操作性,包括监测英国原则与国际监管方法、保证和/或风险管理以及技术标准之间的一致性,支持跨境协调与合作。此职能对于实现促进创新的监管制度至关重要,能确保英国创新者可进行国际交易,英国公司能吸引海外投资。
2025-02-27
企业建立私有大模型时候,采用什么工具进行RAG,高效实习企业知识文档、表格和pdf图纸的向量化
企业建立私有大模型进行 RAG 并实现企业知识文档、表格和 PDF 图纸向量化时,可参考以下工具和方法: 1. 本地部署资讯问答机器人: 导入依赖库,如 feedparse 用于解析 RSS 订阅源,ollama 用于在 Python 程序中跑大模型(使用前需确保 ollama 服务已开启并下载好模型)。 从订阅源获取内容,通过专门的文本拆分器将长文本拆分成较小的块,并附带相关元数据,最终合并成列表返回。 为文档内容生成向量,可使用文本向量模型 bgem3,从 hf 下载好模型后,假设放置在某个路径 /path/to/bgem3,通过函数利用 FAISS 创建高效的向量存储。 2. 开发:LangChain 应用开发指南 大模型的知识外挂 RAG 加载数据,根据数据源类型选择合适的数据加载器,如网页可使用 WebBaseLoader。 将文档对象分割成较小的对象,根据文本特点选择合适的文本分割器,如博客文章可用 RecursiveCharacterTextSplitter。 将文档对象转换为嵌入并存储到向量存储器中,根据嵌入质量和速度选择合适的文本嵌入器和向量存储器,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 创建检索器,使用向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数创建检索器对象。 创建聊天模型,根据性能和成本选择合适的聊天模型,如 OpenAI 的 GPT3 模型。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-02-27
构建项目 ,如何通过ai生成可视化数据报表,设计方案
以下是一个通过 AI 生成可视化数据报表的设计方案: 1. 理解需求:明确查询要求,例如适应特定尺寸(如宽 1734px、高 1071px)的 TSX 代码,确保生成的组件符合尺寸要求,避免出现滚动条。 2. 生成静态代码:创建一个静态的 React 组件,将所有数据和组件进行硬编码。 3. 实现数据可视化:构建一个复杂的数据可视化平台,支持多种图表类型、实时数据更新、自定义仪表板和数据钻取功能。 4. 设计用户界面:为复杂的数据可视化平台编写 TSX 代码,界面包括多个图表、定制仪表板和实时数据更新,尺寸为宽 1734px 和高 1071px。 5. 定义 React 组件:定义一个用于渲染主界面的 React 组件,包括网格布局、图表组件、导航 UI 组件、按钮和输入字段等,并加入模拟实时更新和自定义仪表板的开关和切换等组件。 6. 规划 UI 结构:设计包含头部、侧边栏和主内容区的 UI 结构,主内容区展示多个图表,并考虑自定义控制。 7. 探索图标资源:从 'lucidereact' 提取图标,如主页、用户和搜索等,使界面更加直观和易用。
2025-02-27
一键生成数据分析报告
以下是关于一键生成数据分析报告的相关内容: 舆情管理大师汽车 bot 小队: 专业版采集:最低成本获取专业级数据,不改变搜索习惯,适配任何业务,约束大模型采集范围,节省人工判断和处理数据时间,用于 Bot 调取数据、员工跟进数据源,功能设计可一劳永逸采集大量数据,适用于主体需要长期监控的业务(车型),主、副关键词组合搜索提高采集全面性,适合表格导入批量采集等场景。 一键报告:包括车型维度报告、事件维度报告,深度融合 coze 与飞书,构建高效数据流转体系,采集结果实时更新,数据入表,智能总结链接内容、打分辅助判断,关键信息一目了然,确保信息时效性,快速响应与跟进提升效率,视频直转文字,提炼关键内容用于复审,简化人工筛选过程,大模型对每条舆情打分,实现自动化打标签。 Claude 官方提示词(中文版含 API Prompt): 公司内情员:从冗长报告中提炼关键信息,识别风险,总结成备忘录。 网站大师:根据用户需求一键生成单页网站,以 HTML 文件形式交付,嵌入 JavaScript 和 CSS,设计应具有视觉吸引力、响应性和用户友好性。 Excel 公式大神:根据用户描述的计算或数据操作创建 Excel 公式,收集编写公式所需信息,提供详细解释和分解公式组成部分。 营销:定制营销报告: 提问模板: 根据不同来源数据生成详细报告分别汇报给下属、跨部门平级和领导。 根据数据回答特定问题并给出结论与图表,如最近一个季度销售趋势及影响因素、客户反馈与营销策略效果、营销活动投资回报率及优化方向。 根据数据报表提炼 3 个重要结论汇报给领导。 步骤: 明确数据分析目标,如理解业务、优化业务或预测未来。 收集整理与清洗相关数据,包括销售数据、客户反馈、财务报告等,通过多种方式收集并做简单清洗。 让 ChatGPT 学习相关数据含义和用法,输入不同来源数据让其理解。 进行数据分析给出重要结论,包括提高销售额和市场份额的策略和活动、影响客户满意度和忠诚度的因素、影响财务报告的因素等。 根据汇报对象身份进行可视化调整,报告可包括销售趋势、客户分析、竞争分析、市场细分、营销效果评估等方面信息,针对不同身份的人报告有所不同。
2025-02-26
给我一些关于数据驱动的免费的优质的课程
以下是为您找到的关于数据驱动的免费优质课程相关信息: 一、数字营销方面 1. 2025 年数字营销十大趋势 Bridging the AI skills gap:具备 AI 技能的团队可以制定更加精准、数据驱动的营销策略,提高效率和效果,使品牌在快速适应市场变化和消费者需求方面具备优势。 Advanced Personalization:借助 AI,营销人员可以实时分析消费者行为,从而提供高度个性化的体验,提升客户参与度,加强品牌忠诚度。 Resource Optimization:通过培训现有员工而不是依赖外部招聘,公司可以最大化利用内部资源,降低招聘成本,并为 AI 驱动的项目建立可持续的基础。 许多公司正在投资于 AI 培训项目,以提升其营销团队的技能。例如,Google 提供免费的 AI 和机器学习认证课程,而像 IBM 这样的公司为员工提供高级 AI 培训和导师项目。这些项目涵盖了数据分析、AI 驱动的客户细分和预测建模等关键技能,帮助公司在不断发展的数字领域保持竞争力。 二、智能导购方面 智能导购的 100 个创意方向中的数据驱动场景(20 个方向): 1. 用户生命周期价值分析:预测客户长期贡献并制定维护策略。 2. 关联购买推荐:分析历史订单推荐互补商品(如包包+丝巾)。 3. 社交媒体舆情分析:抓取小红书/微博数据生成品牌健康报告。 4. 客户分群策略:按消费频率、客单价等维度自动划分群体。 5. 促销效果模拟器:预测不同折扣方案对利润的影响。 6. 天气关联销售预测:结合天气数据推荐应季商品(如雨天推伞具)。 7. 门店选址分析:通过人流、竞品分布数据推荐新店位置。 8. 客户旅程地图:可视化用户从认知到复购的全链路行为。 9. A/B 测试自动化:自动分配流量并对比页面转化率。 10. 实时销售看板:整合多渠道数据生成动态业绩仪表盘。 11. 会员续费预测:通过行为数据预测会员卡续费概率。 12. 商品评论情感分析:从评价中提取用户满意度与改进点。 13. 滞销品组合促销:捆绑低动销率商品提升整体销量。 14. 客户等待时间优化:通过排队数据调整导购资源配置。 15. 个性化折扣券:根据用户偏好发放差异化优惠券。 16. 新品接受度预测:通过历史数据预测新品上市成功率。 17. 流失客户召回:自动触发短信/邮件推送挽回策略。 18. 供应链风险预警:监控原材料价格波动触发备选方案。 19. 跨渠道库存同步:实现官网、门店、仓库库存实时共享。 20. 客户反馈聚类分析:自动归类投诉建议并分配处理部门。
2025-02-26
数据分析领域的AI产品
以下是关于数据分析领域的 AI 产品的相关信息: ChatGPT 在数据分析中的应用: 个性化分析示例:包括单维度数据、多维度数据(折线图、柱状图)等。有时 AI 会误将数据项作为维度分析,可通过输入提示告诉它用哪个字段作为维度,或描述其他数据信息使分析更准确。 总结和展望:ChatGPT 在数据分析领域有广泛应用前景,能提高效率、降低技能门槛、支持决策。但案例分析结果可能简单,实际业务中需处理大量数据,要指定允许查询或解析的字段,对结果数据进行校验,还可定制分析模板增加多样性。需结合实际需求和场景审慎评估其适用性。随着技术进步,将为数据分析带来更多创新和突破。 Rockset: 公司名片:成立于 2016 年,由前 Facebook 工程师创立,专注于提供实时搜索和分析数据库服务,能将数据转化为“可操作智能”。 产品特点:实时分析,支持快速数据查询和分析,提供低延迟的数据处理能力;无服务器架构,简化运维,降低企业 IT 成本;自动索引,支持对半结构化数据的高效查询。 使用场景:适用于金融、科技和互联网等需要实时数据分析的企业,帮助企业做出快速业务决策,优化运营效率。 技术优势:实时分析和多维索引,擅长处理和分析大规模半结构化数据,能自动构建多维索引;向量搜索,增强快速访问和分析大量信息的能力;低延迟操作,提供低延迟的搜索、过滤、聚合和连接操作。 融资与收购:刚被 OpenAI 收购。 AIPM 技能树: 随着 AI 技术发展和应用场景拓展,市场对能将 AI 技术转化为实际产品和服务的人才需求增加,AI PM 作为更专业化角色逐渐形成。 AI 产品涉及复杂算法和大数据处理,同时要考虑用户体验和商业模式,要求 PM 具备跨学科知识背景,能在技术和业务间有效沟通和决策。 掌握算法知识的必要性:理解产品核心技术,与技术团队有效沟通,评估技术可行性,把握产品发展方向,提升产品竞争力,提升数据分析能力。
2025-02-26
model endpoint ID是什么东西?请用文字、数据、案例、比喻等形式进行教学
很抱歉,目前没有关于“model endpoint ID”的相关内容。但一般来说,“model endpoint ID”可以理解为模型服务端点的标识符。 打个比方,就像每个房间都有一个独特的门牌号,“model endpoint ID”就是模型服务这个“房间”的门牌号,通过它可以准确地找到和调用特定的模型服务。 在实际的数据处理中,它可能类似于一个唯一的编码,比如“MEID12345”,用于区分不同的模型服务端点,以便系统能够准确地将请求路由到对应的模型服务进行处理。 希望这样的解释能对您有所帮助,如果您还有其他疑问,请随时向我提问。
2025-02-26
TPM 限制是什么意思?请用文字、数据、案例、比喻等形式进行教学
TPM 限制指的是每分钟处理的事务数(Transactions Per Minute)的限制。 以字节火山引擎为例,它默认提供了高达 500 万 TPM 的初始限流。这对于像一次工作流测试就消耗 3000 多万 tokens 的用户来说,限流的设置具有重要意义。 打个比喻,TPM 限制就好像是一条道路上设置的通行车辆数量限制,如果超过这个限制,就可能导致交通拥堵或者无法正常通行。在 AI 领域,超过 TPM 限制可能会影响服务的性能和稳定性。 比如,当有大量的请求同时发送到系统,如果没有 TPM 限制,可能会导致系统响应变慢甚至崩溃;而有了合理的 TPM 限制,就能保证系统有序地处理请求,为用户提供稳定可靠的服务。
2025-02-26