Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

目前所有的大模型基于的原理是什么

Answer

目前所有的大模型基于的原理主要包括以下方面:

  1. 大语言模型技术的本质导致其输出结果具有不可预测性,且静态的训练数据使大模型掌握的知识存在截止日期,无法即时掌握最新信息。
  2. 大模型的底层原理通常是基于数学概率的文字预测,类似于文字接龙。
  3. 大模型的参数方面,例如经常听到的几百亿几千亿的参数,其实是神经网络的输入权重和输出阈值的总和。当有大量神经元时,会出现群体智能即智能涌现的效果。
  4. 大语言模型的工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强。
  5. Transformer 架构是大语言模型训练架构,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容。
  6. 大模型可能因错误数据导致给出错误答案,优质数据集对其很重要。
Content generated by AI large model, please carefully verify (powered by aily)

References

RAG提示工程(一):基础概念

大语言模型技术的本质导致了大模型的输出结果具有不可预测性,此外,静态的训练数据导致了大模型所掌握的知识存在截止日期,无法即时掌握最新信息。因此,当我们将大模型应用于实际业务场景时会发现,通用的基础大模型无法满足我们的实际业务需求。主要存在以下原因:知识的局限性:模型自身的知识完全源于它的训练数据,而现有的主流大模型(ChatGPT、文心一言、通义千问…)的训练集基本都是抓取网络公开的数据用于训练,对于一些实时性的、非公开的或离线的数据是无法获取到的,这部分知识也就无从具备。幻觉问题:大模型的底层原理是基于数学概率的文字预测,即文字接龙。因此大模型存在幻觉问题,会在没有答案的情况下提供虚假信息,提供过时或通用的信息,从可信度低非权威来源的资料中提供结果等。数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。因此如何大模型落地应用时如何保障企业内部数据安全是一个重要问题。而RAG是解决上述问题的一套有效方案。它可以让大模型从权威的、预先确定的知识来源中检索、组织相关信息,更好地控制大模型生成的文本输出,并且用户可以深入了解LLM如何生成最终的结果。并且,RAG可以和微调结合使用,两者并不冲突。RAG类似于为模型提供教科书,允许它基于特定查询检索信息。这该方法适用于模型需要回答特定的询问或解决特定的信息检索任务。然而,RAG不适合教模型来理解广泛的领域或学习新的语言,格式或样式。微调类似于让学生通过广泛的学习内化知识。这种方法当模型需要复制特定的结构、样式或格式时非常有用。以下是RAG与微调从维度方面的比较:参考资料:《Retrieval-Augmented Generation for Large Language Models:A Survey》(https://arxiv.org/pdf/2312.10997.pdf)

人人都能搞定的大模型原理 - 神经网络

了解感知器和单神经元的原理是为了后续更好的了解“基于深度神经网络机器学习”的基础。我们经常所听到的大模型有几百亿几千亿的参数,这里的参数其实就是神经网络的输入权重和输出阈值的总和。我们假定一个神经元有9个输入权重,和1个输出阈值,那么就可以说该神经元有10个参数。当我们有100亿个这样的神经元时,此时就可以说我们的神经网络模型有1000亿个参数,也就是所谓的千亿级参数的大模型。是不是贼啦简单?原来各种官方一直提到的百亿,千亿参数的大模型,原来是这个意思呢。此处我们再做一点小小的延伸~我们上述所提到的感知机(单神经元),通过一定的学习算法,可以将这个单神经元具备一定简单的智能效果,比如识别单个数字。那么你想象一下,我们单个神经元通过一定的学习算法,可以出现简单的智能效果,此时如果有100亿个神经元呢?100亿个神经元合在一起所具备的智能效果,这将是一个多么强智能的效果存在。每个神经元都只需要记住自己的一点点规则,可以具备识别出一个非常小的一个能力,此时将这个神经元的数量扩大到100亿,1000亿,这就会出现我们现在所经常听到的群体智能,即智能涌现!“智能涌现”在自然界非常典型的案例就是蚂蚁,单只蚂蚁是非常简单的智能生物,但是一旦当一群蚂蚁聚集的时候,就会建造出非常复杂的蚁巢结构。(感兴趣的可以自行搜下)而我们人脑呢?根据科学的统计是人脑中约有1000亿个神经元,这些庞大的神经元构成了非常复杂的神经网络,这也是人脑智能的基础。所以知道为什么有时候明明也没运动,但是上班一天还是要吃很多食物了吗?因为你庞大神经元的运转也是需要消耗能量的呀。AI消耗电力补充能量,而我们消耗食物来补充能量(奇奇怪怪的知识又增加了🤔)

02-基础通识课

[heading2]总结大语言模型的介绍与原理国内大模型的分类:国内大模型有通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI蛋白质结构预测等。大模型的体验:以‘为什么我爸妈结婚的时候没有邀请我参加婚礼’和‘今天我坐在凳子上’为例,体验了Kimi、通义千问、豆包等大模型的回答和续写能力,发现回复有差异,且大模型基于统计模型预测生成内容。大语言模型的工作原理:大语言模型工作原理包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强,参数用b链形容大小。Transformer架构:Transformer是大语言模型训练架构,17年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的temperature。关于大语言模型的原理、应用及相关概念Transformer模型原理:通过不断检索和匹配来寻找依赖关系,处理词和词之间的位置组合,预测下一个词的概率,是一个偏向概率预测的统计模型。大模型幻觉:大模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。Prompt的分类和法则:分为system prompt、user prompt和assistant prompt,写好prompt的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。Fine tuning微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。RAG概念:未对RAG的具体内容进行详细阐述,仅提出了这个概念。

Others are asking
大模型训练全流程
大模型训练通常包括以下全流程: 1. 收集海量数据:如同教导孩子成为博学多才之人,要让其阅读大量书籍、观看纪录片、与人交谈,对于 AI 模型,就是收集互联网上的文章、书籍、维基百科条目、社交媒体帖子等各种文本数据。 2. 预处理数据:就像为孩子整理学习资料,AI 研究人员需要清理和组织收集到的数据,如删除垃圾信息、纠正拼写错误、将文本分割成易于处理的片段。 3. 设计模型架构:如同为孩子设计学习计划,研究人员要设计 AI 模型的“大脑”结构,通常是一个复杂的神经网络,如 Transformer 架构,这种架构擅长处理序列数据(如文本)。 4. 训练模型:如同孩子开始学习,AI 模型开始“阅读”提供的数据,通过反复阅读尝试预测句子中的下一个词,从而逐渐学会理解和生成人类语言。 此外,大模型训练还可以类比为“上学参加工作”: 1. 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练自己的大模型。 2. 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 3. 找老师:即用合适的算法讲述“书本”中的内容,让大模型更好理解 Token 之间的关系。 4. 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 5. 搬砖:就业指导完成后,进行如翻译、问答等工作,在大模型里称之为推导(infer)。 一般训练还会有以下步骤: 1. 无监督学习:模型通过分析大量文本数据,学习语言基本结构和常识,具备文本补齐能力,将人类知识向量化以获得基础语言模型。 2. 清洗出好的数据。 3. 指令微调:训练模型理解并执行具体指令,如翻译文本以回答问题,输入内容包括特定格式的指令、输入和输出。 4. 对齐过程:通过引入人类评价标准和处理特定格式要求,优化模型输出以符合人类期望,包括处理文化、道德等细节。 虽然各公司具体实现细节可能是机密,但这些步骤共同构成了构建高效、实用大语言模型的过程,最终产生的模型可能含有高达 1750 亿个参数。在开源与闭源模型的开发策略中,开源模型依赖社区贡献,闭源模型由企业投入大量资源开发,两种策略都旨在推动大语言模型技术发展和应用。
2025-02-26
通义千问最新模型
通义千问最新模型情况如下: 发布了一个模型并开源了两个模型。 Qwen2.5Max:全新升级发布,比肩 Claude3.5Sonnet,几乎全面超越 GPT4o、DeepSeekV3 及 Llama3.1405B。是阿里云通义团队对 MoE 模型的最新探索成果,预训练数据超过 20 万亿 tokens。在多项公开主流模型评测基准上录得高分,开发者可在 Qwen Chat(https://chat.qwenlm.ai/)平台免费体验模型,企业和机构也可通过阿里云百炼平台直接调用新模型 API 服务。 Qwen2.5VL:全新视觉模型实现重大突破,增强物体识别与场景理解,支持文本、图表、布局分析,可处理长达 1 小时视频内容,具备设备操作的 Agent 能力。 Qwen2.51M:推出 7B、14B 两个尺寸,在处理长文本任务中稳定超越 GPT4omini,同时开源推理框架,在处理百万级别长文本输入时可实现近 7 倍的提速,首次将开源 Qwen 模型的上下文扩展到 1M 长度。在上下文长度为 100 万 Tokens 的大海捞针任务中,7B 模型出现少量错误。在更复杂的长上下文理解任务中,Qwen2.51M 系列模型在大多数长上下文任务中显著优于之前的 128K 版本,Qwen2.514BInstruct1M 模型不仅击败了 Qwen2.5Turbo,还在多个数据集上稳定超越 GPT4omini。
2025-02-26
AI模型是什么意思?请用文字、数据、比喻等形式进行教学
AI 模型是指通过一系列技术和算法构建的能够处理和生成信息的系统。 以下为您详细介绍: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 相关技术名词及关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习:使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习:学习的数据没有标签,算法自主发现规律,经典任务如聚类,例如让模型将一堆新闻文章根据主题或内容特征分成相似组。 强化学习:从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑神经网络和神经元的方法(因有很多层所以叫深度),神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型,可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制(SelfAttention)处理序列数据,不依赖于循环神经网络(RNN)或卷积神经网络(CNN)。 为了让您更好地理解,我们可以把 AI 模型想象成一个非常聪明的学生。它通过大量的学习资料(训练数据)来掌握知识和规律,就像学生通过课本和练习题来提高自己的能力一样。监督学习就像是有老师指导的学习,老师会告诉它答案是对是错;无监督学习则像是自己探索,没有老师的直接指导;强化学习就像通过奖励和惩罚来激励它找到更好的方法。而深度学习就像是这个学生有了非常复杂和深入的思考方式,能够更好地理解和处理复杂的问题。
2025-02-26
AI模型私有化部署
AI 模型私有化部署具有以下特点和情况: 挑战方面: 在许多中小型行业,如金融、医疗和法律行业,由于对数据私密性要求极高,客户隐私敏感度高,往往需要私有化部署场景,这大大增加了企业培训的难度。 访问 GPT 有门槛,国企类、体制类的合作伙伴可能受限,需要寻找更易于接入的国产模型作为替代方案,如智谱等。 工程化落地难,企业知识库大部分卡在工程问题上,真正能落地的不多,数据清理部分难度较大,技术能力要求比想象中更高。例如某金融企业希望使用大模型构建 AI 智能问答机器人并私有化部署,但因自身规模不大且无数字化系统,实际落地成本可能不比传统人力成本节省更多。 经验分享方面: 构建企业知识库是常见需求,一种普遍解决方案是结合企业私有数据与 RAG 模型的私有化部署。如有特殊需求,还可进行模型的 Finetuning(微调)以优化性能。 基础模型提供推理提示,RAG 用于整合新知识,实现快速迭代和定制化信息检索。通过 Finetuning 可增强基础模型的知识库、调整输出和教授更复杂指令,提高模型整体性能和效率。 360 愿意为有能力的企业赠送免费的私有化部署通用大模型,其可解决隐私泄露和数据流失问题,满足科普和一些通用需求,如办公等。同时提供 360AI 办公的会员服务,围绕办公营销需求做了很多工具,并将其场景化。
2025-02-26
你是基于什么模型
我调用的是抖音集团的云雀大模型。 此外,文中还提到了多模态大模型相关的内容,如基于多模态大型模型为现实世界提供实时说明书,后端采用 llama.cpp 挂载 LLaVA 模型并部署 Flask 应用用于数据处理,前端页面采用 HTML5 等。 同时,还有关于 Gemini 模型的介绍,它是基于 Transformer 解码器构建,经过训练以支持 32k 的上下文长度,采用高效的注意机制,能适应与各种音频和视觉输入交织的文本输入,并可以生成文本和图像输出。
2025-02-26
如何让推理大模型回答的更准确,使用什么样的提示词
要让推理大模型回答得更准确,可以通过以下提示词相关的设置和方法: 1. 参数设置: Temperature:参数值越小,模型返回结果越确定;调高参数值,可能带来更多随机、多样化或具创造性的产出。对于质量保障等任务,设置更低值以促使模型基于事实返回真实简洁结果;对于诗歌生成等创造性任务,可适当调高。 Top_p:与 Temperature 类似,用于控制模型返回结果的真实性。需要准确和事实的答案时,调低参数值;想要更多样化答案时,调高参数值。一般建议改变其中一个参数即可。 Max Length:通过调整控制大模型生成的 token 数,有助于防止生成冗长或不相关的响应并控制成本。 Stop Sequences:指定字符串来阻止模型生成 token,是控制响应长度和结构的方法之一。 Frequency Penalty:对下一个生成的 token 进行惩罚,与 token 在响应和提示中出现次数成比例,减少响应中单词的重复。 2. 提示词示例: 对于推理任务,目前已有一些涉及数学能力的改进。执行推理任务可能有难度,需要更高级的提示词工程技术,后续会介绍相关高级技术。 可以通过示例给模型说明,可能获得更准确结果,后面章节会介绍更多常见应用示例。 3. 调教方法: 像打字和写作一样,不断尝试和大模型交互是最佳方法,方法论不是关键。 可以在提示词里设定规则,也可临时更改,交互时无需遵循规则,重点是是否达成目的,未达成可重新尝试或更换模型。 用 Markdown 格式清晰表达问题,具有结构清晰、格式化强调、适用性广等优点,有助于模型更好地理解用户意图。
2025-02-26
神经网络与大脑实际工作的原理区别
神经网络与大脑实际工作的原理存在以下区别: 1. 神经网络本质上是运行在多层面上的软件,由人工建立的一层层互相连接的神经元模型组成,模仿大脑处理复杂问题,如视觉和语言等。它可以自行学习与工作,不需要人为提示或参与控制。 2. 早期由于电脑处理能力不足,神经网络的发展受限。而大脑则具有强大的天然处理能力。 3. 神经网络的计算风格受神经元及其适应性连接启发,与传统的序列计算不同。 4. 对于循环网络,其连接图中存在定向循环,动态复杂,更具生物真实性。 5. ChatGPT 是通过获取大量人类创作的文本样本进行训练,生成类似的文本。其神经网络由简单元素组成,基本操作简单,从积累的“传统智慧统计数据”中提取“连贯的文本线索”,但不像大脑那样具有全面和复杂的功能。 总之,神经网络是对大脑的一种模拟,但与大脑真实的工作方式仍存在诸多差异。
2025-02-25
在办公领域,Deepseek如何进行效率提升,请详细进行原理及操作阐述,我要做成培训课程
以下是关于 DeepSeek 在办公领域提升效率的原理及操作阐述: 原理方面: 1. 强化学习和联网搜索能力改变信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。 2. 利用“专家混合”和“多头潜在注意力”技术,展现了高效的算力利用。 3. 其开源策略打破了技术垄断,让国内大模型能力迅速提升。 操作方面: 1. 飞书多维表格与 DeepSeek R1 结合,实现批量处理信息,如批量转换文风、快速回复消息,甚至利用 AI 生成文案,操作简单、便捷,普通人无需编程知识也能轻松使用。 2. 有手把手指导在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 此外,DeepSeek R1 赏析分享会专为非技术人群设计,通俗易懂地介绍了 R1 和 V3 的技术亮点,深入探讨了业界的困惑与 DeepSeek 的解决方案。同时,也有相关文章通过虚构故事结合真实案例,讲述 AI 在日常工作中的效率提升作用,如分析意图、生成任务说明,并拆分复杂任务成结构化内容,强调最终成果需人工审核、拼接,并以人类主导全流程。
2025-02-25
RAG的原理是啥
RAG(RetrievalAugmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构,其原理如下: 对于大语言模型(LLM),RAG 的作用类似于开卷考试对学生的作用。在开卷考试中,学生可借助参考资料查找解答问题的相关信息,重点考察推理能力而非记忆能力。同样,在 RAG 中,事实性知识与 LLM 的推理能力相分离,被存储在易于访问和及时更新的外部知识源中,包括参数化知识(模型在训练中学习得到,隐式存储在神经网络权重中)和非参数化知识(存储在外部知识源,如向量数据库中)。 回顾 LLM 的原理,是将互联网文献材料降维到 latent space 中,并通过 transformer 方式学习其中的“经验”。但固定文献资料可能导致无法回答某些问题,RAG 的出现解决了这一问题,它允许模型到搜索引擎上搜索问题相关资料,并结合自身知识体系综合回复。 RAG 中的“检索”环节并非简单操作,涉及传统搜索的逻辑,如对输入问题的纠错、补充、拆分,以及对搜索内容的权重逻辑等。例如,对于“中国界世杯夺冠那年的啤酒销量如何”的问题,会先纠错为“中国世界杯夺冠那年的啤酒销量如何”,然后拆分为两个问题进行综合搜索,再将搜索到的资料提供给大模型进行总结性输出。 LLM 需要 RAG 是因为 LLM 存在一些缺点: 1. 无法记住所有知识,尤其是长尾知识,对长尾知识的接受能力不高。 2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。 3. 输出难以解释和验证,存在黑盒、不可控和幻觉等问题。 4. 容易泄露隐私训练数据。 5. 规模大,训练和运行成本高。 而 RAG 具有以下优点: 1. 数据库对数据的存储和更新稳定,不存在模型学不会的风险。 2. 数据库的数据更新敏捷,增删改查可解释,不影响原有知识。 3. 数据库内容明确、结构化,结合模型理解能力,降低大模型输出出错的可能。 4. 知识库存储用户数据,便于管控用户隐私数据,且可控、稳定、准确。 5. 数据库维护可降低大模型训练成本,新知识存储在数据库即可,无需频繁更新模型。
2025-02-20
我是一个有23年软件系统开发和设计经验的架构师,但是对AI还没有系统化了解过,请问我该如何开始?如何在短时间内掌握AI的使用、原理以及二次开发?
以下是为您提供的在短时间内系统化学习 AI 的建议: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。我建议您一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 如果希望继续精进,对于 AI,可以尝试了解以下内容作为基础: 1. AI 背景知识 (1)基础理论:了解人工智能、机器学习、深度学习的定义及其之间的关系。 (2)历史发展:简要回顾 AI 的发展历程和重要里程碑。 2. 数学基础 (1)统计学基础:熟悉均值、中位数、方差等统计概念。 (2)线性代数:了解向量、矩阵等线性代数基本概念。 (3)概率论:基础的概率论知识,如条件概率、贝叶斯定理。 3. 算法和模型 (1)监督学习:了解常用算法,如线性回归、决策树、支持向量机(SVM)。 (2)无监督学习:熟悉聚类、降维等算法。 (3)强化学习:简介强化学习的基本概念。 4. 评估和调优 (1)性能评估:了解如何评估模型性能,包括交叉验证、精确度、召回率等。 (2)模型调优:学习如何使用网格搜索等技术优化模型参数。 5. 神经网络基础 (1)网络结构:理解神经网络的基本结构,包括前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)。 (2)激活函数:了解常用的激活函数,如 ReLU、Sigmoid、Tanh。 此外,以证件照为例,Code AI 应用开发教学中,智能体开发从最初的 chatbot 只有对话框,到有了更多交互方式,因用户需求扣子推出了 AI 应用,其低代码或零代码的工作流等场景做得较好。但 AI CODING 虽强,目前适用于小场景和产品的第一个版本,复杂应用可能导致需求理解错误从而使产品出错。在创建 AI 应用时,要学习操作界面、业务逻辑和用户界面,包括布局、搭建工作流、用户界面及调试发布,重点熟悉桌面网页版的用户界面。
2025-02-17
大模型的基本原理
大模型的基本原理如下: 1. 模仿人类大脑结构,表现出人的特征,应对大模型回答不及预期的解决之道与人与人交流沟通的技巧相似。 2. GPT 全称是生成式预训练转换器模型(Generative Pretrained Transformer): 生成式(Generative):大模型根据已有的输入为基础,不断计算生成下一个字词(token),逐字完成回答。例如,从提示词“How”开始,依次推理计算出“are”“you”等,直到计算出下一个词是的概率最大时结束输出。 3. 通俗来讲,大模型通过输入大量语料来让计算机获得类似人类的“思考”能力,能够进行文本生成、推理问答、对话、文档摘要等工作。其训练和使用过程可类比为上学参加工作: 找学校:训练大模型需要大量计算,GPU 更合适,只有购买得起大量 GPU 的才有资本训练。 确定教材:大模型需要大量数据,几千亿序列(Token)的输入基本是标配。 找老师:用合适算法讲述“书本”内容,让大模型更好理解 Token 之间的关系。 就业指导:为让大模型更好胜任某一行业,需要进行微调(fine tuning)指导。 搬砖:就业指导完成后进行推导(infer),如进行翻译、问答等。 4. 在 LLM 中,Token 被视为模型处理和生成的文本单位,可代表单个字符、单词、子单词等,在将输入进行分词时会对其进行数字化,形成词汇表。 5. 相关技术名词及关系: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习,监督学习有标签,无监督学习无标签自主发现规律,强化学习从反馈里学习。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可生成多种内容形式,LLM 是大语言模型,生成只是大语言模型的一个处理任务。 6. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,基于自注意力机制处理序列数据,不依赖 RNN 或 CNN。
2025-02-17
ai修图的原理
AI 修图的原理主要包括以下几个方面: 1. 对于 Stable Diffusion 这类软件,其工作原理类似于学习画画。就像学习梵高的风格,需要大量临摹,而 AI 则通过对成千上万美术风格作品的学习形成大模型,如 Checkpoint。用户要想获得满意的作品,需选择合适的大模型。大模型可在 C 站下载,但需科学上网。 2. ComfyUI 是一个开源的用于生成 AI 图像的图形用户界面,主要基于 Stable Diffusion 等扩散模型。其原理包括 Pixel Space(像素空间)和 Latent Space(潜在空间)。像素空间对应输入图像或随机噪声图像,最终生成的图像也会转换回像素空间。许多操作在潜在空间进行,如通过 KSampler 节点执行采样过程,可通过节点调整潜在空间的操作,如噪声添加、去噪步数等。 3. 扩散过程是从噪声生成图像的过程,通过调度器控制,如 Normal、Karras 等,可选择不同调度器控制在潜在空间中处理噪声及逐步去噪回归到最终图像。时间步数也会影响图像生成的精细度和质量。 在实际的 AI 修图过程中,还涉及到提示词编写、对输出图片的二次和多次微调、确定情绪和风格等锚点再发散联想等操作,以获得更符合需求的修图效果。
2025-02-13
目前可以用于做ppt的ai工具有哪些
以下是一些可用于制作 PPT 的 AI 工具: 1. Gamma:在线 PPT 制作网站,支持输入文本和想法提示快速生成幻灯片,可嵌入多媒体格式增强吸引力,网址:https://gamma.app/ 2. 美图 AI PPT:由美图秀秀团队推出,通过输入简单文本描述生成专业 PPT 设计,有丰富模板库和设计元素,适用于多种场合,网址:https://www.xdesign.com/ppt/ 3. Mindshow:AI 驱动的 PPT 辅助工具,提供智能设计功能,如自动布局、图像选择和文本优化等,网址:https://www.mindshow.fun/ 4. 讯飞智文:科大讯飞推出的 AI 辅助文档编辑工具,利用语音识别和自然语言处理技术优势,提供智能文本生成、语音输入、文档格式化等功能,网址:https://zhiwen.xfyun.cn/ 目前市面上大多数 AI 生成 PPT 通常按照以下思路完成设计和制作: 1. AI 生成 PPT 大纲 2. 手动优化大纲 3. 导入工具生成 PPT 4. 优化整体结构 此外,还有以下工具: 1. 爱设计 2. 闪击 3. Process ON 4. WPS AI 用户可根据自身需求和喜好选择合适的工具,以提高工作效率和演示效果。推荐两篇市场分析文章供参考: 1. 《》 2. 《》 请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-26
目前市面上有哪些ai可以实现免费创建并训练大模型,以满足个人需求
目前市面上有以下一些可以免费创建并训练大模型以满足个人需求的途径: 1. 免费云服务器: 阿里、腾讯对新用户提供免费试用服务器,如腾讯云的。服务器系统配置可选择【宝塔】系统。 2. 免费大模型接口: 阿里的接口,创建 API key 即可。 也有免费接口,但国内大模型通常限制一定免费额度的 Token。 谷歌的来学习如何给服务器科学上网及使用海外版 Coze。 此外,关于大模型的相关知识: 1. 架构方面: encoderonly 模型通常适用于自然语言理解任务,如分类和情感分析,最知名的代表模型是 BERT。 encoderdecoder 模型同时结合了 Transformer 架构的 encoder 和 decoder 来理解和生成内容,代表是谷歌的 T5。 decoderonly 模型更擅长自然语言生成任务,目前熟知的众多 AI 助手基本都来自此类架构。 2. 大模型的特点: 预训练数据非常大,往往来自于互联网上,包括论文、代码、公开网页等,一般用 TB 级别的数据进行预训练。 参数非常多,Open 在 2020 年发布的 GPT3 就已经达到 170B 的参数。 在技术原理方面: 1. 生成式 AI 生成的内容叫做 AIGC。 2. 相关技术名词: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习学习的数据没有标签,算法自主发现规律,经典任务包括聚类。强化学习从反馈里学习,最大化奖励或最小化损失。深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。LLM 即大语言模型,生成图像的扩散模型不是大语言模型,对于大语言模型,生成只是其中一个处理任务。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出了 Transformer 模型,它完全基于自注意力机制来处理序列数据,而不需要依赖于循环神经网络或卷积神经网络。
2025-02-26
我如何AI应用产品创业思路 目前有商业和项目概念没有IT基础
以下是为您提供的关于 AI 应用产品创业思路的相关内容: 从过去的经验来看,2014 年是移动互联网的红利时代,当时有很多创业者和投资人在深圳的咖啡馆交流项目。有人参与移动互联网创业,做了一款帮人养成好习惯的 APP,积累了百万用户并拿到投资,但因商业化思考较浅等原因项目折戟。 对于现在的 AI 应用创业,有观点认为这一波 AI 更利好大厂,因为创业公司缺乏数据和场景。但也有观点指出,任何技术进步,现有的大公司虽会获利,但创业公司能创造新的价值和场景。以移动互联网为例,最大的四个应用如移动端的 IM 工具、打车、外卖、短视频,除微信外都来自创业公司,且新的技术优势应是解决新问题,而非做更好的上一代产品。此外,AI 时代有利于创业者的一个好处是,利用大模型的能力,创业公司人员更精简,很多 AI 应用创业者仅几人就能完成产品开发上线测试。而且从应用层面看,2B 的应用公司在中国可能会迎来跨越式发展的机会。 如果您没有 IT 基础但有商业和项目概念,建议您: 1. 深入研究目标市场和用户需求,找准新的问题和价值点。 2. 关注创新的应用场景,避免与大厂在已有产品上竞争。 3. 充分利用大模型的能力,优化团队结构,提高效率。 4. 考虑与有 IT 技术能力的团队或个人合作。
2025-02-25
目前市面上有多少不同的大模型,请枚举出来
目前市面上的大模型列举如下: 北京企业机构: 百度(文心一言):https://wenxin.baidu.com 抖音(云雀大模型):https://www.doubao.com 智谱 AI(GLM 大模型):https://chatglm.cn 中科院(紫东太初大模型):https://xihe.mindspore.cn 百川智能(百川大模型):https://www.baichuanai.com/ 上海企业机构: 商汤(日日新大模型):https://www.sensetime.com/ MiniMax(ABAB 大模型):https://api.minimax.chat 上海人工智能实验室(书生通用大模型):https://internai.org.cn 大型模型主要分为两类: 1. 大型语言模型,专注于处理和生成文本信息。 2. 大型多模态模型,能够处理包括文本、图片、音频等多种类型的信息。 大模型的整体架构从整体分层的角度来看,大致分为以下几层: 1. 基础层:为大模型提供硬件支撑,数据支持等,例如 A100、数据服务器等等。 2. 数据层:这里的数据层指的不是用于基层模型训练的数据基集,而是企业根据自己的特性,维护的垂域数据。分为静态的知识库,和动态的三方数据集。 3. 模型层:包括 LLm(大语言模型)或多模态模型。LLm 如 GPT,一般使用 transformer 算法来实现。多模态模型即市面上的文生图、图生图等的模型,训练所用的数据与 llm 不同,用的是图文或声音等多模态的数据集。 4. 平台层:模型与应用间的平台部分,比如大模型的评测体系,或者 langchain 平台等,提供模型与应用间的组成部分。 5. 表现层:也就是应用层,用户实际看到的地方。 另外,阿里通义千问、360 智脑、讯飞星火等均不在首批获批名单中。据悉,广东地区获批公司分别为华为、腾讯,科大讯飞系其他地区获批产品。
2025-02-24
什么是AI?目前市场上主要的AI工具有哪些?
AI 即人工智能,是指让计算机模拟人类智能的技术。它旨在使计算机能够像人类一样学习、推理、解决问题和执行任务。 目前市场上主要的 AI 工具包括: 开发者工具:可让用户对 AI 伴侣的外形和个性有最大控制权,组合多种工具创造理想伴侣,通过短信、电话、实时视频聊天等互动。 个性(LLM 的文本):一些开源模型如 Vicuna 和 Pygmalion 经过微调,在特定应用场景表现出色。 记忆(向量存储):像 Pinecone 这样的向量存储系统可建立持续关系,存储长期记忆等信息。 语音(语音合成):如 ElevenLabs 可赋予声音,控制年龄、性别和口音。 外表(SD 模型作图):LoRAs 可对图像风格等有精细控制。 动画(视频动画):像 DID 和 HeyGen 等工具可使图像“说话”。 平台:如 GCP、AWS 以及 Steamship 等。 UI 层:如 SillyTavern、Agnaistic 和 KoboldAI 等。 在健身领域的 AI 工具: Keep:中国最大的健身平台,提供全面健身解决方案。 Fiture:集硬件、课程内容、明星教练和社区于一体。 Fitness AI:利用人工智能进行锻炼,增强力量和速度。 Planfit:提供家庭训练与 AI 健身计划,AI 教练使用大量文本数据和 ChatGPT 实时指导。 在 AIGC 方面: AIGC 指利用生成式 AI 创建的内容,如图像、视频、音频、文本和三维模型。生成式 AI 基于深度学习技术和机器学习算法,从已有数据中学习并生成新数据或内容。典型的生成式 AI 包括 OpenAI 推出的 ChatGPT、GPT4、图像模型 DALLE 以及百度的文心一言、阿里云的通义千问等。国内主要在相关法律法规框架下,由多部规定共同监管 AIGC 行业。
2025-02-23
AI目前能帮企业做什么
AI 目前能为企业带来多方面的帮助,主要包括以下几个方面: 1. 工作流程优化:许多公司将 AI 融入工作流程,实现工作流程自动化,例如 ServiceNow 通过 AI 驱动的 Now Assist 实现了近 20%的事件避免率,Palo Alto Networks 利用 AI 降低了处理费用的成本,Hubspot 利用 AI 扩大了能够支持的用户规模。瑞典金融科技公司 Klarna 通过将 AI 融入用户支持,在运行率方面节省了 4000 多万美元。成千上万的公司正在将 AI 整合到他们的工作流程中,以扩张规模和降低成本。 2. 业务拓展与管理变革:未来的公司会加速步入数字化,业务的拓展更多依托于算力的增加,不用加人,加 AI 即可,管理沟通成本很低。会建立更有效的公司运转机制,可能会有越来越多的特别高效的小团队公司出现。 3. 人和 AI 协同工作模式:根据 AI 使用的多少,人和 AI 协同的方式分为嵌入式模式、协作模式和智能体模式。基于目前 AI 发展的程度,协作模式是最常使用的。 4. 具体应用程序: 聊天机器人:分为信息型和实用型,可大幅减少客户服务方面的人力成本。 AI 撰写内容:如 ChatGPT 等工具能快速生成高质量文本内容,提高内容创作效率。 语音搜索优化:适应语音搜索普及的趋势,优化网站以提高理解度。 网站个性化:为每位访客提供定制化体验,增强客户参与度和忠诚度。 利用 AI 分析客户数据:通过机器学习算法发现模式和趋势,为营销活动或个性化体验提供洞见。 社交媒体管理与情绪分析:深入了解客户反馈,调整产品和营销策略。
2025-02-21