Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

增强检索生成

Answer

RAG(Retrieval-Augmented Generation,检索增强生成)是一种结合检索和生成能力的自然语言处理架构,旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。

通用语言模型通过微调可完成常见任务,而对于更复杂和知识密集型任务,基于语言模型构建访问外部知识源的系统能使结果更符合事实、更可靠,缓解“幻觉”问题。Meta AI 的研究人员引入了 RAG 方法来完成这类任务,它把信息检索组件和文本生成模型结合在一起,可微调且内部知识修改高效,无需重新训练整个模型。

RAG 工作流程如下:

  1. 检索:利用用户查询从外部知识源获取相关信息,将查询转化为向量与向量数据库比对,找到最匹配的前 k 个数据作为补充背景信息。
  2. 数据库索引:包括离线获取数据、清理提取原始数据、转换文件格式、分块、嵌入和创建索引等步骤。
  3. 增强:将用户查询和检索到的额外信息嵌入预设提示模板。
  4. 生成:将问题与相关文档合并为新提示信息,由大语言模型回答问题,可选择依赖知识库或仅基于给定信息,也可融入历史对话信息支持多轮对话。

LLM 需要 RAG 的原因在于 LLM 存在一些缺点:

  1. 无法记住所有知识,尤其是长尾知识,接受能力不高。
  2. 知识容易过时且不好更新,微调效果不佳且有丢失原有知识的风险。
  3. 输出难以解释和验证,易受幻觉等问题干扰。
  4. 容易泄露隐私训练数据。
  5. 规模大,训练和运行成本高。

RAG 具有以下优点:

  1. 数据库对数据的存储和更新稳定,无学习风险。
  2. 数据库数据更新敏捷,可解释且不影响原有知识。
  3. 数据库内容明确结构化,降低大模型输出出错可能。
  4. 便于管控用户隐私数据,可控、稳定、准确。
  5. 降低大模型训练成本,新知识存储在数据库无需频繁更新模型。
Content generated by AI large model, please carefully verify (powered by aily)

References

检索增强生成 (RAG)

通用语言模型通过微调就可以完成几类常见任务,比如分析情绪和识别命名实体。这些任务不需要额外的背景知识就可以完成。要完成更复杂和知识密集型的任务,可以基于语言模型构建一个系统,访问外部知识源来做到。这样的实现与事实更加一性,生成的答案更可靠,还有助于缓解“幻觉”问题。Meta AI的研究人员引入了一种叫做[检索增强生成(Retrieval Augmented Generation,RAG)(opens in a new tab)](https://ai.facebook.com/blog/retrieval-augmented-generation-streamlining-the-creation-of-intelligent-natural-language-processing-models/)的方法来完成这类知识密集型的任务。RAG把一个信息检索组件和文本生成模型结合在一起。RAG可以微调,其内部知识的修改方式很高效,不需要对整个模型进行重新训练。RAG会接受输入并检索出一组相关/支撑的文档,并给出文档的来源(例如维基百科)。这些文档作为上下文和输入的原始提示词组合,送给文本生成器得到最终的输出。这样RAG更加适应事实会随时间变化的情况。这非常有用,因为LLM的参数化知识是静态的。RAG让语言模型不用重新训练就能够获取最新的信息,基于检索生成产生可靠的输出。Lewis等人(2021)提出一个通用的RAG微调方法。这种方法使用预训练的seq2seq作为参数记忆,用维基百科的密集向量索引作为非参数记忆(使通过神经网络预训练的检索器访问)。这种方法工作原理概况如下:图片援引自:[Lewis et el.(2021)(opens in a new tab)](https://arxiv.org/pdf/2005.11401.pdf)

问:RAG 是什么?

1.检索:此过程涉及利用用户的查询内容,从外部知识源获取相关信息。具体来说,就是将用户的查询通过嵌入模型转化为向量,以便与向量数据库中的其他上下文信息进行比对。通过这种相似性搜索,可以找到向量数据库中最匹配的前k个数据,作为当前问题的补充背景信息。2.数据库索引:指的是在离线状态下,从数据来源处获取数据并建立索引的过程。具体而言,构建数据索引包括以下步骤:3.数据索引:包括清理和提取原始数据,将PDF、HTML、Word、Markdown等不同格式的文件转换成纯文本。4.分块:将加载的文本分割成更小的片段。由于语言模型处理上下文的能力有限,因此需要将文本划分为尽可能小的块。5.嵌入和创建索引:这一阶段涉及通过语言模型将文本编码为向量的过程。所产生的向量将在后续的检索过程中用来计算其与问题向量之间的相似度。由于需要对大量文本进行编码,并在用户提问时实时编码问题,因此嵌入模型要求具有高速的推理能力,同时模型的参数规模不宜过大。完成嵌入之后,下一步是创建索引,将原始语料块和嵌入以键值对形式存储,以便于未来进行快速且频繁的搜索。6.增强:接着,将用户的查询和检索到的额外信息一起嵌入到一个预设的提示模板中。7.生成:最后,将给定的问题与相关文档合并为一个新的提示信息。随后,大语言模型(LLM)被赋予根据提供的信息来回答问题的任务。根据不同任务的需求,可以选择让模型依赖自身的知识库或仅基于给定信息来回答问题。如果存在历史对话信息,也可以将其融入提示信息中,以支持多轮对话。文章源链接:https://juejin.cn/post/7341669201008869413(作者:lyc0114)

问:RAG 是什么?

RAG(Retrieval-Augmented Generation),即检索增强生成,是一种结合检索和生成能力的自然语言处理架构,它旨在为大语言模型(LLM)提供额外的、来自外部知识源的信息。简单来说,就是通过检索的模式,为大语言模型的生成提供帮助,从而使大模型生成的答案更符合要求。[heading2]为什么LLM需要RAG?[content]众所周知,大模型已经在很多领域和问题下都取得了很好的效果,那为什么还需要RAG进行检索优化呢?[heading3]LLM的缺点[content]1.LLM无法记住所有知识,尤其是长尾的。受限于训练数据、现有的学习方式,对长尾知识的接受能力并不是很高;长尾数据是指数据集中某些类别数量较少,而其他类别样本数较多的不平衡“长尾”状态。例如在自然语言处理中,一些少见的词汇出现频率很低,而常见的词汇出现频率很高。2.LLM的知识容易过时,而且不好更新。只是通过微调,模型的接受能力其实并不高而且很慢,甚至有丢失原有知识的风险;3.LLM的输出难以解释和验证。一方面最终的输出的内容黑盒且不可控,另一方面最终的结果输出可能会受到幻觉之类的问题的干扰;4.LLM容易泄露隐私训练数据。用用户个人信息训练模型,会让模型可以通过诱导泄露用户的隐私;5.LLM的规模大,训练和运行的成本都很大。[heading3]RAG的优点[content]1.数据库对数据的存储和更新是稳定的,不像模型会存在学不会的风险。2.数据库的数据更新可以做得很敏捷,增删改查可解释,而且对原有的知识不会有影响。3.数据库的内容是明确、结构化的,加上模型本身的理解能力,一般而言数据库中的内容以及检索算法不出错,大模型的输出出错的可能就大大降低。4.知识库中存储用户数据,为用户隐私数据的管控带来很大的便利,而且可控、稳定、准确。5.数据库维护起来,可以降低大模型的训练成本,毕竟新知识存储在数据库即可,不用频繁更新模型,尤其是不用因为知识的更新而训练模型。

Others are asking
有什么AI相关的笔记软件,既可以记录我的想法、灵感,然后AI也可以直接生成对我所写内容的评价(如可以安抚情绪),并且这个笔记软件的检索功能很好用
以下是一些符合您需求的 AI 相关笔记软件: 1. Notion AI:https://www.notion.so/help/guides/category/ai?ref=indigox.me 随着大语言模型的流行,其在智能化方面表现出色。 2. Mem.ai:https://mem.ai/?ref=indigox.me 一款 AI 驱动的笔记工具。 3. Pile:https://udara.io/pile/ 开源且界面美观,助力日记撰写和记录,集成 OpenAI API,具有 AI 搜索和问题解答功能,保证安全隐私。项目源码:https://github.com/UdaraJay/Pile
2025-02-19
coze和dify哪个对知识库的支持更好,检索和总结能力更强
Coze 对知识库的支持具有以下特点: 支持上传和存储外部知识内容,包括从多种数据源如本地文档、在线数据、Notion、飞书文档等渠道上传文本和表格数据。 提供多样化的检索能力,可通过多种方式对存储的内容片段进行高效检索。 具有增强检索功能,能显著提升大模型回复的准确性。 但也存在一些缺点,如跨分片总结和推理能力弱、文档有序性被打破、表格解析失败、对 PDF 的解析效果不佳等。 目前没有关于 Dify 对知识库支持情况的相关内容,无法直接将 Coze 和 Dify 进行对比。
2025-02-15
我想要搭建一个能够帮我阅读并总结提炼,同时能在我提出问题时,随时在我给他提供的知识库中检索的AI Agent,如何用Coze搭建?
搭建能够阅读、总结提炼并在给定知识库中检索的 AI Agent 可以使用 Coze 按照以下步骤进行: 1. 规划 制定任务的关键方法。 总结任务目标与执行形式。 将任务分解为可管理的子任务,确立逻辑顺序和依赖关系。 设计每个子任务的执行方法。 2. 实施 在 Coze 上搭建工作流框架,设定每个节点的逻辑关系。 详细配置子任务节点,并验证每个子任务的可用性。 3. 完善 整体试运行 Agent,识别功能和性能的卡点。 通过反复测试和迭代,优化至达到预期水平。 关于一些其他问题: 1. 如何判断自己的任务/Prompt 是否需要拆解为工作流? 构建稳定可用的 AI Agent 是一个需要不断调试和迭代的过程。通常先从当前性能最强的 LLM(如 ChatGPT4 和 Claude 3.5 sonnet)着手,先用单条 Prompt 或 Prompt Chain 来测试任务的执行质量和稳定性。然后,根据实际执行情况、最终投产使用的 LLM,逐步拆解子任务,降低 LLM 执行单任务的难度,直到达成工程目标。一般对于场景多样、结构复杂、对输出格式要求严格的内容,基本可以预见到需要将其拆解为工作流。此外,如果涉及生成多媒体内容或从网络自主获取额外信息等能力,必然需要通过工作流来调用相应的插件。 2. 只用了一段 Prompt 的 Agent,还算 AI Agent 吗? 算。详见
2025-02-06
deepseek适合做ai知识库检索工具吗
DeepSeek 是基于 AI 模型的产品,只是品牌名,需要搭配具体模型,如 DeepSeek V3(类 GPT4o)和 DeepSeek R1(类 OpenAI o1)。 文本嵌入可用于实现高效的知识检索,相似或相关的字符串在嵌入空间中靠得更近,利用快速向量搜索算法,一个文本语料库可以被分割成块,给定的查询被嵌入后,能进行向量搜索找到最相关的嵌入文本块。 知识库就像 AI 的“活字典”,可以随时更新,例如包含最新新闻、科技发展、法律法规等内容,AI 遇到不确定问题时可从中检索相关信息给出更准确回答,像很火的 AI 搜索就是将整个互联网实时数据作为知识库。 但仅根据上述信息,不能明确判断 DeepSeek 是否适合做 AI 知识库检索工具,还需要综合考虑其具体性能、与您需求的匹配度等多方面因素。
2025-02-06
支持图文检索的知识库应用是哪些
以下是一些支持图文检索的知识库应用: FastGPT:这是一个基于大语言模型(LLM)的知识库问答系统,具有以下特点: 采用先进的 LLM 技术,能理解自然语言并生成高质量答案。 可以连接到外部知识库获取更全面信息。 提供可视化工作流编排工具,方便创建复杂问答场景。 提供开箱即用的数据处理和模型调用功能。 应用场景包括客服问答、知识库搜索、文档生成、数据分析等。 阿里云百炼: 多模态支持,可处理图像、音频和视频等多模态数据。 对话性增强,能处理更复杂的多轮问答。 具有自适应检索策略,能根据上下文和任务需求自动决定检索操作。 能够融合外部知识与内部知识生成更精准回答。 模块化 RAG 形式提供更高定制性和灵活性。 当智能体应用关联结构化知识库时,支持在提问时上传图片,若存在图片索引,系统会将输入图片转为向量并检索相关记录。构建图片索引需新建结构化数据表时将图片索引所在列的字段类型设置为 link,创建结构化知识库时对需要建立图片索引的 link 类型字段在下拉列表中选择图片。
2025-02-06
如何搭建一个知识库自动检索的功能
搭建知识库自动检索功能主要包括以下步骤: 1. 文本预处理:去除无关字符、标准化文本(如转换为小写)、分词等,以清洁和准备文本数据。 2. 嵌入表示:将预处理后的文本(词或短语)转换为向量,通常通过使用预训练的嵌入模型如 Word2Vec、GloVe、BERT 等完成。 3. 特征提取:对于整个问题句子,应用进一步的特征提取技术,如句子级别的嵌入,或使用深度学习模型(如 BERT)直接提取整个句子的表示,以捕捉句子的上下文信息。 4. 向量优化:在某些情况下,问题的向量表示可能会根据具体任务进行优化,例如通过调整模型参数来更好地与检索系统的其他部分协同工作。 在知识库检索阶段: 1. 文档向量化:将知识库转化为一个巨大的向量库。在大模型的检索中,依靠问题在空间中的向量位置,去寻找距离这个向量最近的其他词句,然后完成检索。 2. 配置知识库: 上传文件:在百炼控制台的中的非结构化数据页签中点击导入数据,根据引导上传相关文档。 建立索引:进入,根据引导创建新的知识库,并选择上传的文件,其他参数保持默认。选择向量存储类型时,如果希望集中存储、灵活管理多个应用的向量数据,可选择 ADBPG。 引用知识:完成知识库的创建后,返回进入到创建的应用设置界面,打开知识检索增强开关、选择目标知识库,测试验证符合预期后点击发布。Prompt 中会被自动添加一段信息,以便大模型在后续回答时参考检索出来的信息。 此外,因为利用大模型的能力搭建知识库本身就是一个 RAG 技术的应用。在进行本地知识库的搭建实操之前,需要先对 RAG 有大概的了解。RAG 应用可抽象为 5 个过程:文档加载(从多种不同来源加载文档)、文本分割(把 Documents 切分为指定大小的块)、存储(将切分好的文档块进行嵌入转换成向量的形式,并将 Embedding 后的向量数据存储到向量数据库)、检索(通过某种检索算法找到与输入问题相似的嵌入片)、Output(把问题以及检索出来的嵌入片一起提交给 LLM,LLM 会通过问题和检索出来的提示一起来生成更加合理的答案)。文本加载器则是将用户提供的文本加载到内存中,便于进行后续的处理。
2025-01-26
ai生成短视频
以下是一些根据视频脚本生成短视频的工具: 1. ChatGPT + 剪映:ChatGPT 生成视频小说脚本,剪映根据脚本自动分析出视频所需要素并生成素材和文本框架,能快速实现从文字到画面的转化,节省时间和精力。 2. PixVerse AI:在线 AI 视频生成工具,支持将多模态输入(如图像、文本、音频)转化为视频。 3. Pictory:AI 视频生成器,允许用户提供文本描述来生成相应视频内容,无需视频编辑或设计经验。 4. VEED.IO:提供 AI 图像生成器和 AI 脚本生成器,帮助用户从图像制作视频,并规划内容。 5. Runway:AI 视频创作工具,能将文本转化为风格化的视频内容,适用于多种场景。 6. 艺映 AI:专注于人工智能视频领域,提供文生视频、图生视频、视频转漫等服务,可根据文本脚本生成视频。 这些工具各有特点,适用于不同的应用场景和需求,能帮助内容创作者、教育工作者、企业和个人快速生成吸引人的视频内容。 此外,在运营方面,腾讯运营可以通过 ChatGPT 生成文案,将文案复制到支持 AI 文字转视频的工具内实现短视频自动生成。市面上一些手机剪辑软件如腾讯智影的数字人播报功能、手机版剪映的图文成片功能也支持文字转视频,操作相对简单,让大众生产视频更轻松。在未来,AIGC 视频可能会有更成熟的发展与应用。
2025-02-24
将婴儿彩超图生成照片的AI提示词
以下是关于将婴儿彩超图生成照片的 AI 提示词相关信息: 在图生图功能中,除了文本提词框,还有图片输入口。可将照片拖入,通过反推提示词的按钮(如 CLIP 可反推出完整含义的句子,DeepBooru 可反推出关键词组)获取提示词,但可能存在瑕疵,需手动补充信息。调整宽度和高度使红框匹配图片,并注意提示词相关性和重绘幅度这两个重要参数。 以生成蜘蛛侠生日海报为例,可在 Midjoureny Feed 中寻找优秀案例,复制 prompt 来跑,如使用“baby spider man”“birthday”等关键词。还可将 prompt 交给智谱清言拆解以获取更多关键词。找到满意的图后记录 seed 值保障一致性,为增加专属定制感可增加细节,如“4 岁男孩”“英文名 Andy”“西瓜(儿子的小名)”等。MJ 擅长创意和高质量图片,但细节处理随机,可通过调整“权重”和“局部重绘”解决。
2025-02-24
表格内填充的内容如何批量循环调用大模型生成内容
以下是关于表格内填充内容如何批量循环调用大模型生成内容的相关信息: 大模型生成文字并非一次性输出整段,而是通过反复调用神经网络模型,一个字一个字地续写,直到输出结束符号。其输出不是确定的一个字,而是所有字的概率,可选择概率高的字或随机挑选。 在生成标题、导语、大纲等涉及文本理解与创作的任务时,可通过配置 LLM 节点来实现。为节省 token 消耗和模型调度费用,在满足预期的情况下,应减少大模型处理环节。例如,豆包·function call 32k 模型能在一轮对话中稳定生成这些内容。配置时要关注节点的各项设置,如根据实际情况调大模型的最大回复长度,并设计填入用户提示词。
2025-02-24
内容生成流水线
在 AIGC 与宠物龙养成游戏——DragonX 中,AI 生产发挥了重要作用。整个 Demo 中超过 90%的内容由 AI 生成,涵盖养成(龙的表现、养成材料水晶)、战斗(技能、技能描述、战斗过程、文字表现、战斗背景图)、游历(游历故事、选项、支线故事、故事背景图)、大厅(不同风格 HUD、音频 BGM)等方面。所使用的 AI 生产工具包括:Stable Diffusion 用于生成所有美术素材,如各阶段的龙、水晶材料、背景等;ChatGpt 用于文案内容生成,包括实时的对战、游历故事生成;AIVA 用于音频生成,应用场景为不同 Hud、战斗、游历的 BGM。您可以通过以下系列阅读获取更多信息:
2025-02-24
内容生成工具链
以下是关于内容生成工具链的相关信息: 1. Runway Act One 视频生成 角色通过文本生成,然后使用手机录制视频,将表情、声音和口型转移到虚拟角色上。 由于 Act One 不支持肢体动作转移,使用“图生视频”生成了肢体动作。 支持的视频时长上限为 30 秒。参考链接: 2. 单张图片生成精致 3D 小屋场景 工具链:Midjourney(生成等距图像)→Trellis(图像转 3D 模型)→Browser Lab(浏览器内 3D 编辑器)。 步骤: 使用 Midjourney 生成等距 3D 场景,提示词示例:3D isometric bedroom with a bed and desk。(DALLE 3 也可测试) 用 Trellis 工具将图像转为 3D 模型(支持 Tripo 3D 等其他工具)。工具地址: 下载生成的 3D 模型(GLB 文件或高斯分布文件),然后导入 Browser Lab 编辑器中进一步编辑。编辑器地址: 结合可灵 AI、Hailuo AI、Runway 等工具可让场景中的人物动起来。参考链接: 文字生成视频的 AI 产品 Pika:擅长动画制作,并支持视频编辑。 SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但收费。 Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看: (内容由 AI 大模型生成,请仔细甄别。)
2025-02-24
有没有输入点子可以生成视频文案的多维表格模板
以下是关于输入点子生成视频文案的多维表格模板的相关信息: 概述: 基于其他博主开源的视频生成工作流进行功能优化,实现视频全自动创建。感谢开源,现提供教程参考。 先看效果: 功能: 通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具: 1. Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成) 2. 飞书(消息) 3. 飞书多维表格(字段捷径、自动化流程) 大体路径: 1. 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 2. 发布 coze 智能体到飞书多维表格。 3. 在多维表格中使用字段捷径,引用该智能体。 4. 在多维表格中创建自动化流程,推送消息给指定飞书用户。 获取字节火山 DeepSeek 系列 API 完整教程及使用方法: 邀请可拿 3000 万 tokens,附上宝藏飞书多维表格模板,包括营销类、投资和电商、工具论文效率类、有趣类等,如: 智能体发布到飞书多维表格: 1. 工作流调试完成后,加入到智能体中。可以选择工作流绑定卡片数据,智能体通过卡片回复。 2. 发布时选择需要的发布渠道,重点讲飞书多维表格。记得智能体提示词的 4 个变量,发布时会自动出现,目的是为了在多维表格中选择关联字段。填写上架信息(为快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 多维表格的字段捷径使用: 1. 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,使用自己创建的 Coze 智能体。选择“自动更新”,输入 4 个字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 2. 表单分享,实现填写表单自动创建文案短视频。 自动化推送: 点击多维表格右上角的“自动化”,创建想要的自动化流程。
2025-02-24
dify知识库增强
以下是关于知识库增强的相关内容: 在阿里云百炼中进行知识库增强,主要包括以下步骤: 上传数据: 回到百炼控制台,先上传数据。在导入数据界面,通过本地上传方式将文件作为知识库文件导入。提供了电商服饰类数据()供使用。 创建知识库: 访问,单击创建知识库。填入知识库名称与描述,如设置知识库名称为“百炼手机产品介绍”,描述为“本知识库包含有百炼手机产品的详细介绍”,其它保持默认选项,单击下一步。 单击选择文件,类目位置单击默认类目,文件名称选择提供的文件数据。单击下一步。 数据处理使用默认的智能切分,单击导入完成。当状态为解析完成时,表示知识库创建完毕。 在应用中集成: 访问我的应用,单击已创建应用卡片的管理按钮,进入智能体应用管理界面。单击知识库检索增强按钮,Prompt 中会自动填入让大模型参考知识库的指令。单击配置知识库,然后从列表中选择电商服饰类数据,其它选项保持默认即可。 配置向量存储类型: 选择向量存储类型时,如果希望集中存储、灵活管理多个应用的向量数据,可选择 ADBPG。 检验效果: 有了参考知识,AI 助手就能准确回答关于商品的问题。当智能体应用关联结构化知识库时,支持在提问时上传图片。建图片索引需两步: 1. 新建结构化数据表时,需要将图片索引所在列的字段类型设置为 link。注意:新建数据表后,无法再新增或修改字段类型为 link。 2. 创建结构化知识库时,对于需要建立图片索引的 link 类型字段,在旁边的下拉列表中选择图片。注意:创建知识库后,无法再新建或修改图片索引。
2025-02-13
图片增强的线上工具
以下是一些图片增强的线上工具: 放大/扩图工具: 本地工具放大:https://www.upscayl.org/download SD 放大:扩散模型可以增加更多细节 开源工作流: 开源工作流: stability.ai 的 https://clipdrop.co/tools 画质增强 magnific 遥遥领先:https://magnific.ai/ Krea https://www.krea.ai/apps/image/enhancer Image Upscaler:https://imageupscaler.com/ 佐糖:https://picwish.cn/photoenhancerapi?apptype=apsbdapi&bd_vid=8091972682159211710 腾讯 ARC https://arc.tencent.com/zh/aidemos/humansegmentation?ref=88sheji.cn 腾讯开源的模型,能恢复老照片:https://github.com/TencentARC/GFPGAN 在线测试地址:https://replicate.com/tencentarc/gfpgan 美图老照片修复:https://www.xdesign.com/quality/?channel=sllbd90&bd_vid=11711254260543749686 Imglarger:https://imglarger.com/ Let's Enhance:https://letsenhance.io/ Waifu2x:http://waifu2x.udp.jp/ 移动端图片视觉处理方法: 图像预处理: 图像去噪:使用去噪算法(如高斯滤波、中值滤波)去除图像中的噪声。 图像增强:通过增强算法(如直方图均衡化、对比度增强)提升图像的清晰度和对比度。 图像分割:使用图像分割算法将试卷图像中的书写笔迹和背景分离。常用的分割算法包括阈值分割、边缘检测和基于区域的分割方法。 文字检测:在分割后的图像中,使用文字检测算法(如基于深度学习的文本检测模型)识别出试卷上的文字区域。 文字识别:对检测到的文字区域进行文字识别,将文字内容转换为计算机可处理的文本数据。常用的文字识别技术包括基于深度学习的端到端文本识别模型和传统的 OCR(Optical Character Recognition)技术。 后处理:根据需求进行后处理,如去除残余的噪点、填补文字区域的空白等。 机器学习模型训练(可选):如有足够的数据,可以采用机器学习技术训练模型,通过学习样本中的书写笔迹特征来自动去除试卷上的笔迹。 优化算法:对整个处理流程进行优化,提高处理速度和准确度。可以采用并行计算、硬件加速等方法提升算法的效率。 移动端集成:将设计好的算法和模型集成到移动应用程序中,以实现试卷拍照去除书写笔迹的功能。可以使用移动端开发框架(如 iOS 的 Core ML、Android 的 TensorFlow Lite)来实现模型的部署和调用。 AI 去水印工具: AVAide Watermark Remover:在线工具,支持多种图片格式,操作简单,可去除水印、文本、对象、人物、日期和贴纸等。 Vmake:可上传最多 10 张图片,AI 自动检测并移除水印,适合快速去除水印及社交媒体分享图片。 AI 改图神器:提供 AI 智能图片修复去水印功能,可一键去除图片中的多余物体、人物或水印,支持直接粘贴图像或上传手机图像,操作方便。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-07
增强音频音质去除杂音的AI
以下是关于增强音频音质去除杂音的 AI 相关信息: 当使用 UDIO 进行参考音频 REMIX 生成时,AI 会完整参考音频文件中的所有声音细节,包括噪音。但这可能导致生成的音频包含杂音,如在某些例子中出现奇怪的震荡抖动声。 要更理想地实现音质提升,一个方案是在上传音频给 UDIO 进行 REMIX 之前,使用传统音频处理手段对音频进行降噪和去杂音处理。常用的工具包括 WAVES 的 XNOISE 插件、RX11 音频修复软件以及 Audition 的采样降噪功能等,在 B 站可以找到相关教程。 另外,Resemble Enhance 是一种语音超分辨率 AI 模型,能够清除音频噪声和杂音,恢复音频失真,提升音质,适用于历史录音和存档音频的复原。
2024-11-24
增强音频音质去除杂音
以下是关于增强音频音质去除杂音的相关知识: 在利用 UDIO 的 REMIX 功能进行音质改造时,需要注意以下几点: 1. 当使用 UDIO 进行参考音频 REMIX 生成时,AI 会参考音频文件中的所有声音细节,包括噪音。音频信息越丰富,AI 生成的音频信息可能越多,但也可能产生奇怪的声音影响听感。 2. 为更理想地实现音质提升,在上传音频给 UDIO 进行 REMIX 之前,可使用传统音频处理手段对音频进行降噪和去杂音处理。常用的工具包括 WAVES 的 XNOISE 插件、RX11 音频修复软件以及 Audition 的采样降噪功能等,相关教程可在 B 站查找。 3. 所有的降噪处理都是有损的,会移除一些原有声音的细节,需要通过实践和调参找到平衡。 4. 一副好的耳机和灵敏的耳朵是必备硬件。 在完成音频细节微调时,要全面检查音频质量,重点关注底噪和杂音,使用降噪插件消除残余噪音;关注动态范围和响度,确保合理适中;关注频谱平衡,使用 EQ 调整各频段平衡。还可应用效果器如压缩器、EQ、混响等优化音质和音色,但音频处理细节较为繁琐。
2024-11-24
帮我找个可以免费增强图像清晰度的网站
以下为一些可以免费增强图像清晰度的网站: Kraken.io:主要用于图像压缩,但也提供了免费的图像放大功能,能保证图像的细节清晰度。 Deep Art Effects:强大的艺术效果编辑器,通过 AI 技术能够将图像放大并赋予艺术效果,支持多种滤镜和风格。 Magnific:https://magnific.ai/ ClipDrop:https://clipdrop.co/imageupscaler Image Upscaler:https://imageupscaler.com/ Krea:https://www.krea.ai/ 更多工具可以查看网站的图像放大工具库:https://www.waytoagi.com/category/17 。 另外,RealESRGAN 也是一个基于 RealESRGAN 的图像超分辨率增强模型,但使用几次后要收费。 图像修复放大的流程通常分为三部分: 1. 图像输入:添加 Load Image 节点加载图像,不建议上传大分辨率的图片,以免处理时间过长。 2. 图像高清修复:把原本模糊的图片修复,并进行 2 倍放大。Checkpoint 大模型使用 Iceclear/StableSR,搭配 Stable SR Upscaler 模型能最大程度修复图像。提示词部分应包含想要达到的目的内容。 3. 图像高清放大:针对第一次放大修复后的图像进行二次修复,realisticVision 底膜在重绘扩图放大等领域效果较好,使用提示词反推 node 对图像进行画面提示词提取,搭配 tile ControlNet 提升画面细节感,然后用合适的高清放大模型进行二次放大。
2024-11-22
AIGC技术增强学生创造性问题解决表现的实证研究,这个论文的开题报告怎么写?
很抱歉,目前知识库中没有关于“AIGC 技术增强学生创造性问题解决表现的实证研究”这个论文开题报告的相关内容。但一般来说,开题报告可以包含以下几个部分: 一、选题背景与意义 1. 阐述 AIGC 技术的发展现状和趋势。 2. 说明学生创造性问题解决能力的重要性。 3. 分析 AIGC 技术与学生创造性问题解决能力之间的关联。 二、研究目的与问题 1. 明确研究旨在探究 AIGC 技术对学生创造性问题解决表现的具体影响。 2. 提出具体的研究问题,例如:AIGC 技术如何提升学生的创造性思维?AIGC 技术在不同学科中的应用效果是否存在差异? 三、研究方法 1. 描述拟采用的实证研究方法,如实验、调查、案例分析等。 2. 说明研究对象的选择,包括学生的年级、学科背景等。 3. 介绍数据收集和分析的方法。 四、预期结果与创新点 1. 预测研究可能得出的结果,例如 AIGC 技术能够显著提高学生的创造性问题解决能力。 2. 指出研究的创新之处,比如新的研究视角、独特的研究方法或对现有理论的拓展。 五、研究计划与进度安排 1. 制定详细的研究计划,包括各个阶段的任务和时间节点。 2. 说明可能遇到的困难及解决措施。 六、参考文献 列出与 AIGC 技术和学生创造性问题解决相关的重要文献。 以上内容仅供参考,您可以根据实际研究情况进行调整和完善。
2024-10-09