Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何开始一段为期2个月的AI学习之旅,有较为严格的测试

Answer

如果你想开启一段为期 2 个月的 AI 学习之旅,并且有较为严格的测试,那么你可以尝试以下步骤:

  1. 掌握基础概念和技术:学习如机器学习、深度学习、自然语言处理等的基础知识。这些资源包括:在线课程、书籍、学术论文等。
  2. 实践项目:在掌握了基础知识后,尝试完成一些实践项目,如构建一个简单的机器学习模型、实现一个自然语言处理任务等。这将帮助你巩固所学知识,并提高你的实践能力。
  3. 参加竞赛:参加一些 AI 相关的竞赛,如 Kaggle 竞赛、天池竞赛等。这将帮助你提高你的实践能力,并让你接触到更多的真实场景和问题。
  4. 学习高级技术:在掌握了基础知识和实践能力后,尝试学习一些高级技术,如强化学习、生成式对抗网络等。这些技术将帮助你更好地理解 AI 的前沿领域,并为你的职业发展打下坚实的基础。
  5. 参加实习或工作:如果你有机会参加实习或工作,那么这将是一个非常好的学习机会。在实习或工作中,你将接触到真实的项目和问题,并有机会与其他专业人士合作,提高你的实践能力和职业素养。 总之,学习 AI 需要不断地学习和实践,并且需要不断地更新自己的知识和技能。希望以上建议对你有所帮助。
Content generated by AI large model, please carefully verify (powered by aily)

References

Others are asking
用ai作图
以下是关于用 AI 作图的相关内容: 参加比赛的要求: 参加由麦乐园和摩达社区发起的“AI 梦一单一世界”比赛,需用摩搭平台和麦橘超然模型作为底膜训练 Lora,提交训练好的 Lora 及用其生成的六张以上高质量、展现完整世界观的作品。 作图思路: 1. 明确创作主题即锚点,根据 Lora 风格确定创作方向。 2. 确定主体,联想主体的角色设定。 3. 增加叙事感,让画面有一到两个及以上角色,制造反差和联想。 图片构成因素: 好看的图片的构成因素包括构图、色彩以及光影。 构图: 1. 概念:构图指在框架或空间内元素的摆放位置、形状、物体形状及纹理等,好的构图能引导观看者并创造和谐平衡。 2. 分类:包括景别(远景、全景、中景、近景、特写)和拍摄视角(俯视、平视、仰视,正面、侧面、背面)。 3. 要素:有主体、陪体、前景、背景、点线面,合理运用可丰富画面。 4. 方式:如点中心构图、九宫格构图、三分法构图、对称构图、对角线构图、曲线构图、框架构图、三角形构图等。在 AI 绘图中,推荐中景及以上景别,全身景别可能需开 AD 跳以确保作图质量。 创作有趣作品: 通过运用反差制造有冲击力的画面,创作出有叙事感和趣味性的作品。 提示词编写方法: 用自然语言详细描述画面内容,避免废话词,Flux 对提示词的理解和可控性强。 实操演示: 以未发布的 Lora 为例,按赛题需求先确定中式或日式怪诞风格的创作引子。从汉服女孩入手,逐步联想其颜色、发型、妆容、配饰、表情、背景等元素编写提示词。 电商应用: 对于运营网店的女装店主,若没有钱请模特,可以用 Stable Diffusion 初步制作商品展示图。比如卖绿色淑女裙,可先真人穿衣服拍照,拿到真实质感的照片(若身材有问题可借助美图秀秀或 PS),选好真人照片风格的底模(如 majicmixRealistic_v7),根据不同平台换头(如面向海外市场换白女头),在图生图下的局部重绘选项卡下涂抹自己替换的部分,并编写相关提示词(如 breathtaking cinematic photo,masterpiece,best quality,,blonde hair,silver necklace,carrying a white bag,standing,full body,detailed face,big eyes,detailed hands)。
2025-02-24
想要搜集社交媒体的爆款,建立对标账号库和选题库,该如何高效搜索?是否有可使用的AI工具?
以下是高效搜集社交媒体爆款、建立对标账号库和选题库的方法及可使用的 AI 工具: 1. 对于找对标账号的爆款文章: 在电脑微信上打开对标账号的微信公众号相关界面。手机支持长截图也可,但不推荐,因手机易被干扰。 刷文章时不仅看当前文章,还应点开作者后台查看其他文章,关注“低粉爆款”(即平常阅读量几百,突然有几万阅读量的异常值文章),大号的阅读量参考价值较低。 遇到不错的对标账号,想获取所有阅读量数据和标题时,可使用长截图结合中文识别能力强的大模型,如 kimichat,飞书客户端自带的长截图功能好用,其截图快捷键在设置中可查看和修改(Windows 为 Ctrl+Shift+A,Mac 为 Alt+Shift+A)。 2. 搭建选题库和标题库: 使用飞书文档创建一个文档,并打开选题库模板(https://zi6nfl20s5u.feishu.cn/wiki/J7KvwzJZLi7mX0k5B5EcQ0ahnIc?from=from_copylink),根据自身需要制作表格。 3. 可使用的 AI 工具:腾讯元宝,这是一个基于腾讯混元大模型的 AI 助手 App,提供包括 AI 搜索、AI 总结、AI 写作等多种功能,能在公众号等平台搜索和总结相关内容,使用提示词句式“去公众号搜索关于「xxx」的文章”。
2025-02-24
ai修图变清晰
以下是关于使用 AI 修图变清晰的方法: 1. 将照片放入后期处理中,使用 GFPGAN 算法将人脸变清晰。您可以参考文章——。但此步骤无法将照片中的头发、衣服等元素变清晰。 2. 将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的。您可以参考文章——。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可以不写以免干扰原图。 3. 启用 MutiDiffusion 插件,不开放大倍数,仅使用分块渲染功能,可在显存不够时将图片放大到足够倍数。 4. 对于复杂照片,可先在 ps 里调整角度和裁切,然后使用上述步骤上色。若直接上色效果不佳,可放弃人物服装颜色指定,只给场景方向,让 AI 自行决定。比如加入第二个 controlnet 控制颜色,使用 t2ia_color 模型,给出简单关键词如“蓝天、绿树、灰石砖”。 另外,在 Stable Diffusion 中,AI 出图默认分辨率为 512x512,用于商业不够。提高最终出图分辨率的方法之一是高清修复:在文生图功能中有内置的高清修复(HiresFix)功能,将初始分辨率设为 800x420,选择放大倍率为 2,理论上放大倍率越高图片越清晰,但实际效果与电脑配置和显卡显存有关。先以 800x420 画图,获取种子值并填入随机数种子固定图片,放大时算法选择需根据绘图风格,二次元可选 RESRGAN 4x+Anime6B,写实类可选 RESRGAN 4x+。
2025-02-24
AI测试工具
以下是一些常见的 AI 测试工具: 1. PlaywrightAI 自动化测试工具:这是一个 Hackathon 项目,通过 Antropic AI 的 Claude Computer Use 实现自然语言驱动的 UI 自动化测试。优点是降低编写自动化测试脚本成本,局限是稳定性不足、容易误报或遗漏,且成本较高。 2. 基于规则的测试生成工具: Randoop:基于代码路径和规则生成测试用例,适用于 Java 应用程序。 Pex:微软开发的智能测试生成工具,自动生成高覆盖率的单元测试,适用于.NET 应用。 Clang Static Analyzer:利用静态分析技术识别代码模式和潜在缺陷,生成相应的测试用例。 Infer:Facebook 开发的静态分析工具,自动生成测试用例,帮助发现和修复潜在错误。 3. 基于机器学习的测试生成工具: DeepTest:利用深度学习模型生成自动驾驶系统的测试用例,模拟不同驾驶场景,评估系统性能。 DiffTest:基于对抗生成网络(GAN)生成测试用例,检测系统的脆弱性。 RLTest:利用强化学习生成测试用例,通过与环境交互学习最优测试策略,提高测试效率和覆盖率。 A3C:基于强化学习的测试生成工具,通过策略梯度方法生成高质量测试用例。 4. 基于自然语言处理(NLP)的测试生成工具: Testim:AI 驱动的测试平台,通过分析文档和用户故事自动生成测试用例,减少人工编写时间。 Test.ai:利用 NLP 技术从需求文档中提取测试用例,确保测试覆盖业务需求。 Selenium IDE + NLP:结合 NLP 技术扩展 Selenium IDE,从自然语言描述中生成自动化测试脚本。 Cucumber:使用 Gherkin 语言编写的行为驱动开发(BDD)框架,通过解析自然语言描述生成测试用例。 此外,还有一些 AI Prompts 测试框架: 1. PromptPal:专为 AI 领域中的初创公司和个人开发者设计的提示管理工具,作为集中化平台,便于管理提示,实现协作和优化工作流程。特点包括本地部署和云原生、简易设置、数据库支持、SDK 支持、提示跟踪与分析、协作工具。 2. ChainForge:开源的可视化编程环境,专门用于测试大型语言模型(LLMs)的提示。特点有多模型测试、响应质量比较、评估指标设置、多对话管理。 3. Promptknit:为 AI Prompts 测试提供服务的平台。
2025-02-24
有没有什么可以用于会议纪要整理的AI软件
以下是一些可以用于会议纪要整理的 AI 软件: 1. 团队会议总结 Vowel:https://www.vowel.com/ 2. Personalized AI,Everywhere.:https://www.augment.co/?ref=superhuman1_mar23&utm_source=superhuman.beehiiv.com&utm_medium=newsletter&utm_campaign=thisaicanhackinterviews 3. Noty 会议总结为待办事项:https://noty.ai/ 4. The 6 Best AI Tools for Meeting Notes in 2024:https://www.meetjamie.ai/blog/the6bestaimeetingtools 5. The smartest AI team assistant Sembly AI:https://www.sembly.ai/ 6. Briefly: AI meeting summary&email follow up Chrome 应用商店:https://chrome.google.com/webstore/detail/brieflyaimeetingsummar/bjmgcelbpkgmofiogkmleblcmecflldk 7. Welcome fireflies.ai:https://app.fireflies.ai/ 8. Noota Screen Recorder&Meeting Assistant Chrome 应用商店:https://chrome.google.com/webstore/detail/nootascreenrecordermee/eilpgeiadholnidgjpgkijfcpaoncchh 9. Read Meeting Reports:https://app.read.ai/analytics/meetings 10. Read Create Workspace:https://app.read.ai/analytics/settings/workspace/new 11. 10 AI Notes Taking Tool to Summarize Meetings in Seconds Geekflare:https://geekflare.com/ainotestakingtools/ 此外,还有以下免费的会议语音转文字工具,不过大部分有使用的时间限制,超过一定的免费时间后可能需要付费: 1. 飞书妙记:https://www.feishu.cn/product/minutes 2. 通义听悟:https://tingwu.aliyun.com/home 3. 讯飞听见:https://www.iflyrec.com/ 4. Otter AI:https://otter.ai/ 更多会议记录工具请访问网站:https://waytoagi.com/sites/category/29 。请注意,内容由 AI 大模型生成,请仔细甄别。
2025-02-24
清华AI幻觉
以下是关于清华 AI 幻觉的相关信息: 在 AI 领域,特别是大型语言模型(LLM)中,幻觉是一个常见的问题。LLM 会产生幻觉,编造事实性信息,原因在于它们本质上是在模仿训练数据中的统计模式,而非真正理解或检索知识。例如,模型在训练数据中学习到“who is X”类型的问题通常有确定的答案,所以即使面对未知问题,也会倾向于编造答案以符合训练数据的风格。 对于幻觉问题,有一些研究和应对方法。牛津大学的研究重点关注了幻觉的一个分支——虚构症,通过生成一个问题的多个答案,并使用另一个模型根据相似含义分组来衡量 LLM 不确定性。Google DeepMind 推出了 SAFE,通过将 LLM 响应分解为单个事实、使用搜索引擎验证事实以及对语义相似的陈述进行聚类来评估 LLM 响应的真实性。同时,OpenAI 推出了 CriticGPT,它使用基于大量有缺陷输入数据集进行训练的 GPT 式 LLM 来发现其他 LLM 生成的代码中的错误。 此外,清华大学在这方面也有相关研究,如“DeepSeek 与 AI 幻觉”。但关于其具体内容,您可以通过相关链接进一步了解。
2025-02-24
如果借助AI开启2周岁女儿的绘本启蒙之旅
对于借助 AI 开启 2 周岁女儿的绘本启蒙之旅,目前知识库中没有相关的直接内容。但以下是一些可能的建议: 首先,可以利用 AI 生成简单、有趣、色彩鲜艳的绘本故事,内容可以是关于小动物、日常生活中的常见事物等,以吸引孩子的注意力。 其次,通过语音交互的 AI 工具,为孩子朗读绘本故事,培养孩子的听力和语言感知能力。 还可以借助具有互动功能的 AI 应用,让孩子在观看绘本的过程中进行一些简单的操作,增强参与感。 希望这些建议能对您有所帮助。
2024-12-21
帮我制定《通往AGI之路》的学习规划。并在为期一个月内将内容全部学完并掌握AI基本操作技巧
以下是为您制定的为期一个月的《通往 AGI 之路》学习规划: 第一周: 了解并选择感兴趣的学习小组,如 AI 音乐之路、关键词学社(AI 绘画)、SD 学社(AI 绘画)、AI 视频学社等。按照相应要求进群,如添加微信或飞书群,并备注相关信息。 第二周: 熟悉所选学习小组的活动规则和学习内容。 对于 AI 绘画相关的小组,开始学习相关软件的基本操作。 第三周: 积极参与小组活动,如根据关键词出图测试、案例实操等。 尝试将所学应用到实际操作中,如创建图像流智能体等。 第四周: 总结所学知识和实践经验。 巩固 AI 基本操作技巧,确保能够熟练运用。 在学习过程中,要注重学以致用,通过学习、分享不断填补知识的缝隙,成长进步。同时,要记住“少就是多”“先有个初识”“目录索引推荐”“兴趣最重要”“先动手”等学习要点,找到适合自己的学习路径。
2024-10-23
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?
以下是一些您可以从以下角度开发产品来赋能兼职督学岗位的工作效率,并锻炼您的 AI 能力,以争取上司或老板为产品支付报酬: 1. 利用 Coze 的多语言模型支持,为解答高中生学习方法等疑问提供更准确和全面的回答。 2. 借助插件系统,集成与学习相关的插件,如学习资料查询、学习工具推荐等,丰富服务内容。 3. 运用知识库功能,上传各类学科知识点、优秀学习案例等,方便在服务中快速调用和推送。 4. 利用数据库和记忆能力,记住每个高中生的学习情况和需求,提供个性化服务。 5. 设计工作流,例如自动发送测试卷、自动通知后端制作学习计划、自动推送学习计划链接等流程,提高工作效率。 6. 采用多代理模式,针对不同学科或学习阶段设置专门的代理,提供更精准的服务。 7. 利用 Coze 易于发布和分享的特点,将服务产品推广给更多需要的高中生和督学人员。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?又该如何将它推销给上司?
以下是关于您利用 Coze 和 DeepSeek 等 AI 接入飞书来赋能兼职督学岗位工作效率的一些建议: 开发产品的角度: 1. 智能答疑系统:利用 AI 技术,对高中生常见的学习方法疑问进行自动分析和回答,提高答疑效率和准确性。 2. 个性化测试卷生成:根据学生的学习情况和需求,通过 AI 生成个性化的测试卷。 3. 学习计划优化:基于学生提交的测试卷结果,利用 AI 更精准地制定学习计划。 4. 知识点精准推送:运用 AI 分析学生的学习进度和薄弱环节,定期推送更具针对性的知识点。 5. 打卡提醒优化:通过 AI 实现更灵活、个性化的打卡提醒方式。 推销给上司的方法: 1. 展示效率提升:详细说明产品如何大幅提高兼职督学的工作效率,节省人力和时间成本。 2. 个性化服务优势:强调产品能够为高中生提供更个性化、精准的服务,提升学习效果。 3. 数据支持:提供相关的数据和案例,证明 AI 赋能后的积极效果。 4. 成本效益分析:说明开发和使用该产品的成本相对较低,而带来的收益显著。 5. 未来发展潜力:阐述产品在不断优化和拓展功能方面的潜力,适应更多的教育需求。 另外,Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。它具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式、免费使用、易于发布和分享等特点。这些特点可以为您的产品开发提供有力支持。
2025-02-18
移动端自动化测试框架
很抱歉,目前知识库中没有关于移动端自动化测试框架的相关内容。但一般来说,常见的移动端自动化测试框架有 Appium、Espresso、XCUITest 等。Appium 支持多种移动平台和编程语言;Espresso 是 Android 平台的专用框架,具有高效和稳定的特点;XCUITest 则是用于 iOS 平台的测试框架。您可以根据您的具体需求和项目情况选择适合的框架。
2025-02-15
AI 在生成单元测试代码方面有什么新的进展与方向?
AI 在生成单元测试代码方面有以下新的进展与方向: 1. 基于规则的测试生成: 测试用例生成工具:如 Randoop 可基于代码路径和规则为 Java 应用程序生成测试用例,Pex 是微软开发的能为.NET 应用自动生成高覆盖率单元测试的工具。 模式识别:Clang Static Analyzer 利用静态分析技术识别代码模式和潜在缺陷来生成测试用例,Infer 是 Facebook 开发的能自动生成测试用例以帮助发现和修复潜在错误的工具。 2. 基于机器学习的测试生成: 深度学习模型:DeepTest 利用深度学习模型为自动驾驶系统生成测试用例以模拟不同驾驶场景并评估系统性能,DiffTest 基于对抗生成网络(GAN)生成测试用例来检测系统的脆弱性。 强化学习:RLTest 利用强化学习生成测试用例,通过与环境交互学习最优测试策略以提高测试效率和覆盖率,A3C 是基于强化学习通过策略梯度方法生成高质量测试用例的工具。 3. 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:Testim 是 AI 驱动的测试平台,能通过分析文档和用户故事自动生成测试用例以减少人工编写时间,Test.ai 利用 NLP 技术从需求文档中提取测试用例以确保测试覆盖业务需求。 自动化测试脚本生成:Selenium IDE 结合 NLP 技术可从自然语言描述中生成自动化测试脚本,Cucumber 使用 Gherkin 语言编写的行为驱动开发(BDD)框架能通过解析自然语言描述生成测试用例。 此外,峰瑞资本投资的 AI Coding 创业公司 Babel 专注于 AI Agent 的研发,其核心产品 Test Gru 已在美国上线,能为客户自动生成单元测试,客户侧 PR 接受率约为 70%。还有如 Cursor 等工具,可借助其生成测试代码提升代码可靠性,但使用时也需注意方法,如使用 Git 管理代码版本、对 AI 代码进行 Review 等。
2025-02-14
AI 测试
以下是关于 AI 测试的相关内容: 如何让 AI 写出想要的代码: 把项目中影响 AI 输出方向的“规矩”写下来,按照项目需求优化内容和结构。关键部分包括:先说清楚自己是谁,告诉 AI 要干什么,定好项目的“规矩”,明确文件放哪,指定用什么“工具”,告诉 AI 怎么做测试,推荐参考资料,若项目涉及画页面补充 UI 要求。 AI 生成测试用例的方法和工具: 基于规则的测试生成: 测试用例生成工具:Randoop 适用于 Java 应用程序,Pex 适用于.NET 应用。 模式识别:Clang Static Analyzer 利用静态分析技术,Infer 帮助发现和修复潜在错误。 基于机器学习的测试生成: 深度学习模型:DeepTest 模拟驾驶场景,DiffTest 检测系统脆弱性。 强化学习:RLTest 提高测试效率和覆盖率,A3C 生成高质量测试用例。 基于自然语言处理(NLP)的测试生成: 文档驱动测试生成:Testim 减少人工编写时间,Test.ai 确保测试覆盖业务需求。 自动化测试脚本生成:Selenium IDE+NLP 从自然语言描述生成自动化测试脚本,Cucumber 通过解析自然语言描述生成测试用例。 图灵测试游戏:游戏参与者有人类和 AI,通过互相提问和答题协助裁判判断身份,初始人类和 AI 各有 3 点生命值,被认为更像 AI 的一方扣 1 点生命值,生命值为 0 时游戏结束。加入辩论环节,可反驳裁判初步判断。游戏已在 coze 上开发,国内版和国外版的链接分别为: ,国外平台昨天开始收费,已从 32k 降级为 8k 。
2025-02-10