Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

deepseek本地私有化部署

Answer

对于 DeepSeek 本地私有化部署,以下是详细的指南:

一、企业级部署前的准备

在进行企业级部署之前,首先需要根据实际业务场景评估所需部署的模型规格以及所需的服务器资源,即进行资源预估。同时,还需要评估业务场景是否需要对模型进行二次开发。

二、Ollama 部署 DeepSeek

  1. Ollama 安装 Ollama 是本地运行大模型的工具,支持在 Mac、Linux、Windows 上下载并运行对应的模型。安装完成后,在对应的命令行输入,若输出 Ollama version is 0.5.7,则表示安装成功。

  2. DeepSeek 模型安装 Ollama 安装成功后,访问 Ollama 的官网查找要安装的模型。选择适合当前机器配置的模型参数,然后拷贝对应的执行命令。命令行终端直接执行对应的命令,若出现相应对话内容,表示当前 DeepSeek 已在本地可正常运行。

  3. nomic-embed-text 模型安装 还需要部署 nomic-embed-text 模型,这是一个文本向量化的模型,主要用于后续基于 Dify 做向量化检索时使用。

  4. 部署图形化客户端 部署完 DeepSeek 后,若想使用图形化工具聊天,可选择多种 UI 工具,如 ChatBox 客户端、AnythingLLM 客户端、Open WebUI 客户端、Cherry Studio 客户端、Page Assist 客户端等。以 ChatBox 为例,直接访问其官网下载对应的客户端,在 ChatBox 的设置中填写 Ollama API 的地址和对应的模型名称,保存后即可在新对话框中选择要运行的模型开始对话。

三、部署 Dify

  1. Dify 介绍 Dify 是一款开源的大语言模型应用开发平台,融合了后端即服务和 LLM Ops 的理念,即使是非技术人员也能参与到 AI 应用的定义和数据运营过程中。

  2. 运行 Dify Dify 的部署需要本地先支持 Docker 和 Git 的依赖环境,然后在对应的终端直接执行相关代码即可运行。

  3. 添加模型 Dify 启动成功后,浏览器访问 http://localhost ,新建账号密码。在右上角 admin 处点击设置,新增本地模型配置。添加 LLM 模型为 deepseek-r1:7b,基础 URL 为 http://host.docker.internal:11434 。同时添加之前安装的 nomic-embed-text 模型,添加完成后可在模型列表中看到已添加的模型信息。

Content generated by AI large model, please carefully verify (powered by aily)

References

DeepSeek企业级部署实战指南:从服务器选型到Dify私有化落地

对于个人开发者或尝鲜者而言,本地想要部署DeepSeek有很多种方案,但是一旦涉及到企业级部署,则步骤将会繁琐很多。比如我们的第一步就需要先根据实际业务场景评估出我们到底需要部署什么规格的模型,以及我们所要部署的模型,到底需要多少服务器资源来进行承接,也就是资源预估先行。预估完我们的服务器资源以后,还需要评估我们的业务场景是否需要二次开发模型。如果只是简单的微调模型就可以符合我们的业务需求,那么使用Ollama、LM Studio、GTP4All或许就可以满足我们的诉求。但是如果需要对模型进行定制化开发,则需要考虑进行模型的原生部署。所以本篇文章主要解决四个问题:1.如何合理评估我们的服务器资源2.Ollama部署指定版本的DeepSeek3.原生部署DeepSeek4.搭建Dify构建企业内的私有知识库、工作流

DeepSeek企业级部署实战指南:从服务器选型到Dify私有化落地

Ollama是本地运行大模型的一款工具,支持在Mac、Linux、Windows上下载并运行对应的模型。[heading2]Ollama安装[content]Ollama安装完成后,在对应的命令行输入:此时输出Ollama version is 0.5.7,则表示安装成功。[heading2]DeepSeek模型安装[content]Ollama安装成功后则访问Ollama的官网查找我们要安装的模型1、[访问Ollama官网](https://ollama.com/library/deepseek-r1:7b)2、选择适合当前机器配置的模型参数,然后拷贝对应的执行命令即可1.命令行终端直接执行对应的命令恭喜!出现上述的对话内容,表示当前DeepSeek已经在你本地可以正常运行了。[heading2]nomic-embed-text模型安装[content]此时我们需要另外再部署一个新的模型,nomic-embed-text,这是一个文本向量化的模型,主要是后续基于Dify做向量化检索时使用。[heading2]部署图形化客户端[content]有些同学在部署完DeepSeek后就想直接找个UI工具和DeepSeek聊天了,而不是一直在对应的命令行工具中聊天。此时我们直接部署一套UI工具,连接我们的DeepSeek模型即可。可以连接DeepSeep模型的UI工具有很多:1.ChatBox客户端(图形化界面)支持Web网页,也支持本地客户端。2.AnythingLLM客户端(图形化界面)3.Open WebUI客户端(图形化界面)支持Web网页,类似ChatGPT。4.Cherry Studio客户端(图形化界面)5.Page Assist客户端(浏览器扩展)支持「联网搜索」此时我们以ChatBox为例,直接访问对应的[官网](https://chatboxai.app/zh)下载对应的客户端即可下载完成后我们在ChatBox的设置中填写Ollama API的地址和对应的模型名称,然后保存即可。然后我们直接打开一个新的对话框,选择要运行的模型即可开始对话。

DeepSeek企业级部署实战指南:从服务器选型到Dify私有化落地

Dify是一款开源的大语言模型(LLM)应用开发平台。它融合了后端即服务(Backend as Service)和LLMOps的理念,使开发者可以快速搭建生产级的生成式AI应用。即使你是非技术人员,也能参与到AI应用的定义和数据运营过程中。由于Dify内置了构建LLM应用所需的关键技术栈,包括对数百个模型的支持、直观的Prompt编排界面、高质量的RAG引擎、稳健的Agent框架、灵活的流程编排,并同时提供了一套易用的界面和API。这为开发者节省了许多重复造轮子的时间,使其可以专注在创新和业务需求上。简单来说如果你想使用模型构建自己的RAG知识引擎或者流程编排,那你少不写一堆LangChain的代码,但是Dify将这块业务进行了封装,你只需要在可视化的页面上操作,便可以实现相同的效果,快速的构建出自己的AI应用。[heading2]运行Dify[content]Dify的部署需要我们本地先支持Docker和Git的依赖环境,然后我们在对应的终端直接执行下面的代码,便可以直接运行Dify[heading2]添加模型[content]Dify启动成功后,我们直接浏览器访问:[http://localhost](http://localhost/)此时进入到Dify的主页面会提示新建账号密码,账号密码新建完成后,在右上角admin处点击设置,然后新增我们的本地模型配置。此处添加LLM模型为deepseek-r1:7b,基础URL为:[http://host.docker.internal:11434](http://host.docker.internal:11434/)添加完LLM模型后,我们再新增一个Text Embedding模型,还记得最开始我们使用ollama还安装了一套nomic-embed-text模型吗?对的,就是在这里使用的。两个模型都添加完以后,就可以在模型列表中看到我们已经添加的模型信息了

Others are asking
突破deepseek r1
DeepSeek R1 是一款具有震撼性突破的 AI 模型,由一家纯粹的中国公司开发。其突破之处包括: 1. 强大:具有比肩 O1 的推理能力,暂时无出其右。 2. 便宜:参数少,训练开销与使用费用大幅降低。 3. 开源:任何人都可自行下载与部署,提供论文详细说明训练步骤与窍门,还有可运行在手机上的 mini 模型。 4. 免费:官方提供的服务完全免费,任何人随时随地可用。 5. 联网:是暂时唯一支持联网搜索的推理模型(O1 尚不支持)。 6. 本土:由没有海外经历甚至没有资深从业经验的本土团队开发完成。 如果您看到相关信息,您可以采取以下行动: 1. 直接访问网页链接或使用移动 APP 马上用起来。 2. 使劲用、疯狂用,尝试用它基本取代传统搜索,把各种需要请教的问题都拿去问它。 3. 去看看别人是怎么用的,试试其他大模型,了解 AI 擅长和不擅长的方面,以及如何调教,继续解锁与迭代属于自己的用法与更多工具。 获取字节火山 DeepSeek 系列 API 的完整教程及使用方法如下: 1. 2 月 14 日 8 点直播进行中:火山引擎解决方案专家带大家在 Coze 搭建满血版 R1 bot,直播结束可看回放:。 2. 学习文档:。 3. 模板更新了: 可以复制。 使用时的注意事项: 如果发布到公共空间,其他人用的是您的 API,要注意 Token 消耗(也可以设置成仅自己使用)。如果想搭建联网及复杂的工作流,可以看完整搭建教程:。创建账号时,如果是普通账号,请自行升级或注册专业号后使用。创建智能体时,点击创建,先完成一个智能体的创建。如果在最上面的教程里已经创建好自己的推理点,那么直接在 Bot 编排里就可以直接看到和选择创建好的推理模型,测试可用后直接发布。
2025-02-23
我是0基础代码小白,我希望快速编写一款APP,满足我所需要的要求,我用deepseek生产app开发者文档,然后用bolt.new工具开发,开发到一半,发现要收费,给我中断了,我该怎么办
对于您这种 0 基础代码小白在开发 APP 过程中遇到收费中断的情况,以下是一些建议: 1. 重新评估您的需求和能力:像案例中的白九龄一样,思考您的想法是否过于复杂,是否可以先从简单的插件开发入手,降低开发难度。 2. 学习基础知识:包括代码环境安装、终端操作等,通过基础实践教程资料来弥补知识短板。 3. 借鉴他人成功经验:仔细研究别人的项目,按照成功的案例原封不动地去实现,从中领悟开发的要点。 4. 清晰描述需求:在开发前与工具充分沟通,明确需求和实现步骤,避免盲目开发。 5. 寻找免费替代工具:既然当前使用的工具收费中断,您可以寻找其他类似的免费工具来继续您的开发工作。 6. 做好项目记录:让工具帮忙写一个 README 文档,记录项目进展、下一步计划以及如何开启和关闭项目,方便后续跟进。
2025-02-23
DeepSeek私有化部署分享
以下是关于 DeepSeek 私有化部署的详细内容: 对于个人开发者或尝鲜者,本地部署 DeepSeek 有多种方案,但企业级部署较为繁琐。 企业级部署需先评估服务器资源,包括模型参数量(影响模型智能化程度,参数量越高耗费资源越多)、模型序列长度(一次能处理的最大 Token 数,决定问题输入的最大长度限制)、模型量化类型(参数精度,值越大精度越准确、智能化程度越高)。了解这些基本概念后,可通过配置计算器工具(https://tools.thinkinai.xyz//servercalculator )评估服务器资源。 Ollama 部署 DeepSeek 的步骤如下: 1. 安装 Ollama:支持在 Mac、Linux、Windows 上下载并运行对应的模型,安装完成后在对应的命令行输入,若输出“Ollama version is 0.5.7”则表示安装成功。 2. 安装 DeepSeek 模型:Ollama 安装成功后访问 Ollama 官网查找要安装的模型,选择适合当前机器配置的模型参数,拷贝对应的执行命令。命令行终端直接执行对应的命令,出现相关对话内容表示 DeepSeek 可在本地正常运行。 此外,还可部署 nomicembedtext 模型,这是一个文本向量化的模型,用于后续基于 Dify 做向量化检索。 部署完 DeepSeek 后,若想使用图形化客户端,可选择多种工具,如 ChatBox、AnythingLLM、Open WebUI、Cherry Studio、Page Assist 等。以 ChatBox 为例,访问其官网(https://chatboxai.app/zh )下载客户端,在设置中填写 Ollama API 的地址和对应的模型名称并保存,即可在新对话框中选择运行的模型开始对话。 本篇文章主要解决四个问题: 1. 如何合理评估服务器资源。 2. Ollama 部署指定版本的 DeepSeek。 3. 原生部署 DeepSeek。 4. 搭建 Dify 构建企业内的私有知识库、工作流。
2025-02-23
deepseek如何整合在飞书中
DeepSeek 整合在飞书中的相关信息如下: 2 月 19 日:《DeepSeek 最新论文科普解读:NSA,物美价廉的超长上下文方案》介绍了 DeepSeek 最新论文提出的“Native Sparse Attention”(NSA),一种高效的超长上下文方案,显著提升模型性能。《输入观点一键生成文案短视频》介绍了基于 Coze 平台的视频生成工作流,通过集成 DeepSeek R1 模型等技术,用户可通过表单输入主题观点自动生成短视频并推送至飞书消息。 2 月 10 日:《最好的致敬是学习:DeepSeekR1 赏析》专为非技术人群设计,介绍了 R1 和 V3 的技术亮点等。《DeepSeek 创新源于芯片封锁,Anthropic 或成最大输家;美国不是通过创新竞争,而是通过封锁竞争》探讨了 DeepSeek 的崛起及相关情况。《喂饭级教程:飞书多维表格+DeepSeek=10 倍速用 AI》介绍了将飞书多维表格与 DeepSeek R1 结合提升工作效率的方法。 获取字节火山 DeepSeek 系列 API 完整教程及使用方法:2 月 14 日 8 点有直播,直播结束可看回放。学习文档有《突破 DeepSeek R1 能力天花板,火山引擎扣子+飞书一站式企业解决方案》。模板可在复制。创建账号时普通账号需自行升级或注册专业号。创建智能体时点击创建先完成一个智能体的创建。若已创建好推理点,可在 Bot 编排里直接看到和选择创建好的推理模型。测试可用后直接发布,注意发布到公共空间时他人使用 API 会消耗 Token,可设置为仅自己使用。若想搭建联网及复杂的工作流,可看《韦恩:被困在离线孤岛?DeepSeek 联网版我已经用扣子实现了!!不卡顿!!》。
2025-02-23
deepseek+飞书
以下是关于 deepseek 和飞书的相关信息: AI 切磋大会第十期于 2 月 23 日举行 deepseek 专场,活动流程为 13:00 17:30。其中 14:40 16:30 分城市各自案例分享,征集案例方向包括使用 deepseek 做了什么、用 DeepSeek 运用在工作生活上的案例、DeepSeek 输出“超预期结果”的惊艳场景、看到别人使用的案例也可以分享,以及分享使用方法技巧,如使用 deepseek 技巧、DeepSeek 与其他工具的协同方案、模型微调/部署的技巧方法、用 deepseek 获取流量/客户等。还提到了应急预案,如分享者临时缺席预设 1 2 名备用嘉宾,冷场设定互动话题,主持人引导讨论。16:30 17:30 为 Workshop 自由探讨,活动流程包括参与者自由组队(设定匹配预案)、确定项目方向(围绕 DeepSeek 的应用)、进行 Workshop 讨论(头脑风暴+落地方案)、提交项目初稿(用飞书文档记录),工具推荐 DeepSeek + 飞书多维表格、DeepSeek + 扣子,应急预案包括讨论无方向设定 2 3 个标准问题引导,分组混乱预设 3 5 个热门主题,参与者自行加入。 DeepSeek + 阿里云实训营全新升级上线,2025 年 2 月 20 日周四下午两点开课,在线直播。官网会议链接为 https://sme.aliyun.com/live?spm=5176.29677750.J_wilqAZEFYRJvCsnM5_P7j.1.65e5154aMqiYrq&scm=20140722.M_10776450.P_117.MO_3931ID_10775537MID_10775537CID_32667ST_12908PA_se@1020146183V_1 ,阿里云视频号在直播(可扫码海报上的二维码进行查看)。实训营详情链接为,本期课程聚焦模型多模态应用落地,从模型选型、微调到 RAG 图搜与音视频应用构建实操,由浅至深带你在阿里云百炼零代码实现企业级多模态应用落地,阿里云资深专家带你掌握 AI 应用场景最新实操,还有实训营群链接。 2 月 23 日的通往 AGI 之路近 7 日更新日志中,有《》,探讨了如何有效引导儿童和青少年从初级认知阶段过渡到更高级的思维模式。
2025-02-23
小白如何使用满血版DeepSeek
以下是小白使用满血版 DeepSeek 的详细步骤: 1. 注册并登录火山引擎,点击立即体验进入控制台:https://zjsms.com/iP5QRuGW/ 。火山引擎是字节跳动旗下的云服务平台,在 AI 领域最为大众所熟知的应该是“豆包大模型”。 2. 创建一个接入点:点击在线推理创建推理接入点。 3. 为接入点命名为 DeepSeekR1。 若提示“该模型未开通,开通后可创建推理接入点”,点击“立即开通”,勾选全部模型和协议,一路点击开通(这里是免费的)。 若无提示则直接到第 5 步,点击确认接入。 4. 确认以下无误后,点击“确认接入”按钮。 5. 自动返回创建页面。发现多出一行接入点名是“DeepSeekR1”(我们刚才自己设置的命名)。重点是:这个就是推理点的 ID,复制他放到微信里,发给自己保存一下。 6. 保存后再点击【API 调用】按钮,进入后点击【选择 API Key 并复制】。 若已有 API key,直接查看并复制。 若没有,则点击【创建 API key】。 7. 把复制好的内容放到微信里保存好。 此外,还可以通过以下方式实现联网版的 DeepSeek R1 大模型: 拥有扣子专业版账号:若还是普通账号,请自行升级或注册专业号后使用。 开通 DeepSeek R1 大模型:访问地址 https://console.volcengine.com/cozepro/overview?scenario=coze ,打开火山方舟,找到开通管理,找到 DeepSeek R1 模型,点击开通服务。添加在线推理模型,添加后在扣子开发平台才能使用。 创建智能体:点击创建,先完成一个智能体的创建。
2025-02-23
如何私有化部署deepseek
私有化部署 DeepSeek 的步骤如下: 1. 注册并登录火山引擎,点击立即体验进入控制台。 网址:https://zjsms.com/iP5QRuGW/ 火山引擎是字节跳动旗下的云服务平台。 2. 创建一个接入点: 点击在线推理创建推理接入点。 为接入点命名为 DeepSeekR1。 若提示“该模型未开通,开通后可创建推理接入点”,点击“立即开通”,勾选全部模型和协议,一路点击开通(免费)。 确认以下无误后,点击“确认接入”按钮。 自动返回创建页面,复制多出的接入点名为“DeepSeekR1”的推理点 ID 保存。 点击【API 调用】按钮,进入后点击【选择 API Key 并复制】,若没有则点击【创建 API key】,复制并保存。 3. 前往 DeepSeek 官网(https://www.deepseek.com/),进入右上角的 API 开放平台。 早期 DeepSeek 有赠送额度,若没有赠送余额可选择充值,支持美元和人民币两种结算方式及各种个性化充值方式。 创建一个 API key,注意 API key 只会出现一次请及时保存。 4. 下载代码编辑器,如 cursor(https://www.cursor.com/)或 vscode(https://code.visualstudio.com/)。 以 cursor 为例,下载安装后,在插件页面搜索并安装 Roocline。 安装完后,打开三角箭头,选中 RooCline 并点击齿轮,进入设置。 配置基本参数: API Provider:选择 DeepSeek。 API Key:填入已创建的 key。 模型:选择 DeepSeekreasoner。 语言偏好设置。 小贴士:记得把 HighRisk 选项都打开,最后点击 Done 保存修改。 在聊天框输入产品需求,输入需求后点击星星优化提示词,最终得到想要的结果。
2025-02-21
dify私有化部署
以下是关于 Dify 私有化部署的相关信息: 1. 部署步骤: 通过云服务器进行部署,相关命令在宝塔面板的终端安装,例如在/root/dify/docker 目录下的 dockercompose 文件。 检查运行情况,若 nginx 容器无法运行,可能是 80 端口被占用,可将终端输出的代码粘贴给 AI 以解决。 在浏览器地址栏输入公网 IP(去掉宝塔面板地址栏后的:8888),随便填写邮箱密码建立知识库并进行设置。 2. 模型选择与配置: 可以选择国内有免费额度的模型,如智谱 AI。 以智谱 AI 为例,在其官网用手机号注册,添加 API keys 并查看免费额度,将钥匙复制保存。 随便创建应用,可先选择智谱 glm4 测试,然后点发布。 创建并复制 api 秘钥。 3. Dify 特点: 作为开源应用,易用性出色且功能强大,安装过程简单快捷,熟练用户约 5 分钟可在本地完成部署。 支持本地部署和云端应用,能应对工作流、智能体、知识库等。 本地部署需自行处理模型接入等问题,包括购买 API、接入不同类型模型,构建个人知识库时还需考虑数据量、嵌入质量和 API 费用等因素。
2024-09-20
私有化部署大模型的教材
以下是为您提供的私有化部署大模型的相关教材: 张梦飞:【全网最细】从 LLM 大语言模型、知识库到微信机器人的全本地部署教程 一、部署大语言模型 1. 下载并安装 Ollama 点击进入,根据您的电脑系统,下载 Ollama:https://ollama.com/download 下载完成后,双击打开,点击“Install” 安装完成后,将下方地址复制进浏览器中。如果出现下方字样,表示安装完成:http://127.0.0.1:11434/ 2. 下载 qwen2:0.5b 模型(0.5b 是为了方便测试,下载快,自己设备充足的话,可以下载更大的模型) 如果您是 windows 电脑,点击 win+R,输入 cmd,点击回车。 如果您是 Mac 电脑,按下 Command(⌘)+ Space 键打开 Spotlight 搜索,输入“Terminal”或“终端”,然后从搜索结果中选择“终端”应用程序。 复制以下命令行,粘贴进入,点击回车。 回车后,会开始自动下载,等待完成(这里下载久了,可能会发现卡着不动,不知道下载了多少了。鼠标点击一下窗口,键盘点空格,就会刷新了) 下载完成后您会发现,大模型已经在本地运行了。输入文本即可进行对话。 【SD】向未来而生,关于 SDXL 您要知道事儿 SDXL 的大模型分为两个部分: 1. 第一部分,base+refiner 是必须下载的,base 是基础模型,我们使用它进行文生图的操作;refiner 是精炼模型,我们使用它对文生图中生成的模型进行细化,生成细节更丰富的图片。 2. 第二部分,是 SDXL 还有一个配套的 VAE 模型,用于调节图片的画面效果和色彩。 这三个模型,您可以关注我的公众号【白马与少年】,然后回复【SDXL】获取下载链接。 想要在 webUI 中使用 SDXL 的大模型,首先我们要在秋叶启动器中将 webUI 的版本升级到 1.5 以上。接下来,将模型放入对应的文件夹中,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下;vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下。完成之后,我们启动 webUI,就可以在模型中看到 SDXL 的模型了。我们正常的使用方法是这样的:先在文生图中使用 base 模型,填写提示词和常规参数,尺寸可以设置为 10241024,进行生成。 基于多模态大模型给现实世界加一本说明书 大模型应用的利弊: 优点: 适应性极好,通过提示词工程,方便「适应各种奇葩需求」。 对算法的要求降低了不少,大部分功能由大模型提供,特别是非结构化信息的处理。 大模型的 API 访问方式简化了边缘设备的要求,无论在 Android、iOS、HarmonyOS或各种嵌入式设备上都能方便适配。「AGI 终将到来,拥抱未来,虽然路途艰难但相信方向是正确的。」 缺点: 大模型的推理时长目前仍是最大的障碍,传统目标检测或人脸识别优化后能达到 100~300ms,而大模型动则需要 10 秒的延时,限制了许多场景。 模型的幻象和错误率仍然较高,导致上述推理时长问题,在多链路的复杂应用中迅速变得不可行。 在大多数生产模式下,仍然需要使用云服务数据中心,提交的画面不可避免地涉及到隐私问题。 商业私有化部署是刚需,当下的开源模型离 GPT4 代差在半年以上,技术人员任重道远的。
2024-09-03
如何使用LLM分析企业的私有化数据,是否有工具推荐?
以下是关于使用 LLM 分析企业私有化数据及工具推荐的相关内容: RAG 加速器提供了数据抽取服务,这是基于 LLM 的解决方案。在利用 LLM 进行信息抽取时,需要了解构建抽取服务的基本组件和要点。 实现过程中,有两个简单但强大的思路可以提升性能: 1. 确保 LLM 以正确的格式回应。函数调用已成为确保 LLM 严格输出特定格式的新且相对靠谱的方法,可参考结构化输出文档,其中高层次的 LangChain API 展示了不同 LLM 如何调用工具和函数。 2. 使用参考样例。尽管没有样例也能设置抽取问题,但实际操作中,将输入和对应输出的样例纳入其中通常大有裨益,有时这些样例比指示本身更能有效指导 LLM 处理特定情况。在提取用例文档中,可以找到更多细节,助您从 LLMs 中提取更好的性能。
2024-09-02
私有化部署的大模型工具
以下是关于私有化部署的大模型工具的相关内容: Fooocus 部署: 大模型(base 和 Refiner)默认放在:Fooocus_win64_1110\\Fooocus\\models\\checkpoints LoRA 模型默认放在:Fooocus_win64_1110\\Fooocus\\models\\loras Fooocus 程序默认用到 3 个 SDXL 的模型,包括一个 base、一个 Refiner 和一个 LoRA。若单独安装,需下载三个模型: SDXL 基础模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_base_1.0_0.9vae.safetensors refiner 模型:https://huggingface.co/stabilityai/stablediffusionxlrefiner1.0/resolve/main/sd_xl_refiner_1.0_0.9vae.safetensors LoRA 模型:https://huggingface.co/stabilityai/stablediffusionxlbase1.0/resolve/main/sd_xl_offset_examplelora_1.0.safetensors 若部署了 SD 秋叶包,可共用模型(大模型和 LoRA),在 Fooocus_win64_1110\\Fooocus\\modules\\path.py 中用 text 记事本打开,修改路径为秋叶包模型对应的路径,如大模型路径:sdwebui\\models\\Stablediffusion\\SDXL;LoRA 模型路径:sdwebui\\models\\lora。配置好后点击 run.bat 文件启动。 SDXL 本地部署: 大模型分为两个部分:第一部分,base + refiner 必须下载,base 用于文生图操作,refiner 用于对生成的模型细化以生成细节更丰富的图片;第二部分是配套的 VAE 模型,用于调节图片的画面效果和色彩。 可关注公众号【白马与少年】,回复【SDXL】获取模型下载链接。 在 webUI 中使用 SDXL 大模型,需在秋叶启动器中将 webUI 版本升级到 1.5 以上,将模型放入对应文件夹,base 和 refiner 放在“……\\sdwebuiakiv4.2\\models\\Stablediffusion”路径下,vae 放在“……\\sdwebuiakiv4.2\\models\\VAE”路径下,启动 webUI 后可在模型中看到 SDXL 模型。 Langchain + Ollama + RSSHub 实现 RAG 部署: 安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 可通过 ollama 命令下载模型,如 Gemma(Google 推出的轻量级模型)、Mistral(欧洲法国 Mistral AI 团队推出的大模型)、Mixtral(Mistral AI 团队推出的 87B 的 MoE 模型)、Qwen(阿里巴巴推出的大模型)。
2024-08-16
dify部署
Dify 是一款开源的大语言模型应用开发平台,以下是关于 Dify 部署的相关信息: 1. 运行 Dify: 本地需先支持 Docker 和 Git 的依赖环境。 在对应的终端直接执行相关代码即可运行。 2. 添加模型: Dify 启动成功后,通过浏览器访问 ,新建账号密码。 在右上角 admin 处点击设置,新增本地模型配置,如添加 LLM 模型为 deepseekr1:7b,基础 URL 为 ,并添加 Text Embedding 模型。 3. 部署方式: 可参考 https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose ,这些命令在宝塔面板的终端安装。 若使用云服务器 Docker 部署,可重装服务器系统,安装宝塔面板,进行防火墙端口放行和获取宝塔面板账号密码等操作,然后安装 Docker 用于 Dify 部署。 部署过程中需注意确保每一步成功后再进行下一步,如遇到问题可咨询相关技术支持或向 AI 寻求帮助。
2025-02-23
difyd本地部署
Dify 是一款开源的大语言模型应用开发平台,具有以下特点和部署方式: 特点:融合后端即服务和 LLMOps 理念,内置关键技术栈,支持数百个模型,有直观的 Prompt 编排界面、高质量的 RAG 引擎、稳健的 Agent 框架、灵活的流程编排,提供易用界面和 API,非技术人员也能参与。 本地部署: 依赖环境:本地需先支持 Docker 和 Git。 运行:在对应终端执行相关代码。 添加模型:启动成功后,浏览器访问,新建账号密码,在右上角 admin 处点击设置,新增本地模型配置,如添加 LLM 模型 deepseekr1:7b 及 Text Embedding 模型。 云服务器部署:参考 https://docs.dify.ai/v/zhhans/gettingstarted/installselfhosted/dockercompose ,在宝塔面板终端安装,注意处理可能出现的 80 端口被占用等问题。可选择国内模型,如智谱 ai,获取钥匙并复制保存,创建应用等。 Dify 在私人定制类 AI 应用中表现出色,安装过程简单,熟练用户约 5 分钟可完成本地部署,集成依赖到一键部署指令。它支持本地和云端部署,云端有包月套餐,但访问可能需特殊方法。本地部署需自行处理模型接入等问题,构建个人知识库要考虑多种因素。用户可根据需求、技术能力和预算选择。
2025-02-23
部署AGI
安全部署 AGI 可以考虑以下几个方面: 1. 进行大量的模拟部署测试,如红队测试,测试应比实际部署中的操作更极端和易失败,以确保模型最终操作的安全性。 2. 建立有效的监控系统,能在部署的系统出现问题时迅速发现,建立专门监督已部署 AI 模型的机制,观察其行为并寻找异常迹象。 3. 采取多层次的防御措施,要求模型本身表现规范,具备良好的道德信念,同时确保系统能抵御严重的误用风险。 4. 在训练模型过程中进行大量评估,检测有无不当行为,确保模型充分对齐,防止出现背离预期的行为,警惕模型能力的跳变式跨越。 5. 对于执行复杂操作的模型,要防止其为达目标做出不合理行为,保证其主要动机是产出高质量结果。 6. 有可能通过友好协商实现平衡,一旦达到平衡则问题不大。 7. 若能让所有相关方协调一致并解决技术问题,可将高智能水平的 AI 作为人们意志的延伸并防止过度滥用,实现安全有效地部署,促进科学进步和社会繁荣。 8. 更安全稳妥的方式是渐进式部署更智能的模型,形成持续迭代、逐步推出性能更优产品的过程,确保每个迭代的安全性和对齐性,出现状况可及时放慢步伐。 9. 若 AGI 比预期来得更快,需要更加谨慎,可能需要放慢训练和部署脚步,对 AGI 有清晰认识。 10. 若 AGI 出现且其他公司也有类似能力,各公司之间需要协调一致,对部署或未来训练的限制达成共识,否则可能牺牲安全性。可以暂停模型训练、部署,避免高风险训练,制定合理规则或提供行动指南。
2025-02-22
deepseek本地部署知识库
以下是关于 DeepSeek 本地部署知识库的相关信息: 您可以参考以下链接获取更多详细内容: DeepSeek 资料库:照着做可直接上手🔗 需要注意的是,日报中提到本地部署并不适合普通用户,纳米 AI 搜索是目前较为稳定的第三方替代方案,其满血版推理能力接近官方但速度较慢,高速版速度快、体验流畅但推理能力稍弱。体验地址:🔗或下载纳米 AI 搜索 APP 。
2025-02-21