量化交易是一个大型的系统工程,具有以下特点:
在摊位信息方面,有“AI+交易:来定制专属于你的私人高级交易顾问吧!”的主题,其思路是将交易与AIGC相结合,为个人投资者提供辅助,同时指出心态和交易理论对交易的重要性,借助AI分析行情提高资金使用效率和胜率。
在产品推荐方面,Composer Trading 是一个由人工智能驱动的策略创建平台,允许用户用自然语言解释目标、策略和风险关注点,AI 辅助创建策略,提供预构建策略选择、全自动交易执行、无佣金模式、透明定价、定制和回测等功能。
大多数量化算法的核心数据是公开的量价数据,大模型预训练的数据中最重要的也是公开数据,当然各家都会有一些自己独有的数据来源,但占比都不太大。量化的整体算法逻辑各家其实也都差不多,类比预训练模型结构方面,大家也基本类似,不会有翻天覆地的差别。所以,决定模型能力好坏的其实是大型系统工程能力。首先,作为大型系统工程,量化和大模型都需要大型的计算集群。上万张卡的互联是对Infra的极致挑战,国内在ChatGPT之前实现上万张卡互联的可能只有幻方的萤火平台,幻方的Infra人才基本上也是国内最顶尖的,里面各种NOI金牌选手。量化不仅需要大型的计算集群,对性能和效率也有极致的追求,大家的算法捕捉的交易机会其实很类似,这种情况下,交易指令的速度变得尤为关键,有使用网卡编程来追求最大化效率的。大模型虽然没有这么夸张,但是在infra层面的每一点提升,都可以带来不少的训练效率优化,也能更快的得到实验反馈,并得到持续提升。其次,细节在大型系统工程中十分关键。量化交易系统中只有算法是完全不够的,整个系统包含交易执行、风控多个方面,任何一个环节的问题都会导致整个交易系统功败垂成。大模型预训练中,从数据到评估,也包含了大量的细节。除了已经形成普遍共识是谁的数据清洗地好,谁的模型效果就好,数据配比、数据顺序、训练策略等等小细节都对模型最后的结果起着重要的作用。
|你的摊位活动主题和内容|摊位区域|摊位编号|摊位类型||-|-|-|-||AI+交易:来定制专属于你的私人高级交易顾问吧!<br>具体思路及背景:<br>我原本是一名AIGC创作者,在开始接触交易后,我希望能将交易与AIGC相结合,打造出一个人人都可以拥有的私人高级交易顾问。<br>在学习了交易相关的知识后,我认识到单纯迷信技术分析来提高胜率从而实现长期稳定盈利并不可行,尤其是对于个人投资者而言,心态起着关键作用。<br>但是对于没有经验和知识储备的新人来说,或许更致命的是对于交易理论的完全不熟悉,即使是成熟的交易员,单一交易策略的熟练运用能帮助他们找到合适的进出点,良好的心态可能能让他们长期盈利,但在不熟悉的行情下往往只能观望。<br>借助AI分析行情,我期望即便遇到不熟悉的市场,也能通过AI辅助找到合适的进场点,提高资金使用效率,多种策略的配合或许也能进一步提高理论上的胜率(我看之前有个统计数据,好像几千名专业交易员在一年里的分析报告,平均胜率70|D|22|量化交易|
[Composer:使用AI进行量化交易](https://www.composer.trade/)[content]Composer Trading是一个旨在彻底改变个人创建和管理投资策略方式的平台。它提供了一款由人工智能驱动的策略创建工具,允许用户用自然语言解释他们的目标、策略和风险关注点,然后AI辅助编辑器会为他们创建策略。这种自动化延伸到交易策略的执行,Composer会自动处理交易和再平衡。该平台提供了各种类别的预构建策略选择,如长期、技术重点和多样化等,用户可以立即进行投资。Composer强调数据驱动式交易方法,避免情绪或轰动影响。Composer还作为经纪商,并提供全自动交易执行,并采用无佣金模式,并通过简单固定月度订阅透明定价。用户可以在承诺之前免费测试该平台。定制是Composer的一个关键特性,因为每个策略都是完全可编辑的。用户可以使用无代码视觉编辑器修改策略、调整参数,并对其进行不同权重或条件应用。该平台还允许根据用户定义的标准从候选者池中进行动态选择。回测可帮助用户学习并调整他们的战略,并且他们可以将其与基准或其他战略进行比较。Composer还计算费用、滑点以及战术最终价值,提供潜在结果全面视图。[heading2][Musicgen-remixer:将音乐重新混音](https://replicate.com/s[content]挺有意思的项目,可以将一段音乐通过提示词,重新混音,自己做视频或内容想改一下某段音乐的氛围的可以用一下。