Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

scalinglaw什么意思

Answer

Scaling Law(规模定律)指的是在模型预训练中,只要三个关键因素——模型大小、数据量、训练时间(计算量)不断增长,模型性能就能大斜率指数级爆发式提升。足够的规模带来——“涌现”,即自发地产生复杂智能,完成复杂问题的推理、并形成非同分布下的泛化性提升。

2024 年整年,一个争论笼罩着 AI 界——Scaling Law 是正确的,但在现实中,Scaling Law 是不是已经触及天花板。算力需求已达惊人规模,基础设施跟不上发展速度,优质数据接近极限,合成数据训练存在“近亲繁殖”问题可能导致模型能力长期衰退。

在 OpenAI 的相关研究中,“良好且通用的数据表示,良好且通用的数据标注,良好且通用的算法”为检测 Scaling Law 做好了准备。同时,在 Sora 的研究中,也遵循了 Scaling Law,即在足量的数据、优质的标注、灵活的编码下,Scaling Law 在 transformer+diffusion model 的架构上继续成立,其想法很大程度上沿袭了大语言模型的经验。

Content generated by AI large model, please carefully verify (powered by aily)

References

码观 | 共识与非共识:从模型到应用,2024 AI 趋势回首与展望

技术范式的演进Scaling Law初遇瓶颈Scaling Law效果放缓是2024年贯穿整年的争论。Scaling Law(规模定律)指的是在模型预训练中,只要三个关键因素——模型大小、数据量、训练时间(计算量)不断增长,模型性能就能大斜率指数级爆发式提升。足够的规模带来——“涌现”,即自发地产生复杂智能,完成复杂问题的推理、并形成非同分布下的泛化性提升。相信Scaling Law,是OpenAI的梦幻发展和这一代大模型能力梦幻提升的起点。而2024年整年,一个争论笼罩着AI界——Scaling Law是正确的,但在现实中,Scaling Law是不是已经触及天花板?算力需求已经达到惊人规模,xAI正在建设10万卡数据中心;基础设施跟不上发展速度,OpenAI提出的5吉瓦数据中心计划几乎相当于纽约州五分之一的居民用电量;最关键的是,正如OpenAI前首席科学家Ilya Sutskever所言,优质数据已接近极限。而合成数据训练的“近亲繁殖”问题,更可能过拟合导致模型能力的长期衰退。然而,OpenAI的o系列模型带来了转机。新的Scaling Law——慢思考与快思考人类对AGI的追求,莫不如说是人类对完全创造另一个“人类”的疯狂幻想,而要让模型“思考”,最重要的是“大脑”。研究人员相信,人的思考其实是细微电流通过神经元,因此如果有足够大、足够接近人脑的人工神经网络,它就可以实现人脑的工作——思考。在人类心理学中,诺贝尔经济学奖得主丹尼尔·卡尼曼提出了著名的“系统1”和“系统2”理论:人类的思维过程分为快速、直觉的“系统1”和缓慢、深思熟虑的“系统2”。

GPT、DALL·E、Sora,为什么 OpenAI 可以跑通所有 AGI 技术栈?

而具体来谈,就是我们之前说的「良好且通用的数据表示,良好且通用的数据标注,良好且通用的算法」,在GPT和Sora中都有相应的内容:在GPT中,良好且通用的数据表示,是tokenizer带来的embedding。良好且通用的数据标注是文本清理和去重的一套方法(因为自然语言训练是unsupervised training,数据本身就是标注)。良好且通用的算法就是大家熟知的transformers+autoregressive loss。在Sora中,良好且通用的数据表示,是video compress network带来的visual patch。良好且通用的数据标注是OpenAI自己的标注器给视频详细的描述(很可能是GPT-vision)。良好且通用的算法也是大家熟知的transformers+diffusion「良好且通用的数据表示,良好且通用的数据标注,良好且通用的算法」同时也为检测scaling law做好了准备,因为你总是可以现在更小规模的模型和数据上检测算法的效果,而不用大幅更改算法。比如GPT1,2,3这几代的迭代路径,以及Sora中OpenAI明确提到visual patch使得他们用完全一样的算法在更小规模的数据上测试。公理3:Emerging properties。这条公理其实是一条检验公理:我怎么知道scaling law带来「质变」,而不仅仅是「量变」?答案是:你会发现,随着scaling law的进行,你的模型突然就能稳定掌握之前不能掌握的能力,而且这是所有人能够直观体验到的。

GPT、DALL·E、Sora,为什么 OpenAI 可以跑通所有 AGI 技术栈?

Sora多么牛逼多么真实之类的就不多谈了,只用一句话就能概括:随便拿视频中的一帧出来,效果都不亚于Dalle-3精心生成一张图片,而且这些图片放在一起可以构成基本符合真实世界物理逻辑的视频。而且Sora本身其实也可以做图片生成,只是大材小用了。如果限制必须用一个词来展现OpenAI的最核心的技术,我觉得便是scaling law——即怎么样保证模型越大,数据越多,效果就越好。Sora也不例外。一句话概括Sora的贡献,便是:在足量的数据,优质的标注,灵活的编码下,scaling law在transformer+diffusion model的架构上继续成立。在Sora的技术报告*中可以看出,OpenAI实现scaling law的想法其实很大程度上沿袭了大语言模型的经验。https://openai.com/research/video-generation-models-as-world-simulators[heading3]足量的数据[content]训练Sora用了多少数据?不出意外,OpenAI在整个技术分析中一点都没有提数据的事情,这可太CloseAI了。但是鉴于内容的丰富性(比如甚至可以生成相当连贯一致的Minecraft游戏视频),我猜测很可能是大量的YouTube视频,同时也不排除有合成数据(比如3D渲染等)。未来可能用整个YouTube上的视频来训练视频生成模型,就和大家用Common Crawl训练大语言模型一样。

Others are asking
agi 是什么意思
AGI 指通用人工智能(Artificial General Intelligence),是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。 部分人认为大语言模型(LLM)具有 AGI 潜力,例如 ChatGPT 背后的技术,而 LeCun 反对这一观点。 OpenAI 曾有关于实现 AGI 的计划,如原计划在 2026 年发布的 Q下一阶段(最初被称为 GPT6,后重新命名为 GPT7)因埃隆·马斯克的诉讼而被暂停。 在公众传播层面,AIGC 指用 Stable Diffusion 或 Midjourney 生成图像内容,后来泛指用 AI 生成音乐、图像、视频等内容;LLM 指 NLP 领域的大语言模型;GenAI 是生成式人工智能模型,国内官方政策文件使用这个词相对科学,涵盖了 LLM 和 AIGC。
2025-03-26
AI infra是什么意思?
AI Infra 通常指的是人工智能基础设施。随着越来越多的 AI 模型和产品的出现,AI Infra 所涵盖的工具变得愈发重要,这些工具能够帮助构建、改进和监控 AI 模型及产品。 例如,硅基流动致力于打造大模型时代的 AI 基础设施平台,通过算法、系统与硬件的协同创新,跨数量级降低 AI 应用的开发和使用门槛,加速 AGI 普惠人类。 在一些相关的产品和服务中,如 EdenAI 帮助 AI 创作者为其产品选择合适的 AI API 并在它们之间切换,Langdoc 能快速创建和部署 LLM 插件或应用程序,Langfuse 可追踪和调试复杂的 LLM 应用程序,这些都属于 AI Infra 的范畴。
2025-03-26
agi是什么意思
AGI 即通用人工智能(Artificial General Intelligence),指的是一种能够完成任何聪明人类所能完成的智力任务的人工智能系统。能够像人类一样思考、学习和执行多种任务,在许多领域内以人类水平应对日益复杂的问题。例如,OpenAI 致力于实现 AGI,其研发的 GPT 系列模型在某种程度上是朝着 AGI 迈出的巨大一步。像 ChatGPT 这样的产品就是由致力于 AGI 的 OpenAI 研发的。同时,Sam Altman 也认为确保 AGI 造福全人类是重要使命,AGI 可以被看作是人类进步脚手架上的另一个工具,可能带来治愈所有疾病、有更多时间与家人共享、充分发挥创造潜力等美好前景。
2025-03-22
Stable Diffusion 是 Diffusion Model 的优化版本,引入了潜在空间(Latent Space)技术,这个潜在空间(Latent Space)是什么意思,它的实现原理是什么?
在 Stable Diffusion 模型中,潜在空间(Latent Space)指的是图像的潜在分布,它包含了与图像相关的所有信息。 图像被映射到潜在空间后,扩散过程在这个空间中进行。ComfyUI 中的许多操作都在潜在空间中进行,如 KSampler 节点就是在这个空间中执行采样过程。在潜在空间中,通过节点调整对潜在空间的操作,如噪声添加、去噪步数等,这部分通常由潜在空间操作模块来实现。 在 Stable Diffusion 模型中,图像的潜在分布是通过一个编码器解码器结构来学习的。编码器将图像映射到潜在空间,而解码器则将潜在空间中的向量映射回图像空间。通过这种方式,模型可以学习到图像的潜在分布,从而实现图像生成、编辑和操作。 在采样过程中,Stable Diffusion 模型通过逐步降低噪声水平来生成图像。在这个过程中,模型根据当前的噪声水平预测图像的潜在分布,然后根据这个分布生成一个新的图像。这个过程重复进行,直到生成一个高质量的图像。 与之对应的是像素空间(Pixel Space),像素空间指的是图像中每个像素的原始颜色或强度值所组成的空间。图像可以看作是一个二维或三维的矩阵,其中每个元素代表一个像素。在像素空间中,图像的表示是密集的,且包含了大量的细节信息。
2025-03-21
AGI什么意思?
AGI 指通用人工智能(Artificial General Intelligence),是一种能够像人类一样思考、学习和执行多种任务的人工智能系统。能够在许多领域内以人类水平应对日益复杂的问题。例如,OpenAI 致力于实现 AGI,其研发的 ChatGPT 被认为是朝着 AGI 迈出的巨大一步。同时,Sam Altman 也指出呈现人工通用智能特征的系统正浮现,认为 AGI 是人类进步脚手架上的另一个工具,可能带来治愈所有疾病、有更多时间与家人共享、充分发挥创造潜力等美好愿景。
2025-03-18
MCP是什么意思
模型上下文协议(Model Context Protocol,简称 MCP)是一种全新的开放协议,用于标准化地为大语言模型(LLMs)提供应用场景和数据背景。 MCP 就像 AI 领域的“USBC 接口”,能让不同的 AI 模型与外部工具和数据源轻松连接。其好处包括: 简化开发:一次整合,多次复用,不再重复开发。 灵活性强:轻松切换 AI 模型或工具,无需复杂的重新配置。 实时互动:长连接保证数据实时更新。 安全可靠:内置标准化安全和权限控制。 扩展性强:AI 系统扩展时,只需连接新的 MCP 服务器。 与传统 API 相比,通常 AI 系统连接外部工具时,需要单独整合多个不同的 API,每个 API 都有独立的代码、文档、认证方式、错误处理和后续维护,极大地增加了开发复杂度。传统 API 就像每扇门都有一把不同的钥匙,而 MCP 让 AI 模型更简单地获取数据、工具与服务。 MCP 最早由 Anthropic 公司开发,现在已成为一个开放协议,越来越多的企业和开发者开始采用它,逐渐成为 AI 与工具互动的新标准。 在某些情况下,传统 API 可能更适合,比如应用场景需要精准且严格受控的交互方式,包括需要细粒度控制、功能严格限制,更偏好紧耦合以提升性能,希望最大化交互的可预测性。 快速集成 MCP 的步骤包括: 1. 定义能力:明确 MCP 服务器提供的功能。 2. 实现 MCP 层:按照协议标准进行开发。 3. 选择通信方式:本地连接(标准输入输出)或远程连接(如 WebSockets)。 4. 创建资源/工具:开发或连接数据源和服务。 5. 建立客户端连接:与 MCP 服务器建立安全稳定的连接。 例如,Claude 可以通过简单的 MCP 集成直接连接到 GitHub、创建新存储库并创建 PR。
2025-03-15