Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

transformer

Answer

Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”。它主要用于处理序列数据,包括当下热门的 NLP 任务,完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。

其工作流程如下:

  1. 输入嵌入(Input Embeddings):将每个单词映射为一个向量,即单词嵌入(word embeddings)。例如“ I ”映射为一个 512 维的向量。
  2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。
  3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分:
    • 多头注意力机制(Multi-Head Attention):捕捉单词间的依赖关系。
    • 前馈神经网络(Feed-Forward NN):对 attention 的结果进行进一步编码。
  4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。
  5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布。例如生成单词“我”“是”等概率。
  6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。

Transformer 模型用途广泛,可以用来翻译文本、写诗、写文章,甚至生成计算机代码。像 AlphaFold 2、GPT-3、BERT、T5、Switch、Meena 等功能强大的模型都是建立在 Transformer 基础之上。如果想在机器学习,特别是自然语言处理方面与时俱进,至少要对 Transformer 有一定的了解。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:能通过简单易懂的方法跟我讲一下 transform 的工作流程吗?

当然可以,让我用一个简单的例子来解释一下Transformer的工作流程:假设我们有一个英文句子"I am a student"需要翻译成中文。Transformer的工作方式如下:1.输入嵌入(Input Embeddings)首先,将每个单词映射为一个向量,即单词嵌入(word embeddings)。例如"I"映射为一个512维的向量。2.位置编码(Positional Encodings)因为Transformer没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。3.编码器(Encoder)输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分:a)多头注意力机制(Multi-Head Attention)捕捉单词间的依赖关系。b)前馈神经网络(Feed-Forward NN)对attention的结果进行进一步编码。4.解码器(Decoder)编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。5.输出嵌入(Output Embeddings)解码器最后一层的输出被映射为输出单词概率分布。例如生成单词"我"、"是"等概率。6.生成(Generation)基于概率分布,以贪婪或beam search等解码策略生成完整的输出序列。

机器学习-Transformer的基本工作原理

Transformer是一种深度学习模型,核心思想是"Attention is all you need",这句话来源于2017年由Google Brain团队发布的同名论文。Transformer主要用于处理序列数据,包括现在最火的NLP任务。与之前的模型不同,Transformer完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。

解析 Transformer 模型:理解 GPT-3、BERT 和 T5 背后的模型

原文链接:https://daleonai.com/transformers-explained作者:Dale Markowitz(@Google Labs,领导生成式AI的宣传和教育)发表时间:2021年5月6日翻译:数据派THU(译者:王可汗,校对:和中华),略有修改中文翻译原地址:https://mp.weixin.qq.com/s/kfsW7ccYUAGp1AHWWF6c1w《[A16Z整理的AI典藏](https://ywh1bkansf.feishu.cn/wiki/F8OMwrI3TisTPokQAJHcMG2knBh)》入门第四篇你知道这句话吗,当你有一把锤子的时候,所有东西看起来都像钉子?在机器学习中,我们似乎真的发现了一种神奇的锤子。实际上,在这个模型面前所有东西都是钉子,这就是Transformer模型。Transformer模型可以用来翻译文本、写诗、写文章,甚至生成计算机代码。事实上,我在daleonai.com上写的很多惊人的研究都是建立在Transformer基础之上,比如AlphaFold 2,它是一种从基因序列中预测蛋白质结构的模型,以及GPT-3、BERT、T5、Switch、Meena等功能强大的自然语言处理(NLP)模型。你可能会说,他们不仅仅是遇到了……呃,先往下说吧。如果你想在机器学习,特别是自然语言处理方面与时俱进,你至少要对Transformer有一点了解。所以在这篇文章中,我们将讨论它们是什么,它们是如何工作的以及为什么它们如此有影响力。

Others are asking
transformer
Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”。以下为您详细介绍其工作流程: 假设我们有一个英文句子“I am a student”需要翻译成中文。 1. 输入嵌入(Input Embeddings):首先,将每个单词映射为一个向量,即单词嵌入(word embeddings)。例如“I”映射为一个 512 维的向量。 2. 位置编码(Positional Encodings):由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器(Encoder):输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分: 多头注意力机制(MultiHead Attention):捕捉单词间的依赖关系。 前馈神经网络(FeedForward NN):对 attention 的结果进行进一步编码。 4. 解码器(Decoder):编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入(Output Embeddings):解码器最后一层的输出被映射为输出单词概率分布。例如生成单词“我”“是”等概率。 6. 生成(Generation):基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 Transformer 主要用于处理序列数据,包括现在最火的 NLP 任务。与之前的模型不同,Transformer 完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。它可以用来翻译文本、写诗、写文章,甚至生成计算机代码。像 GPT3、BERT、T5 等功能强大的自然语言处理(NLP)模型都是基于 Transformer 模型构建的。
2025-02-17
什么是transformer
Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”,来源于 2017 年 Google Brain 团队发布的同名论文。它主要用于处理序列数据,包括热门的 NLP 任务。与传统模型不同,Transformer 完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。 Transformer 采用完全并行的计算方式,借助 GPU 加速训练速度,并引入自注意力机制,能够直接对输入序列中的每个位置进行编码和解码,从而更好地捕捉序列中的长程依赖关系。 最流行的基于 Transformer 的模型之一是 BERT,它是“来自 Transformer 的双向编码器表示”(“Bidirectional Encoder Representations from Transformers”)的缩写。BERT 已进入几乎所有的 NLP 项目,包括谷歌搜索。它可以扩展来解决一系列不同的任务,如文本摘要、问答、分类、命名实体识别、文本相似度、攻击性信息/脏话检测、理解用户的查询等。 此外,Transformer 不仅在自然语言处理领域发挥重要作用,如谷歌搜索去年推出的基于 Transformer 的聊天机器人 Meena,还在自然语言处理之外掀起浪潮,例如作曲、根据文本描述生成图像以及预测蛋白质结构。
2025-02-17
大型语言模型(LLM)基于Transformer架构的模型的优缺点是什么,有什么局限性
大型语言模型(LLM)基于 Transformer 架构的模型具有以下优点: 1. 在大量数据集上进行预训练,展现出卓越的语言处理能力,能预测接下来的 Token。 然而,也存在一些缺点和局限性: 1. 瞬态状态:天生缺乏持久的记忆或状态,需要额外的软件或系统来保留和管理上下文。 2. 概率性质:随机性导致响应的不确定性,对相同提示词可能产生不同回答。 3. 过时信息:依赖预训练数据,只能访问历史知识,无法获取实时更新。 4. 内容制造:可能生成看似合理但不准确的信息,即“幻觉”。 5. 资源密集:巨大规模意味着显著的计算和财务成本,影响可扩展性和可访问性。 6. 领域特定性:本质上通用,但通常需要特定领域数据才能在专业任务中表现出色。 7. 缺乏创造性:像一个高性能的知识检索工具,超出检索范围时表现差,甚至出现“幻觉”。面对复杂逻辑推导和新的知识推演能力不足,无法基于新的语料推演出新知识。 8. 对于特定领域或高度专业化的查询,容易产生错误信息或“幻觉”,特别是当查询超出训练数据或需要最新信息时。
2025-02-13
LSTM/Transformer/GAN等AI技术分别是指
LSTM(Long ShortTerm Memory)是一种特殊的循环神经网络(RNN),能够处理长序列数据中的长期依赖关系。 Transformer 是一种完全基于自注意力机制(SelfAttention)来处理序列数据的模型,不依赖于循环神经网络(RNN)或卷积神经网络(CNN),比 RNN 更适合处理文本的长距离依赖性。 GAN(Generative Adversarial Network)即生成对抗网络,由生成器和判别器组成,通过两者的对抗训练来生成新的数据。
2025-02-06
什么是transformer
Transformer 是一种深度学习模型,其核心思想是“Attention is all you need”,来源于 2017 年 Google Brain 团队发布的同名论文。它主要用于处理序列数据,包括热门的 NLP 任务。与传统模型不同,Transformer 完全基于注意力机制,不使用传统的循环神经网络(RNN)或卷积神经网络(CNN)的计算架构。 Transformer 采用完全并行的计算方式,借助 GPU 加速训练速度,并引入自注意力机制,能够直接对输入序列中的每个位置进行编码和解码,从而更好地捕捉序列中的长程依赖关系。 最流行的基于 Transformer 的模型之一是 BERT,它是“来自 Transformer 的双向编码器表示”(“Bidirectional Encoder Representations from Transformers”)的缩写。BERT 已进入几乎所有的 NLP 项目,包括谷歌搜索。它可以扩展来解决一系列不同的任务,如文本摘要、问答、分类、命名实体识别、文本相似度、攻击性信息/脏话检测、理解用户的查询等。 此外,Transformer 不仅在自然语言处理领域发挥重要作用,如谷歌搜索去年推出的基于 Transformer 的聊天机器人 Meena,还在自然语言处理之外掀起了浪潮,例如作曲、根据文本描述生成图像以及预测蛋白质结构。
2025-01-16
transformer详解
Transformer 是一种基于注意力机制的编码器解码器模型,其工作流程如下: 1. 输入嵌入:将每个单词映射为一个向量,即单词嵌入。例如,“I”映射为一个 512 维的向量。 2. 位置编码:由于 Transformer 没有递归或卷积等捕获序列顺序的结构,所以需要给每个词位置加上位置编码,使模型知道词语的相对位置。 3. 编码器:输入序列的嵌入向量和位置编码相加后被送入编码器层。编码器由多个相同的层组成,每层有两个核心部分: 多头注意力机制:捕捉单词间的依赖关系。 前馈神经网络:对 attention 的结果进行进一步编码。 4. 解码器:编码器的输出被送入解码器层。解码器也是由多个相同层组成,每层除了编码器组件外,还有一个额外的注意力模块,对编码器的输出序列建模依赖关系。 5. 输出嵌入:解码器最后一层的输出被映射为输出单词概率分布。 6. 生成:基于概率分布,以贪婪或 beam search 等解码策略生成完整的输出序列。 最流行的基于 Transformer 的模型之一 BERT,是“来自 Transformer 的双向编码器表示”的缩写。它被谷歌的研究人员引入,很快就进入了几乎所有的 NLP 项目,包括谷歌搜索。BERT 不仅指模型体系结构,还指经过训练的模型本身,您可以在。谷歌的研究人员在一个庞大的文本语料库上对它进行了训练,它已经成为一种用于自然语言处理的通用模型,可以扩展来解决一系列不同的任务,比如: 文本摘要 问答 分类 命名实体识别 文本相似度 攻击性信息/脏话检测 理解用户的查询 Transformer 基于 2017 年发表的一篇名为《Attention Is All You Need》的论文。尽管 Transformers 之前的所有模型都能够将单词表示为向量,但这些向量并不包含上下文。单词的用法会根据上下文而变化。Transformer 模型由编码器和解码器组成。编码器对输入序列进行编码并将其传递给解码器,解码器解码相关任务的表示。编码组件是一堆相同数量的编码器。介绍 Transformers 的研究论文将六个编码器堆叠在一起。六不是一个神奇的数字,它只是一个超参数。编码器在结构上都是相同的,但具有不同的权重。 Transformer 不仅在自然语言处理领域表现出色,如 BERT、GPT3、Meena 等模型,还在自然语言处理之外掀起了一股浪潮,例如作曲、根据文本描述生成图像以及预测蛋白质结构。
2025-01-10