Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

大模型涉及到芯片包括哪些

Answer

大模型涉及到的芯片包括以下几种:

  • 英伟达的Blackwell超级芯片:如GB200 NVL72,将36个Grace CPU和72个Blackwell GPU集成到一个液冷机柜中,可实现总计720 petaflops的AI训练性能,或是1,440 petaflops(1.4 exaflops)的推理性能。
  • 英伟达的DGX B200:包括8个Blackwell GPU和2个第五代Intel Xeon处理器,包含FP4精度功能,提供高达144 petaflops的AI性能、1.4TB的GPU内存和64TB/s的内存带宽。

同时需要注意的是,在数据、算力、算法三要素中,算力是基础,也是大模型竞争力,但国产芯片在软件适配度、稳定性方面仍显不足。国产芯片与英伟达显卡之间的解耦能力较弱,未来可能会逐步用国产芯片去做百亿甚至更大体量的模型训练,但算力的累积依然是重要挑战。目前,AI大模型算力主要在训练、推理两个部分,其中成本最高部分是前期的模型训练,大部分采用智能计算中心、自费买英伟达A800/H800显卡组成服务器运行、或者是用价格更为实惠的服务器云来训练。而推理部分算力需求较少、价格不高,大部分模型应用都需要同时建立公有云、私有云两种混合模式,而且需要购买一定的云服务,以更好做大模型应用。

Content generated by AI large model, please carefully verify (powered by aily)

References

老黄祭出新核弹B200!30倍H100单机可训15个GPT-4模型,AI迎新摩尔时代

当然,有了Blackwell超级芯片,当然还会有Blackwell组成的DGX超算。这样,公司就会大量购入这些GPU,并将它们封装在更大的设计中。GB200 NVL72是将36个Grace CPU和72个Blackwell GPU集成到一个液冷机柜中,可实现总计720 petaflops的AI训练性能,或是1,440 petaflops(1.4 exaflops)的推理性能。它内部共有5000条独立电缆,长度近两英里。它的背面效果如下图所示。机柜中的每个机架包含两个GB200芯片,或两个NVLink交换机。一共有18个GB200芯片托盘,9个NVLink交换机托盘有。老黄现场表示,「一个GB200 NVL72机柜可以训练27万亿参数的模型」。此前传言称,GPT-4的参数规模达1.8万亿,相当于能训练近15个这样的模型。与H100相比,对于大模型推理工作负载,GB200超级芯片提供高达30倍的性能提升。那么,由8个系统组合在一起的就是DGX GB200。总共有288个Grace CPU、576个Blackwell GPU、240 TB内存和11.5 exaflop FP4计算。这一系统可以扩展到数万个GB200超级芯片,通过Quantum-X800 InfiniBand(最多144个连接)或Spectrum-X800ethernet(最多64个连接)与800Gbps网络连接在一起。配备DGX GB200系统的全新DGX SuperPod采用统一的计算架构。除了第五代NVIDIA NVLink,该架构还包括NVIDIA Bluefield-3 DPU,并将支持Quantum-X800 InfiniBand网络。

老黄祭出新核弹B200!30倍H100单机可训15个GPT-4模型,AI迎新摩尔时代

这种架构可以为平台中的每个GPU提供高达每秒1,800 GB的带宽。除此之外,英伟达还发布了统一的超算平台DGX B200,用于AI模型训练、微调和推理。它包括8个Blackwell GPU和2个第五代Intel Xeon处理器,包含FP4精度功能,提供高达144 petaflops的AI性能、1.4TB的GPU内存和64TB/s的内存带宽。这使得万亿参数模型的实时推理速度,比上一代产品提高了15倍。用户还可以使用DGX B200系统构建DGX SuperPOD,创建人工智能卓越中心,为运行多种不同工作的大型开发团队提供动力。目前,亚马逊、谷歌、微软已经成为最新芯片超算的首批用户。亚马逊网络服务,将建立一个拥有20,000 GB200芯片的服务器集群。

七大行业的商业化应用

数据、算力、算法三要素当中,算力是基础,也是大模型竞争力,但国产芯片在软件适配度、稳定性方面仍显不足。张新认为,国产芯片与英伟达显卡之间的解耦能力较弱,他们相信可能未来的几个月内逐步用国产芯片去做百亿,甚至更大体量的模型的训练,但算力的累积依然是重要挑战。砺算科技联合创始人、联席CEO孔德海认为,可以从四方面来解决算力矛盾问题:一是协同化,把很多运算可以跑在云端,并根据需求进行协同;二是模型小型化,在高质量数据前提下,小型模型可以在单机上运行;三是再训练,在有限条件下,反复训练有助于提升用户体验;四是融合计算。目前,AI大模型算力主要在训练、推理两个部分,其中成本最高部分是前期的模型训练,大部分采用智能计算中心、自费买英伟达A800/H800显卡组成服务器运行、或者是用价格更为实惠的服务器云来训练。而推理部分算力需求较少、价格不高,大部分模型应用都需要同时建立公有云、私有云两种混合模式,而且需要购买一定的云服务,以更好做大模型应用。最后是价格问题。价格是大模型商业化最重要的因素。由于训练成本高、数据筛选难度大,因此,千亿参数模型的报价高达数十万元,而高昂的售价让很多客户望而却步。戴文渊向钛媒体App表示,不是所有的场景、客户都能接受千亿参数的成本,这个需要客户选择,即便是千亿、万亿的参数只是代表你的最高能力,但最后给到客户的时候,就不一定所有的场景都能技术释放。而垂直大模型的数据生成规模会小一些,场景更易用,Chat的思维能力更高。

Others are asking
生成一个智能芯片的发展思维导图
以下是一个关于智能芯片发展的思维导图: 一、基础模型 1. 传统 GPU 架构 面临存储墙瓶颈 存算分离制约性能 数据搬运消耗巨大 并行计算效率受限 2. 存算一体架构 Groq:LPU 一维处理器阵列 Cerebras:晶圆级存算集成 英伟达:HBM 近存优化 3. 超快推理 思考更敏捷:深度推理成本降低多方案实时对比 交互更自然:实时语音对话动态应用生成 二、本质洞见 1. 存算分离到存算一体是计算架构的范式转换 2. 推理速度的量级提升,将重构人机交互模式 3. 市场成熟度与技术突破之间存在时间差,需要通过应用场景培育推动发展 三、应用变革 1. 算力凝芯,效能焕发
2025-02-13
用macbook M3 Pro芯片,comfyUI 跑工作流,结果黑屏,没有输出图像,是为什么呢
很抱歉,目前没有关于使用 Macbook M3 Pro 芯片运行 ComfyUI 工作流出现黑屏且无输出图像的具体原因的相关知识。可能的原因有多种,比如软件与芯片的兼容性问题、显卡驱动异常、工作流设置错误、系统资源不足等。建议您检查软件的版本是否与您的系统兼容,更新显卡驱动,确认工作流的设置是否正确,以及关闭其他占用大量资源的程序以释放系统资源。
2025-01-03
英伟达H200芯片
英伟达 H200 芯片具有以下特点: 推理速度是前代 H100 的两倍。 使用 HBM3e 内存,显存带宽提升至 4.8TB。 NVIDIA 创始人兼首席执行官黄仁勋在 SIGGRAPH 会议上宣布了相关信息,包括下一代 GH200 Grace Hopper 超级芯片平台。Grace Hopper 超级芯片 NVIDIA GH200 已于 5 月份全面投入生产,将具备连接多个 GPU 的能力。Nvidia 还在与 HuggingFace 合作,帮助开发人员在任何云上创建、测试和微调生成式 AI 模型。现在,可以使用 Nvidia 的 Omniverse 以 USD 格式生成 AI 内容,以创建虚拟世界,它包括与 Adobe、Wonder Dynamics 和 Luma AI 等多种 AI 相关的集成。 相关链接:https://x.com/xiaohuggg/status/1724239489302974768?s=20
2024-11-06
ai芯片质量提升对影视行业的影响
AI芯片质量的提升对影视行业产生了显著的影响,主要体现在以下几个方面: 1. 提高制作效率:随着AI芯片性能的提升,影视制作中的渲染、图像处理和特效制作等环节的效率得到显著提高。这使得影视制作团队能够在更短的时间内完成更多的工作,加快了整个制作流程。 2. 降低成本:更高质量的AI芯片使得自动化和智能化的后期制作成为可能,减少了对专业人员的依赖,从而降低了人力成本。 3. 提升内容质量:AI芯片能够处理复杂的算法和大数据分析,帮助提升影视作品的视觉效果和内容质量。例如,AI可以用于改善视频的色彩、对比度和清晰度,甚至在动画和CGI制作中实现更逼真的效果。 4. 创新内容形式:AI芯片的强大计算能力支持了新的创作工具和平台的开发,这些工具可以帮助创作者探索新的内容形式和叙事手法。 5. 个性化内容推荐:AI芯片在影视行业中的另一个应用是在内容分发和推荐系统中的应用。通过分析用户数据,AI可以为观众提供个性化的内容推荐,提高用户体验。 6. 辅助决策:AI芯片可以分析市场趋势和观众反馈,帮助制片人和发行商做出更明智的决策,比如在内容的定位、营销策略和发行时间等方面。 7. 推动技术发展:随着AI芯片技术的进步,影视行业也在不断探索和采用新技术,如虚拟现实等,这些技术为观众提供了更加沉浸式的观影体验。 8. 加速AI应用研究:随着AI芯片质量的提升,影视公司和平台也在加快AI技术在内容创作和制作中的应用研究,以期在新的竞争中建立优势。 综上所述,AI芯片质量的提升为影视行业带来了效率、成本、内容质量和创新等多方面的积极影响,同时也推动了整个行业的技术进步和产业升级。
2024-05-28
你用的是什么ai模型
以下是关于所使用的 AI 模型的相关信息: 我使用的是 GPT4,其他模型的效果不太好。如果您使用 GPT4 总结的内容质量不行,可以点击“重试”按钮让其重新总结。 默认情况下,Cursor Chat 将 OpenAI 的 GPT4(具体为 GPT4Turbo 实例)用于其 AI 模型,您可以通过选择喜欢的 AI 模型,且为 Chat 选择的模型会保存供未来使用。 有实例中使用的是阿里千问模型。
2025-02-20
你是基于什么模型?
我调用的是抖音集团的云雀大模型。 Gemini 模型是基于 Transformer 解码器构建的,对模型结构进行了优化,主要为大规模稳定训练及在 Google 的 TPU 上推理优化。它能适应与各种音频和视觉输入交织的文本输入,并生成文本和图像输出,经过训练支持 32k 的上下文长度,采用高效的注意机制。 麦橘超然 MajicFlus 是一款基于 flux.dev 微调融合的模型,专注于高质量人像生成,尤其擅长亚洲女性,有卓越人像生成能力、广泛适用性、简单易用等特点。多位社区成员基于模型制作的 LoRA 一同发布,扩展了功能与表现力,但它对社区大部分的 lora 不完美兼容,需降低权重至 0.5 以下。
2025-02-20
模型微调是怎么实现的
模型微调是一种迁移学习技术,常用于深度学习中。其基本思路是先有一个在大量数据上预训练的模型,已学会一些基本模式和结构,然后在特定任务数据上继续训练以适应新任务。 以下是关于模型微调的具体实现步骤: 1. 准备和上传训练数据。 2. 训练新的微调模型: LoRA 微调: 脚本见:。 具体实现代码见。 单机多卡的微调可通过修改脚本中的include localhost:0 来实现。 全量参数微调: 脚本见:。 具体实现代码见。 3. 加载微调模型: LoRA 微调:基于 LoRA 微调的模型参数见基于 Llama2 的中文微调模型,LoRA 参数需和基础模型参数结合使用。通过加载预训练模型参数和微调模型参数。 全量参数微调:调用方式同模型调用代码示例,只需修改其中的模型名称或保存路径。 微调的优点包括: 1. 比即时设计更高质量的结果。 2. 能够训练比提示中更多的例子。 3. 由于更短的提示而节省了 Token。 4. 更低的延迟请求。 微调目前仅适用于以下基础模型:davinci、curie、babbage 和 ada。 以下是两个帮助理解微调概念的例子: 1. 情感分类:先使用大量语料库预训练模型,使其学会基本语法和单词语义,再收集标注过的电影评论(积极或消极)继续训练模型,使其学会判断评论情感。 2. 图像分类:先使用大量图片(如 ImageNet 数据集)预训练模型,使其学会识别图片中的基本形状和纹理,再收集标注过的猫和狗的图片继续训练模型,使其学会区分猫和狗。
2025-02-19
汇总一下现在的大语言模型都有哪些,国外和国内的模型分别列出来
以下是国内外的大语言模型汇总: 国外大语言模型: GPT4(OpenAI):目前最先进的自然语言生成模型,可用于回答问题、撰写文章等。 Gemini Ultra(Google):多模态人工智能模型,采用神经网络架构,对标 GPT4,可用于回答问题、生成代码、处理文本等。 Claude 3 Opus(Anthropic):多模态模型,能处理超过 1 百万 token 的输入,具有实时聊天、数据处理、分析预测等功能;实现了接近完美的召回率。 国内大语言模型: 文心一言(百度):大语言模型,可用以文学创作、商业文案创作、数理逻辑推算、中文理解、多模态生成。 讯飞星火:目前体验效果较好。 悟道・天鹰(北京智源人工智能研究院):首个具备中英文双语知识、支持商用许可协议、国内数据合规需求的开源语言大模型。 清华 ChatGLM 。 此外,国内还有通用模型如通用模型如文心一言、讯飞星火等,处理自然语言;还有垂直模型,专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。
2025-02-19
0到1使用大语言模型
以下是关于 0 到 1 使用大语言模型的相关内容: Ollama 框架: 1. 支持多种大型语言模型,如通义千问、Llama 2、Mistral 和 Gemma 等,适用于不同应用场景。 2. 易于使用,适用于 macOS、Windows 和 Linux 系统,同时支持 CPU 和 GPU。 3. 提供模型库,用户可从中下载不同参数和大小的模型,通过 https://ollama.com/library 查找。 4. 支持用户自定义模型,例如修改温度参数调整创造性和连贯性,或设置特定系统消息。 5. 提供 REST API 用于运行和管理模型,以及与其他应用程序的集成选项。 6. 社区贡献丰富,包括多种集成插件和界面,如 Web 和桌面应用、Telegram 机器人、Obsidian 插件等。 7. 安装完后,确保 ollama 后台服务已启动(在 mac 上启动 ollama 应用程序,在 linux 上通过 ollama serve 启动),可通过 ollama list 确认。 大模型安全: 1. 通过对齐(指令调优)使语言模型更好理解人类意图并增加安全保障,可拆解为监督微调、获取 reward model 和强化学习调整输出分布两部分。 2. LLAMA2 专门使用安全有监督微调确保语言模型安全。 3. 强化学习通过引入人类反馈数据调整模型输出分布,使模型面对训练分布外数据时能拒绝不当回答。 4. 但 Alignment 并不足以防护所有安全问题,存在越狱(Jailbreak)情况,导致模型对齐失效。 5. 还需关注隐私问题。 大模型架构与特点: 1. 包括 encoderonly、encoderdecoder 和 decoderonly 三种架构,目前熟知的 AI 助手多为 decoderonly 架构。 2. 大模型预训练数据量大,来自互联网,参数多,如 Open 在 2020 年发布的 GPT3 已达 170B 参数。 3. GPT3 可根据任务描述和示例完成任务,ChatGPT 则通过对话完成任务,二者在形式和安全性上有差别。
2025-02-19
deepseek的论文里面讲的混合专家模型怎么理解
混合专家(MoE)模型是一种在深度学习中提升计算效率的架构。以 DeepSeek 为例,其最新模型 V3 与 R1 采用了这种架构。 在 DeepSeek 的 V3 模型中,引入了多头潜注意力(MLA),将 KV 缓存压缩至新低,从而提升了计算性能。R1 模型则通过强化学习激活推理能力,首次验证无需监督微调即可实现推理。 DeepSeek 的 2360 亿参数的 DeepSeekV2 是 60 位专家混合开源模型,在数学、编码和推理方面表现出色,具有 236B 参数,21B 在生成过程中被激活,在 MTBench 上表现优异,中文能力强且性价比高。 您可以通过以下链接获取更详细的介绍:https://xiaohu.ai/p/7468 、https://zhuanlan.zhihu.com/p/21208287743 。
2025-02-19
规划设计涉及的AI软件
以下是一些涉及规划设计的 AI 软件: 1. 对于建筑设计师审核规划平面图,有以下工具: HDAidMaster:云端工具,在建筑、室内和景观设计领域表现出色,搭载自主训练的建筑大模型 ArchiMaster,软件 UI 和设计成果颜值在线。 Maket.ai:主要面向住宅行业,在户型和室内软装设计方面有 AI 技术探索,能根据输入自动生成户型图。 ARCHITEChTURES:AI 驱动的三维建筑设计软件,在住宅设计早期可引入标准和规范约束生成结果,保证合规性。 Fast AI 人工智能审图平台:形成全自动智能审图流程,能将建筑全寿命周期内信息集成。 2. 绘制逻辑视图、功能视图、部署视图的工具包括: Lucidchart:流行的在线绘图工具,支持多种图表创建,可通过拖放界面轻松创建架构图。 Visual Paradigm:全面的 UML 工具,提供多种架构视图创建功能。 ArchiMate:开源建模语言,与 Archi 工具配合使用可创建逻辑视图。 Enterprise Architect:强大的建模、设计和生成代码工具,支持多种架构视图创建。 Microsoft Visio:广泛使用的图表和矢量图形应用程序,提供丰富模板。 draw.io(diagrams.net):免费在线图表软件,支持多种图表创建。 PlantUML:文本到 UML 转换工具,可通过描述文本生成相关视图。 Gliffy:基于云的绘图工具,提供创建架构图功能。 Archi:免费开源工具,支持逻辑视图创建。 Rational Rose:IBM 的 UML 工具,支持多种视图创建。 3. 辅助或自动生成 CAD 图的工具: CADtools 12:Adobe Illustrator 插件,添加 92 个绘图和编辑工具。 Autodesk Fusion 360:集成 AI 功能的云端 3D CAD/CAM 软件,能创建复杂几何形状和优化设计。 nTopology:基于 AI 的设计软件,可创建复杂 CAD 模型。 ParaMatters CogniCAD:基于 AI 的 CAD 软件,能根据输入自动生成 3D 模型。 一些主流 CAD 软件如 Autodesk 系列、SolidWorks 等提供的基于 AI 的生成设计工具。 但每个工具都有其特定应用场景和功能,建议根据具体需求选择合适的工具。同时,使用这些工具通常需要一定的 CAD 知识和技能,初学者可先学习基本建模技巧再尝试使用。
2025-02-20
涉及到deepseek的所有知识
以下是关于 DeepSeek 的相关知识: 媒体报道和网络文章: 作者“通往 AGI 之路”的《关于 DeepSeek 的所有事情【知识库持续更新中】》,类型为基础认知,链接:https://mp.weixin.qq.com/s/n0WrrJL0fVX6zLeTBWpZXA 。 作者“数字生命卡兹克”的《DeepSeek 的提示词技巧,就是没有技巧。》,类型为基础认知,链接:https://mp.weixin.qq.com/s/KwFfItlMvS9FCDwNbvVWu7A 。 作者“宝玉”的《教你如何破解 DeepSeek R1 系统提示词》,类型为提示词破解,链接:https://mp.weixin.qq.com/s/vAp2wI5ozTw7R6jreLMw 。 作者“橘子汽水铺”的《中国开源,震撼世界:DeepSeek R1 的变革、启示与展望》,类型为基础认知,链接:https://mp.weixin.qq.com/s/yGUgehbxKisVaHlOkxhuaw 。 作者“橘子汽水铺”的《自学成才之路,DeepSeek R1 论文解读》,类型为基础认知,链接:https://mp.weixin.qq.com/s/gmdHyh6fsUdj1JhM1sV9bg 。 作者“新智元”的《史上首次,DeepSeek 登顶中美 AppStore!NYU 教授:全球「AI 霸权」之争已结束》,类型为基础认知,链接:https://mp.weixin.qq.com/s/ybvV8RMX0yyS5YfG1qNWgg 。 作者“一支烟花 AI”的《用流程图对比 DeepSeekR1,OpenAI O1,Claude 说明强化学习在 AI 大模型训练、推理的创新和意义》,类型为基础认知,链接:https://mp.weixin.qq.com/s/mdGtOcg1RuQOEBn31KhxQ 。 作者“腾讯科技”的《一文读懂|DeepSeek 新模型大揭秘,为何它能震动全球 AI 圈》,类型为基础认知,链接:https://mp.weixin.qq.com/s/cp4rQx09wygE9uHBadI7RA 。 作者“张小珺腾讯科技”的《一场关于 DeepSeek 的高质量闭门会:比技术更重要的是愿景》,类型为进阶思考,链接:https://mp.weixin.qq.com/s/a7C5NjHbMGh2CLYk1bhfYw 。 【今晚 8 点】聊聊你怎么使用 DeepSeek!2025 年 2 月 6 日: DP 模型的功能:能进行自然语言理解与分析、编程、绘图,如 SVG、MA Max 图表、react 图表等。 使用优势:可以用更少的词让模型做更多事,思维发散,能给出创意思路和高级内容。 存在问题:思维链长不易控制,可能输出看不懂或胡编乱造的内容,增加纠错成本。 审核方法:可以用其他大模型来解读 DP 模型给出的内容。 使用建议:使用时要有自己的思维雏形,多看思考过程,避免被模型冲刷原有认知。 使用场景:包括阅读、育儿、写作、随意交流等方面。 案例展示:通过与孩子共读时制作可视化互动游戏,以及左脚踩右脚式的模型交互来展示 DP 模型的应用。 音系学研究:对音系学感兴趣,通过对比不同模型的回答来深入理解,如 bug 和 DIFF SIG,探讨语言概念在音系学下的心理印象等。 大模型取队名:与大模型进行多轮对话来取队名,通过不断约束和披露喜好,最终得到满意的队名及相关内容。 Deepseek 文档分享:在 3 群和 4 群分享了 Deepseek 的相关文档,也可在 v to a gi 的飞书知识库中搜索获取。 Deepseek 使用介绍:介绍了 Deepseek 的模型、收录内容、提示词使用技巧和好玩的案例等。 未来活动预告:明天后天在摩纳社区提供免费算力资源带大家学习炼丹,周一晚上学习多维表格中接入 Deepseek。
2025-02-14
以知识图谱的形式生成一张涉及大模型概念的知识图谱
以下是一张涉及大模型概念的知识图谱: 大模型 Embedding 技术 句子和文档嵌入 Doc2Vec:扩展了 Word2Vec,能够为整个文档生成统一的向量表示。 Average Word Embeddings:将一段文本中所有单词的嵌入取平均作为整体的文本表示。 Transformers Sentence Embeddings:如 BERT 的标记对应的向量,或者专门针对句子级别的模型如 SentenceBERT。 实体/概念嵌入 Knowledge Graph Embeddings:如 TransE、DistMult、ComplEx 等,用于将知识图谱中的实体和关系嵌入到低维向量空间中。 其他类型 图像 Embeddings:使用卷积神经网络(CNN)进行图像特征提取,得到的特征向量即为图像嵌入。 音频 Embeddings:在语音识别和声纹识别中,将声音信号转化为有意义的向量表示。 用户/物品 Embeddings:在推荐系统中,将用户行为或物品属性映射到低维空间以进行协同过滤或基于内容的推荐。 图 Embeddings:用于学习图结构的表示学习方法,将图中的节点和边映射到低维向量空间中。通过学习图嵌入,可以将复杂的图结构转化为向量表示,以捕捉节点之间的结构和关联关系。这些方法可以通过 DeepWalk、Node2Vec、GraphSAGE 等算法来实现。图嵌入在图分析、社交网络分析、推荐系统等领域中广泛应用,用于发现社区结构、节点相似性、信息传播等图属性。 关键技术标准 机器学习标准:规范机器学习的训练数据、数据预处理、模型表达和格式、模型效果评价等,包括自监督学习、无监督学习、半监督学习、深度学习和强化学习等标准。 知识图谱标准:规范知识图谱的描述、构建、运维、共享、管理和应用,包括知识表示与建模、知识获取与存储、知识融合与可视化、知识计算与管理、知识图谱质量评价与互联互通、知识图谱交付与应用、知识图谱系统架构与性能要求等标准。 大模型标准:规范大模型训练、推理、部署等环节的技术要求,包括大模型通用技术要求、评测指标与方法、服务能力成熟度评估、生成内容评价等标准。 自然语言处理标准:规范自然语言处理中语言信息提取、文本处理、语义处理等方面的技术要求和评测方法,包括语法分析、语义理解、语义表达、机器翻译、自动摘要、自动问答和语言大模型等标准。 智能语音标准:规范前端处理、语音处理、语音接口和数据资源等技术要求和评测方法,包括深度合成的鉴伪方法、全双工交互、通用语音大模型等标准。 计算机视觉标准:规范图像获取、图像/视频处理、图像内容分析、三维计算机视觉、计算摄影学和跨媒体融合等技术要求和评价方法,包括功能、性能和可维护性等标准。 生物特征识别标准:规范生物特征样本处理、生物特征数据协议、设备或系统等技术要求,包括生物特征数据交换格式、接口协议等标准。 国内大模型 通用模型:如文心一言、讯飞星火等,处理自然语言。 垂直模型:专注特定领域如小语种交流、临床医学、AI 蛋白质结构预测等。 大模型的体验 以‘为什么我爸妈结婚的时候没有邀请我参加婚礼’和‘今天我坐在凳子上’为例,体验了 Kimi、通义千问、豆包等大模型的回答和续写能力,发现回复有差异,且大模型基于统计模型预测生成内容。 大语言模型的工作原理 包括训练数据、算力、模型参数,在训练数据一致情况下,模型参数越大能力越强,参数用 b 链形容大小。 Transformer 架构:Transformer 是大语言模型训练架构,17 年出现用于翻译,具备自我注意力机制能理解上下文和文本关联,其工作原理是单词预测,通过嵌入、位置编码、自注意力机制生成内容,模型调教中有控制输出的 temperature。 大模型幻觉:大模型通过训练数据猜测下一个输出结果,可能因错误数据导致给出错误答案,优质数据集对其很重要。 Prompt 的分类和法则 分为 system prompt、user prompt 和 assistant prompt。 写好 prompt 的法则包括清晰说明、指定角色、使用分隔符、提供样本等,核心是与模型好好沟通。 Fine tuning 微调:基于通用大模型,针对特定领域任务提供数据进行学习和调整,以适应特定领域的需求。 RAG 概念:未对 RAG 的具体内容进行详细阐述,仅提出了这个概念。
2025-02-11
我作为一名OA软件的行业的售前,我的工作中会涉及到AI与OA结合落地的智能化场景,所以我对AI知识有简单的了解,我现在想转型AI行业的售前,我该如何系统的学习AI的相关知识,请帮我制定一个计划
以下是为您制定的从 OA 软件售前转型到 AI 行业售前的系统学习计划: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、掌握相关技能和知识 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,作为转型者,您可以从以上多个方面入手,全面系统地学习 AI 知识和技能,为未来在 AI 行业的售前工作做好准备。
2025-01-07
帮我生成一个小程序,功能涉及“个人多名片管理”“可以通过扫描纸质名片生成电子名片、手动填写信息生成电子名片、关键字词ai智能生成名片”“支持手动编辑名片信息”“每个信息都可以通过ai生成及润色”“支持添加案例”“支持客户名片管理”“分享客户后,客户打开名片,支持交换信息并生成自己的名片”
要开发您所描述的涉及“个人多名片管理”等功能的小程序,以下是一些参考步骤和相关信息: 微信小程序开发基础: 1. 注册小程序:登录微信公众号首页,选取小程序,用新邮箱绑定注册。 2. 小程序信息填写:注册验证通过后,填写小程序信息和类目,名称可根据功能设定,头像可网上获取或利用工具生成。 3. 开发者工具下载:回到发布流程页面,点击“普通小程序开发者工具”,选择“微信开发者工具”,下载 windows 64 位版本。 4. 创建小程序项目:打开下载好的微信开发者工具,选择创建小程序。注意获取账号信息中的 id,选择不使用云服务,并选择 javascript 基础模板。 相关案例: 1. 有“使用 GPT 的视觉功能和 TTS API 处理和讲述视频”的案例,演示了如何通过视频使用 GPT 的视觉功能。 2. “开发:GLM 等大模型外接数据库”的案例,可调整 prompt,匹配不同知识库,让 LLM 扮演不同角色,如财务分析师、智能客服等。 目前没有与您需求完全匹配的直接可用的开发案例,但您可以参考上述基础步骤和相关案例的思路,结合您的具体需求进行开发。
2024-11-25
请总结本知识库,并提炼出11节面向十岁儿童关于AIGC的课程,三节是提示词工程,2节文生文,2节文生图/图生图,2节文生音频,2节文生视频/图生视频,不需要涉及智能体及文生代码
以下是对本知识库的总结: 包含了不同时间段的 AIGC 周刊内容,如 Open AI 发布 ChatGPT 的 iOS 应用、Google 宣布多项 AI 新功能、AI 歌手相关教程等。 有关于提示词工程的课程及相关技巧介绍。 涉及一些特定的 AIGC 技术和方法,如 Donut 文档理解方法。 提到了谷歌的生成式 AI 学习课程。 以下是为十岁儿童设计的 11 节关于 AIGC 的课程: 1. 提示词工程基础 什么是提示词 提示词的作用 简单的提示词示例 2. 提示词工程进阶 复杂提示词的构建 如何优化提示词 提示词的实际应用 3. 提示词工程实践 设计自己的提示词任务 分享与讨论提示词成果 总结提示词的使用技巧 4. 文生文入门 了解文生文的概念 简单的文生文工具介绍 尝试生成一段文字 5. 文生文提高 优化文生文的输入 让生成的文字更有趣 比较不同文生文的效果 6. 文生图/图生图基础 认识文生图和图生图 常见的文生图工具 用简单描述生成一张图片 7. 文生图/图生图进阶 更复杂的描述生成精美图片 对生成的图片进行修改 分享自己生成的图片 8. 文生音频入门 什么是文生音频 简单的文生音频工具 生成一段简单的音频 9. 文生音频提高 让生成的音频更动听 给音频添加特效 欣赏优秀的文生音频作品 10. 文生视频/图生视频基础 文生视频和图生视频的概念 基本的文生视频工具 制作一个简单的视频 11. 文生视频/图生视频进阶 让视频更精彩 视频的后期处理 展示自己制作的视频
2024-10-31
如何把视频的内容,包括对话的文字提取并总结成文字?
要把视频的内容包括对话文字提取并总结成文字,可以按照以下步骤进行: 1. 对于有字幕的 B 站视频,如果视频栏下面有字幕按钮,说明视频作者已上传字幕或后台适配了 AI 字幕。 2. 安装油猴脚本: 。 3. 安装之后刷新浏览器,点击字幕会出现“下载”按钮。 4. 点击下载按钮,选择多种字幕格式,如带时间或不带时间的。 5. 将下载的字幕文字内容全选复制发送给 GPTs 进行总结。 此外,还有一个集成的视频理解系统 MMVid,它由 Microsoft Azure AI 开发,结合了 GPT4V 的能力和其他视觉、音频和语音处理工具,能处理和理解长视频和复杂任务,能够自动识别和解释视频中的元素,如人物行为、情感表达、场景变化和对话内容,从而实现对视频故事线的理解,其核心功能是将视频中的多模态信息转录成详细的文本脚本,方便大语言模型理解视频内容。
2025-02-20
我想做一个产品(生涯规划领域的垂直大模型),这个产品服务的对象是所有人:帮助所有人进行更好的职业规划。每个人都能通过使用这个产品更好地了解自己,了解自己的天赋、兴趣、优势,然后找到自己的热爱的领域和热爱的事业,并且能够个性化地推荐相关的行业和职业,包括职业的主要工作内容和核心能力要求等等。 请对这个产品进行可行性分析,并给出产品的发展规划,别忘了给这个项目起一个名字。
以下是对您提出的生涯规划领域垂直大模型产品的可行性分析和发展规划,并为项目取名为“生涯智途”。 可行性分析: 1. 需求广泛:帮助人们进行职业规划是一个普遍存在的需求,涵盖了各个年龄段和职业阶段的人群。 2. 数据可用性:可以通过各种渠道收集大量与职业相关的数据,包括行业报告、职位描述、人才需求等。 3. 技术支持:当前大模型技术的发展为实现这样的产品提供了可能,能够处理和分析大量复杂的数据。 发展规划: 1. 数据收集与整理:广泛收集各类职业数据,建立丰富的数据库,确保数据的准确性和完整性。 2. 模型训练与优化:利用收集到的数据进行模型训练,不断优化模型,提高预测和推荐的准确性。 3. 功能开发: 个性化测评:开发能够准确评估用户天赋、兴趣、优势的功能模块。 精准推荐:根据用户的特点,提供个性化的行业和职业推荐,并详细介绍职业的工作内容和核心能力要求。 持续学习与更新:随着行业变化,及时更新数据和模型,以提供最新的职业信息。 4. 用户体验优化:设计简洁、易用的界面,提供良好的用户交互体验。 5. 市场推广:通过线上线下多种渠道进行推广,提高产品的知名度和用户覆盖面。 希望以上分析和规划对您有所帮助。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?
以下是一些您可以从以下角度开发产品来赋能兼职督学岗位的工作效率,并锻炼您的 AI 能力,以争取上司或老板为产品支付报酬: 1. 利用 Coze 的多语言模型支持,为解答高中生学习方法等疑问提供更准确和全面的回答。 2. 借助插件系统,集成与学习相关的插件,如学习资料查询、学习工具推荐等,丰富服务内容。 3. 运用知识库功能,上传各类学科知识点、优秀学习案例等,方便在服务中快速调用和推送。 4. 利用数据库和记忆能力,记住每个高中生的学习情况和需求,提供个性化服务。 5. 设计工作流,例如自动发送测试卷、自动通知后端制作学习计划、自动推送学习计划链接等流程,提高工作效率。 6. 采用多代理模式,针对不同学科或学习阶段设置专门的代理,提供更精准的服务。 7. 利用 Coze 易于发布和分享的特点,将服务产品推广给更多需要的高中生和督学人员。
2025-02-18
兼职督学岗位,通过飞书平台为高中生服务,包括:1)解答学习方法等疑问;2)发送测试卷;3)提交测试卷后通知后端制作学习计划;4)发送学习计划链接;5)定期推送知识点和打卡提醒;6)查看打卡并反馈。所有文档通过飞书云文档链接发送。现在我想通过利用coze将deepseek等ai接入飞书的形式,制作出产品赋能督学在这一岗位的工作效率,并希望在这一过程中,锻炼我的ai能力,再想办法让上司或者老板为我这个产品支付报酬,请问我可以从哪些角度开发产品?又该如何将它推销给上司?
以下是关于您利用 Coze 和 DeepSeek 等 AI 接入飞书来赋能兼职督学岗位工作效率的一些建议: 开发产品的角度: 1. 智能答疑系统:利用 AI 技术,对高中生常见的学习方法疑问进行自动分析和回答,提高答疑效率和准确性。 2. 个性化测试卷生成:根据学生的学习情况和需求,通过 AI 生成个性化的测试卷。 3. 学习计划优化:基于学生提交的测试卷结果,利用 AI 更精准地制定学习计划。 4. 知识点精准推送:运用 AI 分析学生的学习进度和薄弱环节,定期推送更具针对性的知识点。 5. 打卡提醒优化:通过 AI 实现更灵活、个性化的打卡提醒方式。 推销给上司的方法: 1. 展示效率提升:详细说明产品如何大幅提高兼职督学的工作效率,节省人力和时间成本。 2. 个性化服务优势:强调产品能够为高中生提供更个性化、精准的服务,提升学习效果。 3. 数据支持:提供相关的数据和案例,证明 AI 赋能后的积极效果。 4. 成本效益分析:说明开发和使用该产品的成本相对较低,而带来的收益显著。 5. 未来发展潜力:阐述产品在不断优化和拓展功能方面的潜力,适应更多的教育需求。 另外,Coze 是由字节跳动推出的 AI 聊天机器人和应用程序编辑开发平台,专为开发下一代 AI 聊天机器人而设计。它具有多语言模型支持、插件系统、知识库功能、数据库和记忆能力、工作流设计、多代理模式、免费使用、易于发布和分享等特点。这些特点可以为您的产品开发提供有力支持。
2025-02-18
基于大模型的应用开发主要包括哪些方向和相应的技术栈?
基于大模型的应用开发主要包括以下方向和相应的技术栈: IaaS 层: 百度智能云百舸 AI 异构计算平台,解决大模型应用中的算力问题,提供从集群创建到模型训练、推理的完整算力管理方案,通过引入自动故障预测与任务迁移技术,确保高达 99.5%的有效训练时间,为大模型应用落地提供强大的算力支撑。 PaaS 层: 百度智能云千帆大模型平台,解决大模型的调用、开发和应用开发问题,支持调用文心大模型全系列模型,提供全面的工具链,支持定制化的模型开发。通过 AppBuilder,提供企业级 Agent 和企业级 RAG 开发能力,还能将企业应用中产生的数据经过评估和对齐进一步反馈到模型中,形成良性循环,持续优化模型性能。 SaaS 层: 百度智能云提供丰富的常用应用供客户选择,如数字人平台曦灵、智能客服应用客悦等。 此外,还有一些其他的技术栈和框架,如: Langchain:是当前大模型应用开发的主流框架之一,提供了一系列的工具和接口,其核心在于“链”概念,包括 Model I/O、Retrieval、Chains、Agents、Memory 和 Callbacks 等组件,生态系统还包括 LangSmith、LangGraph 和 LangServe 等工具。 Ollama:是一个开箱即用的用于在本地运行大模型的框架。
2025-02-14
请把机器学习相关和大模型相关的知识点形成一个结构化的知识树,包括但是不限于算法、框架、工具、注意力机制等
以下是一个关于机器学习和大模型的结构化知识树: 一、基础数学知识 1. 线性代数 2. 概率论 3. 优化理论 二、机器学习基础 1. 监督学习 分类 回归 2. 无监督学习 聚类 3. 强化学习 三、深度学习 1. 神经网络 卷积网络 递归网络 注意力机制 2. Transformer 模型 四、自然语言处理 1. 语言模型 2. 文本分类 3. 机器翻译 五、计算机视觉 1. 图像分类 2. 目标检测 3. 语义分割 六、前沿领域 1. 大模型 2. 多模态 AI 3. 自监督学习 4. 小样本学习 七、工具与框架 1. TensorFlow 2. PyTorch 八、应用领域 1. 自然语言处理 2. 计算机视觉 3. 推荐系统 九、数据处理 1. 数据采集 2. 数据清洗 3. 特征工程 十、模型部署 1. 模型优化 2. 模型服务 十一、科研实践 1. 论文阅读 2. 模型实现 3. 实验设计 十二、行业实践 1. 项目实战 2. 案例分析
2025-02-11