Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

多人物场景,人物一致性如何保证

Answer

在多人物场景中保证人物一致性可以参考以下方法:

  1. 在使用 Midjourney 出图时,多角色情况下,放弃参考角色(--cref 提示),只用参考风格(--sref 提示)。这样的好处是不会出现奇怪的组合,坏处是出图较随机。
  2. 多用局部重绘,虽然具有随机性,但多试几次能得到一致性较好的图。
  3. 出图时先只出一个主要角色和场景。当出现多角色场景时,把其他角色抠图粘贴过来。比如老虎向兔子认错的场景,若兔子和老虎不一致,可先出稳定的老虎,再粘贴兔子以保证一致性。
  4. 按照“三个确定”的 SOP 处理:
    • 确定画面元素:优先出一张图,保证风格、构图样式及人物角色。
    • 确定前后图的构图风格:出第二张图时,将第二张图提示词描述后加入第一张图的构图风格(iw 参数)。
    • 确定图片角色一致性:在保证构图风格没问题的基础上,保证人物一致性。先保证构图再确认角色一致性,因为 MJ 在重绘时,将角色在镜头中的位置挪动处理较难,固定位置重绘局部内容相对容易,若先保证人物内容,会很依赖 MJ 抽卡,随机性大。
Content generated by AI large model, please carefully verify (powered by aily)

References

亲子共创绘本:森林里的勇气与友谊

第2步选风格,也很简单,就是找一张一喜欢的绘本风格画面,作为参考风格就行,我是直接浏览器随手搜了一下绘本画面,让满满来选一张最喜欢的,然后就是站酷上面看到了这张图她很喜欢,我们的绘本最终决定以这个画面为风格参考。风格参考图,来自站酷接下来第三步就是用Midjourney出图,把第一步ChatGPT生成的英文Prompt拿过来改一改,加上风格参考--scrf以及对象参考--cref就可以开始愉快的肝图了。肝图是最花时间的,这里可不是分分钟了,因为就算是Midjourney出了角色一致性,出的图还是随机性很大,尤其是多主体的时候基本上就崩了。你看看,兔子耳朵的大鹅,鹅头龟身的神兽,就挺离谱的(⊙﹏⊙)然而,偶尔也是会出一些好图的,比如这张大鹅战老虎,对提示词的理解非常到位:那么,对于出的图质量不好,一致性差,该怎么处理?首先,多角色的情况下,就不要用参考角色了,放弃--cref提示,只用参考风格--sref。好处是不会出现鹅头龟身的奇怪东西,坏处是出图比较随机。其次,多用局部重绘,这个就是随机性出,多试几次总能出到合适的一致性好的图。最后,出图只出一个主要角色和场景。当出现多角色的场景时,把其他角色抠图粘贴过来。比如下面这个老虎向兔子认错的场景,出的兔子和老虎都非常不一致,要不然就是老虎不一致,要不然就兔子不一致,或者俩一致性都和前面不一样,就直接很让人崩溃,没法用。然后我就直接出个老虎,不要兔子了。这样老虎最起码先稳定了。然后再把兔子粘贴过去,保证一致性。

满满爸爸:亲子共创绘本《森林里的勇气与友谊》

第2步选风格,也很简单,就是找一张一喜欢的绘本风格画面,作为参考风格就行,我是直接浏览器随手搜了一下绘本画面,让满满来选一张最喜欢的,然后就是站酷上面看到了这张图她很喜欢,我们的绘本最终决定以这个画面为风格参考。风格参考图,来自站酷接下来第三步就是用Midjourney出图,把第一步ChatGPT生成的英文Prompt拿过来改一改,加上风格参考--scrf以及对象参考--cref就可以开始愉快的肝图了。肝图是最花时间的,这里可不是分分钟了,因为就算是Midjourney出了角色一致性,出的图还是随机性很大,尤其是多主体的时候基本上就崩了。你看看,兔子耳朵的大鹅,鹅头龟身的神兽,就挺离谱的(⊙﹏⊙)然而,偶尔也是会出一些好图的,比如这张大鹅战老虎,对提示词的理解非常到位:那么,对于出的图质量不好,一致性差,该怎么处理?首先,多角色的情况下,就不要用参考角色了,放弃--cref提示,只用参考风格--sref。好处是不会出现鹅头龟身的奇怪东西,坏处是出图比较随机。其次,多用局部重绘,这个就是随机性出,多试几次总能出到合适的一致性好的图。最后,出图只出一个主要角色和场景。当出现多角色的场景时,把其他角色抠图粘贴过来。比如下面这个老虎向兔子认错的场景,出的兔子和老虎都非常不一致,要不然就是老虎不一致,要不然就兔子不一致,或者俩一致性都和前面不一样,就直接很让人崩溃,没法用。然后我就直接出个老虎,不要兔子了。这样老虎最起码先稳定了。然后再把兔子粘贴过去,保证一致性。

Jerry:MJ多张图保证构图、人物一致性实战教学

由于MJ不可控因素,如果需要前后两张图画风、构图等都保持一致,这里总结了一个SOP,可以按照三个确定来处理。1.确定画面元素优先出一张图,保证风格、构图样式及人物角色2.确定前后图的构图风格出第二张图时,将第二张图提示词描述后加入第一张图的构图风格(iw参数)3.确定图片角色一致性在第二步得到构图风格没有问题的基础上,在保证人物一致性即可。WHY先保证构图再确认角色一致性?因为MJ在重绘时,如果要将一个角色从镜头一个位置挪到另外一个指定位置,非常难处理。整个MJ出图基本也是靠降噪重绘,那相较于把整个画面结构都变了,固定位置重绘局部内容会容易很多,如果整个画面结构变了先保证人物内容的话,会很依赖MJ抽卡(因为你不知道何时才能出到与你之前相同的构图样式)。这就好比美术课画画一样,给你一张参考图,一个是把背景风格都做好了,让你在固定位置添加内容,另外一个是让你将整个页面内容全部重绘,还要保证画面的主题内容要和参考图一样,相比之下后者的随机性会大非常多(抽卡次数也会很多)。

Others are asking
基于参考图片人物形象生成指定迪士尼风格的图片
以下是关于基于参考图片人物形象生成指定迪士尼风格图片的相关内容: 在 Midjourney 中,生成指定迪士尼风格的图片可以通过以下方式: 1. 角色参考(cref):cref 的功能是保持图像角色的一致性。使用方法是在提示后添加 cref,并紧接着指向人物参考图像的 URL。您可以使用 cw 来调整参考图像对生成的图像的影响程度,数值范围从 0 到 100。 2. 风格参考(sref):sref 的功能是生成类似风格的图片,保持画风的一致性。使用方法是在提示后添加 sref,并紧接着指向风格参考图像的 URL。您可以使用 sw 来调整参考风格对生成的图像的影响程度,数值范围从 0 到 1000。 如果想引用一张图,但只是把它作为新图的一部分,可以使用 sref 或 cref,并通过调整 sw 或 cw 的值来控制引用图像的影响程度。 生成一张 Disney 风格的头像的具体步骤如下: 1. 选一张比较满意的图片,在 Discord 社区的 Midjourney 服务器聊天栏点击“+”,然后点击上传文件,选取图片,然后在聊天框发送(记得点击回车或发送按钮)。 2. 图片会上传到服务器并生成一张唯一的链接,点击图片,然后点击在浏览器中打开,然后可以看到浏览器上方有一个链接,复制下来。 3. 使用这个链接加 prompt 提示词来发送给 Midjourney,Midjourney 会根据需求生成特定的图片,这就是 Midjourney 的以图绘图。 此外,在生成 3D 效果图时,如生成可爱的拟人小鹿角色,可以在即梦图片生成界面中导入参考图,参考选项为参考轮廓边缘,生图模型选择 图片 2.0,输入包含角色、细节描述、场景、风格材质等的提示词,生成图片。
2025-02-12
文生图人物一致性
以下是关于文生图人物一致性的相关内容: 在使用 ControlNet 进行文生图时,首先进入文生图界面填写提示词生成一张图。然后将图片拖入 ControlNet 中,预处理器选择 reference only,控制模型选择“均衡”,保真度数值越高对图片的参考越强。在没有明确指向性提示词的情况下,人物形象能保持一致,但表情、动作、服装会有随机不同程度的变化。可以通过添加关键词来给人物换装、更改服装和表情、更改动作和表情、更改姿态、环境和表情等,例如添加“红裙子”“黑色校服、哭泣”“抱手、生气”“在花丛中奔跑、开心”“红色棒球帽,时尚卫衣,在商场逛街”。通过一系列测试,这个功能在绘制系列插画、漫画、小说插图等工作时,能保持主角形象的统一,也能根据情况实时调整,后期配合 lora 潜力巨大。 另外,在 PIKA1.0 新模型中,人的一致性已经逆天,再加上其强大的语义理解和大幅度的动作,在文生图方面表现出色。
2025-02-11
请推荐一下你知道的人物头像转卡通图的平台,要求效果好,和原图相似度高,最好是免费的
以下为一些人物头像转卡通图效果好、与原图相似度高且可能免费的平台及相关操作技巧: 1. Stable Diffusion: 可以使用【X/Y/Z plot】脚本来做参数对比,将 X 轴设置为提示词相关性(取值范围 1 30,每次增加 5),Y 轴设置为重绘幅度(取值范围 0 1,每次增加 0.2)。 提示词相关性在 6 11 中间为最佳,重绘幅度 0.4 时和原图比较接近。 可使用绘图功能,如增加红色眼镜、去掉衣服图案等,局部重绘可只改变涂抹部分。 2. 复杂提示词: 如 Disney boy,Low saturation Pixar Super details,clay,anime waifu,looking at viewer,nighly detailedreflections transparent iridescent colors.lonctransparent iridescent RGB hair,art by Serafleurfrom artstation,white background,divine cinematic edgelighting,soft focus.bokeh,chiaroscuro 8K,bestquality.ultradetailultradetail.3d,c4d.blender,OCrenderer.cinematic lighting,ultra HD3D renderinoiw 1.5s 500v 5 。 可根据需求调整提示词,如将 Disney 换成 Pixar,boy 换成 girl 等。 3. 通用人物模版: 用真人照片+照片描述+方法 1 的关键词来处理。 需要注意的是,不同平台的效果可能因图片和操作而有所差异,您可以自行尝试。
2025-02-06
我想把黑白老照片修复成彩色,然后给人物换衣服。请问哪个AI网站或者软件可以免费使用
以下为您介绍可免费使用的将黑白老照片修复成彩色并给人物换衣服的方法: 使用 Stable Diffusion 可以实现此需求。在新上线的 controlnet 模型中,新增的 Recolor 模型能将黑白图片重新上色。操作时选择 realisian 的写实大模型,提示词直接描述颜色和对应的内容,如黑色的头发、黄色的皮肤、深蓝色的衣服、浅蓝色的背景等。ControlNet 选择 Recolor,预处理器选择“recolor_luminance”效果较好。 将照片放入后期处理,使用 GFPGAN 算法将人脸变清晰,可参考文章——。 之后将图片发送到图生图中,打开 stableSR 脚本,放大两倍。此放大插件是所有插件中对原图还原最精准、重绘效果最好的,可参考文章——。切换到 sd2.1 的模型进行修复,vae 选择 vqgan,提示词可不写以免对原图产生干扰。 原文网址:https://mp.weixin.qq.com/s/hlnSTpGMozJ_hfQuABgLw
2025-02-04
视频中的人物和背景替换,用什么工具
以下是一些可用于视频中人物和背景替换的工具及相关流程: ComfyUI 工作流: 前景处理: 使用 SAM 之前的版本来分割视频背景。 根据实际情况调整提示词和阈值。 移除背景后,使用图像遮罩复合生成灰色背景的图像批次,以帮助柔化前景对象(如人物)的边缘,减少锯齿或硬边缘的视觉效果,为后续和背景融合时过渡更自然顺滑。 在网盘里可以找到对应的模型,下载后按文件夹目录地址放置。 背景:背景部分可以是图片或者视频,为了有前后的视觉效果,可以添加一个图像的模糊,让生成的视频有种景深的效果。 边缘的处理: 核心是优化和改善前景对象的边缘,使其能够与新背景无缝融合,同时保持前景细节的完整性和自然性。 通过遮罩模糊生长(growMaskWithBlur),调整扩展和模糊半径来控制边缘的遮罩。 【SD】工作流: GroundingDINO 模型分割:当需要更精确的蒙版,如人物的眼睛或身上的配饰等,可使用 segment anything 中的 GroundingDINO。启用 GroundingDINO 时,AI 会自动下载模型,也可去云盘下载放到指定文件目录下。在检测提示词中输入相关内容,AI 可自动检测并设置蒙版,还能通过预览箱体得到编号选择调整单一部分。 希望以上内容对您有所帮助。
2025-02-02
即梦AI里做儿童绘本制作、故事绘本里,怎么做到人物一致,风格一致,场景风格一致。
要在即梦 AI 中制作儿童绘本并做到人物、风格和场景风格一致,可以按照以下步骤进行: 1. 描述故事场景:利用 ChatGPT 或者自行构思一段适合画绘本的故事,将其分为多个场景,用一句包含环境、人物、动作的话描述每个场景。例如,故事名《Lily 的奇妙之旅》,场景 1 为“探险开始,Lily 来到一个阳光明媚的森林,跳过清澈的小溪,愉快玩耍。在路上结识了一只友善的棕熊,她们成为了旅伴”。 2. 生成场景图片:为每个场景生成图片时,使用固定的 prompt 风格词,如“super high details,HDsmooth,by Jon Burgerman,s 400niji 5style expressivear 3:4”。为了使熊和人物有更好的互动感,生成场景时也包括人物主角。如场景 2 的 prompt 为“Walking in a mysterious cave with glittering gems,little girl Lily wearing a yellow floral skirt,her friend brown bear,dim,dreamlike,super high details,HDsmooth,by Jon Burgerman,s 400niji 5style expressivear 3:4”。如果需要,可使用 mj 的 region vary 工具将小女孩完全框选,在提示词中完全删除 Lily 的描述词,重新生成得到场景图像。 3. 绘制绘本主角:确定人物形象,如“a little girl wearing a yellow floral skirt+人物动作+风格词”,在 mj 中生成直到得到一张满意的人物图像,且一套绘本中风格词语不要改变。 4. 保持一致性描述:在写 prompt 时,应从多个角度描述需求,包括人种、画风、宠物品种等,以稳定内容符合预期。例如,如果想生成一个关于“狗”的视频,提供不同狗的品种、外貌、行为等信息,确保物种和画风的一致性。
2025-01-23
AI图片制作视频如何保持人脸一致性的工具
以下是一些关于在 AI 图片制作视频中保持人脸一致性的工具和方法: 1. U 传:在 U 传中,通过点击相应按钮参考角色、风格或图生图,可保持人物一致性。 2. PixVerse:其“角色(Character)”新功能能实现 AI 生成视频中的角色保持一致。用户只需单击“Character”功能,上传符合要求的真实人脸图像,点击创建自定义角色,训练一个新角色,然后可使用自定义角色生成视频,可在 AI 生成视频中轻松切换场景,同时保持同一角色身份。 3. Midjourney:在有了 Midjourney 的新功能 Cref 以后,可在一定程度上保持人物一致性。先跑一张主角的定妆照,然后在需要出现主角人物的地方,扔进去 Cref 以保持发型、人脸、衣服。但 Midjourney 对亚洲人脸的一致性效果,尤其是亚洲老人的一致性效果较差,且 Cref 在画面的审美和构图上有一定的破坏性,所以能不用则不用。 需要注意的是,目前对于场景一致性,基本上还没有任何有效的解决办法。
2025-01-31
图的角色 用 cref 去控制一致性 风格可以用 sref 去控制
在 Midjourney 中,cref 和 sref 是用于引用图片的功能,它们有以下区别和使用方法: 1. 角色参考(cref): 作用:保持图像角色的一致性。 使用方法:在提示后添加“cref”,紧接着指向人物参考图像的 URL。例如:/imagine prompt beautiful girlcref。可以使用“cw”调整参考图像对生成图像的影响程度,数值范围从 0 到 100。强度 100(“cw 100”)是默认值,会使用面部、头发和衣服,cw 为 0 的话仅保证脸部一致。基础格式为“cref 图片链接,cw 100”。 参考链接: 2. 风格参考(sref): 作用:生成类似风格的图片,保持画风的一致性。 使用方法:在提示后添加“sref”,紧接着指向风格参考图像的 URL。例如:/imagine prompt beautiful girlsref。可以使用“sw”调整参考风格对生成图像的影响程度,数值范围从 0 到 1000。基础格式为“sref 图片链接,sw 100”。 参考链接: 如果想引用一张图,但只是把它作为新图的一部分,可以使用“sref”或“cref”,并通过调整“sw”或“cw”的值来控制引用图像的影响程度。例如:/imagine prompt beautiful girlsrefsw 500。这样,生成的图像将会在保持原有风格的同时,融入一部分引用图像的风格。
2025-01-13
flux lora调参数,我训练出来的人物模型和数据集的人物图片不像,出现这种情况的原因都有哪些,应该调整哪些参数,我需要我的flux模型训练出来的模型是一致性还原性,和泛化性比较不错的,按照这个方向给我指导
以下是关于 flux lora 调参数以获得一致性、还原性和泛化性较好的人物模型的指导: 打标环节: 选择基础大模型,如“麦橘写实”,并为 lora 命名。 将照片导入,选择合适分辨率,可勾选“脸部加强训练”,然后进行预处理。手动裁剪图片比自动裁剪更可靠。 预处理后会出现脸部和整体文件夹,且每张照片自动打好 tag 标签。 可为整体添加统一标签,也可单独修改每张图片的标签。标签有助于 AI 理解图片,描述越详细,人物变化可能越多,泛化性可能越好。仔细检查每张图片的标签,其质量会影响人物 lora 的泛化性。 参数调整环节: 大部分参数是固定的,主要的几个按照人物参数配置一遍。后期根据生成结果再调整。 炼丹环节: 例如 18 张脸部图片,20 张整体图片,各训练 50 步,循环训练 10 次,并行步数为 1。训练总步数和时长会有所不同,loss 值可作为参考,但最终效果仍需通过测试判断。 此外,在 Lora 串联方面,多个 Lora 串联时左右顺序不影响结果,可复制并点对点连接。CLIP 层 1 和 2 的效果不同,加 Lora 时某些 Lora 可能更适合 2。Lora 可用于生成底模无法画出的内容。在运行中点击取消可打断正在渲染跑的图。图像放大可通过 up scale image using model 节点,选择放大模型,用 resize 节点调整尺寸,再用编码器和采样器处理。放大模型直接放大的图像效果不佳,需再次采样增加细节。添加飞桨缺失节点可通过拖入工作流查看标红节点,从管理器安装或从 GitHub 获取节点包放入文件管理系统。采样器和调度器参数设置建议参考模型作者推荐,并结合自己调试。Web UI 中 Lora 库有刷新按钮,将 Lora 丢到文件夹后多点几次刷新即可。
2025-01-04
LLM输出的结果一致性如何保证
要保证 LLM 输出结果的一致性,可以采取以下几种策略: 1. Prompt 工程: 明确的待处理内容指引:在构建 Prompt 时,清晰地定义需要处理的文本,并使用标记框起来,让模型准确识别待处理内容范围,从中提取信息。 提供明确字段定义:具体化每个字段的名称、用途及要求,为 LLM 提供明确的提取方向和标准。 异常处理:设置异常处理原则,如规定缺失数据使用默认值填充,特殊数据类型符合标准格式,确保模型输出的完整性和一致性。 要求结构化输出:指示 LLM 以结构化格式(如 JSON)输出数据,便于后续处理和系统集成。 2. 自我一致性增强可靠性:促使 LLM 对同一问题产生多个答案,通过一致性审查衡量其可信度。一致性评估可从内容重叠、语义相似性评估及高级指标(如 BERT 分数或 ngram 重叠)等多方面进行,增强 LLM 在事实核查工具中的可靠性。 3. 衡量和评估不确定性:如牛津大学通过生成一个问题的多个答案,并使用另一个模型根据相似含义分组来衡量 LLM 不确定性。 4. 利用外部工具验证:如 Google DeepMind 推出的 SAFE,通过将 LLM 响应分解为单个事实、使用搜索引擎验证事实以及对语义相似的陈述进行聚类来评估 LLM 响应的真实性。 5. 借助其他 LLM 发现错误:如 OpenAI 推出的 CriticGPT,使用基于大量有缺陷输入数据集训练的 GPT 式 LLM 来发现其他 LLM 生成代码中的错误。 6. 利用 LLM 生成的评论增强 RLHF 的奖励模型:如 Cohere 使用一系列 LLM 为每个偏好数据对生成逐点评论,评估提示完成对的有效性。
2025-01-02
可灵ai如何保持人物一致性
要保持可灵 AI 中人物的一致性,可以参考以下方法: 1. 人物设定: 明确主角、配角等人物的性格特点、外貌特征等,如主角是一位 40 岁的中年男探险家,性格特点是面对挑战从不轻言放弃,外貌特征是健壮、棕色头发、常穿探险服。 2. MJcref 控制人物一致性: 先根据人物设定,在 MJ 里筛选适合的人物形象,选中后右键复制图片链接。 在尾缀加入【cref 图片链接】控制人物一致性,【cw 数值】控制权重。 对于镜头较多的角色,建议炼个人物模型出来控制,不然 MJ 容易不稳定。 3. 控制多人物场景统一: 先控制一个角色再进行重绘。 选一张合适的图片后,点击 Vary进行局部重绘,并把尾缀机器人的 cref 链接改成主角的 cref 链接。 4. 通过 prompt 格式实现“角色一致性”: 公式:发型+年龄性别+衣物颜色+环境+其他(动作、镜头等)。 发型/衣物:构造尽可能多的角色非面部视觉元素,产生观众对角色的“一致性观感”。 年龄:约束角色年龄特征。 环境:约束能够产生相同观感的环境空间,尤其是光环境,增加观众对于形象认识的“一致性”认知。例如: 特写一个棕色卷发,身穿棕褐色上衣的小男孩,正对镜头,面部被烛光照亮,表情惊讶,环境昏暗明暗对比强烈。 特写一个棕色卷发,身穿棕褐色上衣的小男孩,侧对镜头,微微仰头走在一片暗绿色的森林中,面部被手中提着的油灯照亮,环境昏暗明暗对比强烈。 一个棕色卷发,身穿棕褐色上衣的小男孩侧对镜头,看着面前桌上的蜡烛,环境昏暗明暗对比强烈。 中景拍摄一个棕色卷发,身穿棕褐色上衣的小男孩,正对镜头,在一个梦幻感的暖色调房间里,全身贯注地拼装面前的积木玩具。
2024-12-21
现在个人应用场景下最新的产品是什么
在个人应用场景下,最新的产品包括以下方面: 个人实操案例: 产品使用场景:为本篇文章配图,通过不同提示词生成搞笑图片等。 产品开发场景:搭建 AI 访谈 bot,以了解做 AI 朋友的访谈意愿和产出内容质量水平;对内容推荐机制感兴趣,希望 bot 具备内容推荐能力。实现方案有简单和复杂之分,复杂方案需考虑用户识别、记录存储入库可查看等问题,在扣子搭建 bot 时存在工作流触发不成功导致访谈记录未成功存储入库的情况。由于要发布到公众号作为订阅号助手,目前部署的是扣子版本,回复关键词【元器】可体验元器版本。 AIGC 落地应用: 筛选出 5 大应用场景、17 个细分方向、40+大模型案例。 使用场景分为改善大模型产品的使用体验、助力用户工作流、细分场景独立实用工具、AI 社区、Chatbot 五个方向。 产品形态分为插件(Chat GPT/Chrome 等)、辅助现有产品能力、深度结合 LLM 能力的独立网站&应用、AI 社区四种。目前产品大多分布在 PC 端。
2025-02-11
药品零售上市企业如何接入DeepSeek?应用场景有哪些?
目前没有关于药品零售上市企业接入 DeepSeek 以及其应用场景的相关内容。但一般来说,企业接入新的技术或系统需要进行充分的前期调研和规划。对于药品零售上市企业接入 DeepSeek,可能需要考虑与自身业务流程的匹配度、数据安全和合规性等方面。应用场景可能包括但不限于药品库存管理的优化、客户需求预测、销售趋势分析等,具体还需根据企业的实际情况和 DeepSeek 的功能特点来确定。
2025-02-11
给一段文字和场景描述,如何生成图文
以下是关于根据文字和场景描述生成图文的方法: 对于儿童绘本制作: 描述故事场景:利用 ChatGPT 或者自行构思一段适合画绘本的故事,分为场景 1/2/3/...,用一句包含环境、人物、动作的话描述每个场景。例如,故事名《Lily 的奇妙之旅》,场景 1 是“Lily 来到一个阳光明媚的森林,跳过清澈的小溪,愉快玩耍。在路上结识了一只友善的棕熊,她们成为了旅伴。” 生成场景图片:确定 prompt,包括场景和风格(一套绘本中风格词语不要改变)。为了使得熊和人物有更好的互动感,生成场景时也包括人物主角。如场景 2 的 prompt 是“Walking in a mysterious cave with glittering gems,little girl Lily wearing a yellow floral skirt,her friend brown bear,dim,dreamlike,super high details,HDsmooth,by Jon Burgerman,s 400niji 5style expressivear 3:4”。抠图时,由于只需要得到一张场景图像,使用 mj 的 region vary 工具将小女孩完全框选,在提示词中完全删除 Lily 的描述词,依次得到各个场景的图像。 对于将小说做成视频: 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 此外,还有一些创意工具的操作指引: 文生图:仅需输入文本描述,即可一键生成图片素材。操作指引为输入文本描述(关键词或场景描述等)——选择模型(注意 FLUX 模型不可商用)————开始生成——下载。 AI 翻译:支持多语种文本翻译,翻译结果实时准确。操作指引为输入原始文本——选择翻译的目标语言——开始生成。 TikTok 风格数字人:适配 TikTok 媒体平台的数字人形象上线,100+数字人模板可供选择。操作指引为输入口播文案——选择数字人角色——点击开始生成,视频默认输出语言和输入文案语言保持一致,默认尺寸为 9:16 竖版。 多场景数字人口播配音:支持生成不同场景下(室内、户外、站姿、坐姿等)的数字人口播视频。操作指引为输入口播文案——选择数字人角色和场景——选择输出类型——点击开始生成,视频默认输出语言和输入文案语言保持一致。 音频驱动多场景数字人:支持音频和场景数字人一键合成,快速生成数字人口播视频。操作指引为上传音频链接——选择数字人角色和场景——选择输出类型——点击开始生成,音频文件支持 MP3 和 WAV 格式,文件大小上限 5M。
2025-02-10
我想做短视频,用英语讲历史,场景全部用AI完成,帮我推荐一下工具
以下是为您推荐的用 AI 完成英语讲历史短视频的工具和制作流程: 制作流程: 1. 内容分析:使用 AI 工具(如 ChatGPT)分析历史内容,提取关键场景、角色和情节。 2. 生成描述:根据历史内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将英语讲解文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 工具推荐: 1. 图像生成工具:Stable Diffusion、Midjourney。 2. 视频编辑软件:Clipfly、VEED.IO。 3. AI 配音工具:Adobe Firefly。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-02-09
开发agent有哪些主流的方案,并从功能性,开发难易程度,适用场景进行对比
以下是一些主流的 Agent 开发方案,并从功能性、开发难易程度、适用场景进行对比: 1. Coze: 功能性:集成丰富插件工具,拓展 Bot 能力边界。 开发难易程度:相对较易。 适用场景:适用于构建基于 AI 模型的各类问答 Bot。 2. Microsoft 的 Copilot Studio: 功能性:外挂数据、定义流程、调用 API 和操作,部署到各种渠道。 开发难易程度:适中。 适用场景:适用于多种场景。 3. 文心智能体: 功能性:基于文心大模型,支持开发者打造产品能力。 开发难易程度:适中。 适用场景:多种场景。 4. MindOS 的 Agent 平台: 功能性:允许用户定义 Agent 的个性、动机、知识,访问第三方数据和服务或执行工作流。 开发难易程度:适中。 适用场景:多种场景。 5. 斑头雁: 功能性:基于企业知识库构建专属 AI Agent,提供多种成熟模板,功能强大且开箱即用。 开发难易程度:相对较易。 适用场景:客服、营销、销售等。 6. 钉钉 AI 超级助理: 功能性:依托钉钉优势,提供环境感知和记忆功能,在高频工作场景表现出色。 开发难易程度:适中。 适用场景:销售、客服、行程安排等。 Copilot 和 Agent 的区别: 1. 核心功能: Copilot:辅助驾驶员,更多依赖人类指导和提示,功能局限于给定框架。 Agent:主驾驶,具有更高自主性和决策能力,能自主规划和调整处理流程。 2. 流程决策: Copilot:依赖人类确定的静态流程,参与局部环节。 Agent:自主确定动态流程,能自行规划和调整任务步骤。 3. 应用范围: Copilot:主要处理简单、特定任务,作为工具或助手。 Agent:能处理复杂、大型任务,在 LLM 薄弱阶段使用工具或 API 增强。 4. 开发重点: Copilot:依赖 LLM 性能,重点在于 Prompt Engineering。 Agent:依赖 LLM 性能,重点在于 Flow Engineering,把外围流程和框架系统化。 搭建工作流驱动的 Agent 简单情况分为 3 个步骤: 1. 规划: 制定任务关键方法。 总结任务目标与执行形式。 分解任务为子任务,确立逻辑顺序和依赖关系。 设计子任务执行方法。 2. 实施: 在 Coze 上搭建工作流框架,设定节点逻辑关系。 详细配置子任务节点,验证可用性。 3. 完善: 整体试运行 Agent,识别卡点。 反复测试和迭代,优化至达到预期水平。
2025-02-08
AI智能体是什么?有什么作用?主要运用场景有哪些?
AI 智能体是一种能够自主感知和行动的系统,类似于 AI 机器人小助手。 其作用在于能够弥补大模型的不足,例如无法回答私有领域问题、无法及时获取最新信息、无法准确回答专业问题等。 主要运用场景包括: 1. 私有领域知识问答:准备好相关知识库文件,创建私有领域知识问答应用,如公司制度、人员信息等方面。 2. 个性化聊天机器人:提供长期记忆功能,保存关键历史对话信息,集成夸克搜索和图像生成等插件,提供个性化聊天体验。 3. 智能助手:引入 RAG(检索增强生成)能力、长期记忆和自定义插件等功能,帮助提升工作效率,如处理邮件、撰写周报等。 在其他领域也有重要应用,如: 1. 自动驾驶:感知周围环境,做出驾驶决策。 2. 家居自动化:根据环境和用户行为自动调节智能家居设备。 3. 游戏 AI:游戏中的对手角色和智能行为系统。 4. 金融交易:根据市场数据做出交易决策。 5. 客服聊天机器人:通过自然语言处理与用户互动,提供自动化的客户支持。 6. 机器人:各类机器人中集成的智能控制系统。 设计和实现一个智能体通常涉及定义目标、设计感知系统、定义决策机制、设计行动系统以及学习与优化等步骤。智能体在现代计算机科学和人工智能领域是一个基础且重要的概念,其技术的不断发展和应用正在改变我们的生活方式和工作模式。
2025-02-07
AI合规审核,产品保证信息如何借助AI进行只能审核
以下是关于借助 AI 进行产品保证信息合规审核的一些建议: 1. 建立用户的举报和响应机制:在网站建立相关投诉举报机制,如设置侵权举报按钮,简化举报流程,并建立快速响应团队,负责评估收到的侵权举报,并在必要时采取法律行动。 2. 对用户进行潜在风险提示,明确用户责任与义务:在用户协议中详细列出禁止侵权行为的条款,并明确违反协议的法律后果。通过用户教育活动,如在线研讨会、指南和常见问题解答,提高用户对版权的认识。 3. 企业应当深入钻研相关法律法规,深化版权合规流程: 定期组织知识产权法律培训,确保团队成员对相关法律法规有深刻理解,涵盖适用于 AI 生成内容的版权法、AI 创新的专利申请策略,以及对国际知识产权法律差异的理解等内容。 建立专门的法律合规团队,其职责不仅是监控,还需主动解释新法律变动对公司运营的影响,包括对新立法进行影响分析、从法律角度对产品开发提供建议,以及制定内部政策以指导公司对法律更新的响应。 制定严格的数据来源审核流程,确保所有用于训练 AI 的数据均获得明确的版权授权。对于 AI 生成的内容,应实行版权审核机制,以确保这些内容要么是原创的,要么已经得到授权使用。 4. 建立企业内容过滤与监控系统:开发或采用先进的内容识别技术,如图像识别和文本匹配,自动识别并过滤潜在的侵权内容。同时,建立内容监控小组,负责人工审核由用户生成的内容,确保过滤系统的准确性。通过结合使用技术和人工审核,提高识别侵权内容的能力,保护企业和用户免受侵权风险。
2025-01-13
构建一个路由分类器AI,在工作流里面有什么好的设计方案,怎么能保证分类器进行分类准确呢
构建路由分类器 AI 的工作流设计方案如下: 1. 内容编排:在第四步中,将指令分为扩写、缩写、总结以及其他四类,设定最终的分类条件。分类器匹配到特定分支后执行相应操作,这种编排方式可过滤并避免处理不明确的指令,确保智能体准确响应用户指令。 2. 编写具体指令:为每个指令编写具体内容,如缩写、扩写和总结三个分支,创建包含变量(即用户初始输入的原始文本)的简单指令,用花括号引用变量,系统将值赋给变量并传递给模型推理形成提示词。 3. 最终输出:对各分支结果进行输出,输出内容相对简洁。 4. 测试流程:首先准备用于扩写、缩写和总结三项测试的文本素材,然后逐一进行各项测试,包括扩写测试、缩写测试、总结测试和错误处理测试,以验证每个分支能否顺利执行。 要保证分类器分类准确,可以从以下方面入手: 1. 清晰明确地设定分类条件,避免模糊和歧义。 2. 对输入的指令进行充分的预处理和规范化,使其符合分类器的预期格式。 3. 不断优化和调整分类器的参数和算法,以适应不同类型和复杂程度的指令。 4. 进行大量的测试和验证,收集错误案例并进行分析改进。
2024-12-29
我想要让ai生成svg代码,如何保证其生成质量
目前知识库中没有关于如何保证让 AI 生成 SVG 代码质量的相关内容。但一般来说,要保证 AI 生成 SVG 代码的质量,可以从以下几个方面考虑: 1. 清晰明确地向 AI 描述您的需求,包括图形的特征、尺寸、颜色、线条样式等具体要求。 2. 提供足够的示例或参考资料,让 AI 更好地理解您期望的代码风格和质量标准。 3. 对生成的代码进行多次测试和验证,检查其在不同场景下的显示效果和兼容性。 4. 尝试使用不同的 AI 模型或工具,并比较它们生成的 SVG 代码质量,选择最适合您需求的。
2024-11-15
我想要让ai生成svg图片,如何保证其生成质量
要保证 AI 生成 SVG 图片的质量,您可以参考以下方法: 在使用 AI 生成图片时,可能会遇到即使输入相同关键词,生成的图片仍有很强随机性的情况。为了让生成的图片更加可控,可以利用 seed 参数进行反向生成。 首先,从官方文档中了解 seed 参数的作用:Midjourney 会用一个种子号来绘图,把这个种子作为生成初始图像的起点。种子号为每张图随机生成,但可以使用 Seed 或 same eseed 参数指定。使用相同的种子号和提示符将产生类似的结尾图片。详细参数可查看官方文档: 默认情况下,种子是随机给定的。若想要获得比较相似的图,需要将 seed 固定下来。简单来说,使用时在关键词后添加 seed 参数即可,具体数字在 0–4294967295 范围内均可。例如:caiyunyiueji is a cute sports anime girl,style by Miyazaki Hayao,emoji,expression sheet,8k seed 8888 这样就能保证每次生成的都是相同的图。此外,还可以反向利用这个特性对已经确定的效果图进行微调。比如当发现有一张图已比较接近目标,还需要一些微调时,可以利用确定图片的 seed,在此基础上添加新的关键词来实现。
2024-11-15
如何使用ai写文献综述,保证参考文献有正确出处
利用 AI 写文献综述并保证参考文献有正确出处,可以按照以下步骤进行: 1. 确定课题主题:明确您的研究兴趣和目标,选择具有研究价值和创新性的主题。 2. 收集背景资料:使用 AI 工具如学术搜索引擎和文献管理软件来搜集相关的研究文献和资料。 3. 分析和总结信息:利用 AI 文本分析工具来分析收集到的资料,提取关键信息和主要观点。 4. 生成大纲:使用 AI 写作助手生成课题的大纲,包括引言、文献综述、方法论、结果和讨论等部分。 5. 撰写文献综述:利用 AI 工具来帮助撰写文献综述部分,确保内容的准确性和完整性。 6. 构建方法论:根据研究需求,利用 AI 建议的方法和技术来设计研究方法。 7. 数据分析:如果课题涉及数据收集和分析,可以使用 AI 数据分析工具来处理和解释数据。 8. 撰写和编辑:利用 AI 写作工具来撰写课题的各个部分,并进行语法和风格的检查。 9. 生成参考文献:使用 AI 文献管理工具来生成正确的参考文献格式。 10. 审阅和修改:利用 AI 审阅工具来检查课题的逻辑性和一致性,并根据反馈进行修改。 11. 提交前的检查:最后,使用 AI 抄袭检测工具来确保课题的原创性,并进行最后的格式调整。 需要注意的是,AI 工具可以作为辅助,但不能完全替代研究者的专业判断和创造性思维。在使用 AI 进行课题写作时,应保持批判性思维,并确保研究的质量和学术诚信。
2024-11-05