Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何实现稳定的ai agent

Answer

要实现稳定的 AI agent ,可以从以下几个方面考虑:

  1. 提示词工程与工具调用能力的配合:设计出一套与知识图谱相结合的工具调用逻辑,稳定人设。通过缩小 max_length 防止 LLM 长篇大论,每次输入到上下文窗口中的记忆只返回最近几轮的对话,并利用查询知识图谱的信息来实现永久记忆。
  2. 工具设计:将与知识图谱交互这一大的任务,细分为查询、创建、修改、删除实体或关系、获取实体的所有关系、获取所有实体名称列表等多个工具,组成一个工具包供 LLM 调用。
  3. 构建数字人灵魂:
    • 写一个像人一样的 Agent ,工程实现所需的记忆模块、工作流模块、各种工具调用模块的构建都是挑战。
    • 解决灵魂部分如何驱动躯壳部分的问题,将灵魂部分的所有接口定义出来,躯壳部分通过 API 调用。
    • 注意实时性,由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,要解决网络耗时和模型推理耗时问题。
    • 考虑多元跨模态,根据实际需求添加其他感官的交互。
    • 处理拟人化场景,如插话、转移话题等情况。
  4. 工作流的设计模式:可以运用吴恩达教授提出的设计模式,如 Reflection 模式,设计工作流先检索知识库的活动内容,再通过 LLM 大模型区块进行数据修正,最终输出符合意图的结果。
Content generated by AI large model, please carefully verify (powered by aily)

References

AI 女友麦洛薇(0 代码 comfyui 搭建,知识图谱稳定人设,无限上下文,永久记忆,可接入飞书)

最后,笔者ailm讲解一下实现人设稳定的具体原理:通过提示词工程与工具调用能力的配合,设计出一套与知识图谱相结合的工具调用逻辑,从而稳定人设。通过缩小max_length防止LLM长篇大论,每次输入到上下文窗口中的记忆也只返回最近几轮的对话。利用查询知识图谱的信息来实现永久记忆。所需要的提示词和工具设计如下:[heading2]1、提示词工程[content]麦洛薇提示词设计如下:[heading2]2、工具设计[content]工具调用方面,通过将与知识图谱交互这一大的任务,细分为:查询、创建、修改、删除实体或关系、获取实体的所有关系、获取所有实体名称列表多个工具,组成一个工具包供LLM调用。由于对LLM的多工具调用能力有极高的要求,笔者ailm在参数较少的本地模型(如8B、14B)上并不能完美的运行知识图谱RAG。[heading1]写到最后[content]1.如果你使用comfyui LLM party时出现错误,或你有一些新的想法,欢迎加QQ群:9310572132.github项目地址:3.视频教程:

AI 数字人-定义数字世界中的你

有了数字人躯壳,我们就需要构建数字人的灵魂,让数字人具备各种智能,比如记得你的个人信息,充当你的个人助手;在某个领域具备更专业的知识;能处理复杂的任务等等。这些能力实现有以下几个需要注意的工程关键点:1.AI Agent:我们要想数字人像人一样思考就需要写一个像人一样的Agent,工程实现所需的记忆模块,工作流模块、各种工具调用模块的构建都是挑战;2.驱动躯壳的实现:灵魂部分怎样去驱动躯壳部分,我们可以将灵魂部分的所有接口定义出来,然后躯壳部分通过API调用,调用方式可以是HTTP、webSocket等等,视躯壳部分的实现而定。但包含情绪的语音表达以及如何保证躯壳的口型、表情、动作和语音的同步及匹配,目前主流方案只能做到预设一些表情动作,再做一些逻辑判断来播放预设,语音驱动口型相对来说成熟一些,但都是闭源的,效果可以参考Nvidia的Audio2Face(https://www.nvidia.cn/omniverse/apps/audio2face/)或则Live Link Face(Iphone APP)+Face AR Sample(UE);3.实时性:由于整个数字人的算法部分组成庞大,几乎不能实现单机部署,特别是大模型部分,所以算法一般会部署到额外的集群或者调用提供出来的API,这里面就会涉及到网络耗时和模型推理耗时,如果响应太慢就会体验很差,所以低延时也是亟需解决的一个问题。4.多元跨模态:仅仅是语音交互的数字人是远远不够的,人有五感(听觉、视觉、嗅觉、触觉、味觉),听觉只是其中一种,其他的感官可以根据实际需求来做,比如视觉我们可以通过添加摄像头数据来获取数据,再通过系列CV算法做图像解析等;5.拟人化场景:我们正常和人交流的时候不是线性对话,会有插话、转移话题等情况,这些情景如何通过工程丝滑处理。

安仔:玩转 Coze,我帮开源 AI 社区搞了一个社群运营机器人

1.本着想直接在Bot界面添加这个活动知识库来直接查询对应的结果给用户,才发现知识库鉴于Bot层面的知识库检索策略问题,总是给我不全的检索结果,尤其是查询进行中或者已结束的活动时,总是把所有活动都给我返回,这显然不合理。怎么办呢?2.这时候工作流的设计模式就派上用场了,前段时间吴恩达教授就曾提出过四个设计AI Agent工作流一定要掌握的设计模式:Reflection:让Agent审视和修正自己生成的输出;Tool Use:LLM生成代码、调用API等进行实际操作;Planning:让Agent分解复杂任务并按计划执行;Multiagent Collaboration:多个Agent扮演不同角色合作完成任务;3.其中,很明显,Reflection模式是我们需要的。我们可以设计一个工作流,还是先检索知识库的活动内容,其返回的结果很可能会包含一些不准确的数据,但这不用怕,我们在对应的后面加一个LLM大模型区块,专门用来审视和修正这些数据,让它返回最终符合我们意图的结果出来,以实现AI Agent的自我审视。4.基于上述提到的,我创建了一个工作流,用于稳定的获取知识库的活动内容并输出给用户,流程如下:5.开始->鉴于用户的提问查询知识库,获取匹配的数据集->通过LLM大模型区块进行数据修正->输出数据内容,让大模型结合我们给的数据结果构造最终回答。这是我用来修正知识库结果的LLM提示词:这样,既保证了知识库结果的准确性,又能让LLM直接基础最终的JSON结果集构造回答输出给用户。

Others are asking
实现一个简单的 function calling agents ,要求小白可以看懂
以下是一个关于实现简单的 function calling agents 的指导,以便小白能够理解: 实现原理: 提示词工程主要由提示词注入和工具结果回传两部分代码组成。提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,它包含 TOOL_EAXMPLE、tools_instructions 和 REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应注意用无关紧要的工具作示例避免混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,实际使用时可动态调整。REUTRN_FORMAT 定义了调用 API 的格式。工具结果回传阶段利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,通过识别 LLM 返回的调用工具的字典提取对应值传入工具函数,将工具返回结果以 observation 角色返回给 LLM,对于不接受相关角色的 LLM 接口可改为回传给 user 角色。 实现方式的比较与建议: 1. JSON Output:通过 Prompt 方式让模型输出 JSON 格式内容,但 Prompt 麻烦,输出不稳定,串业务成本高。 2. JSON Mode:官方 JSON Output,与 Tools 适用场景不同,JSON mode 为输出 JSON 存在,Tools 为 Call API 存在。 3. 从可控角度推荐 Function Calling 和 Tools 实现: 放弃 JSON mode,模型输出 JSON 仍可能出错,模型厂家对 Function Calling 有微调优化。 降低 System prompt 依赖,能在 Tools 里写的尽量写在里面。 API Response 增强 Prompt,准确率高。 尽量让模型做选择而非填空,减少 token 输出,提高速度和准确率。 利用 Tools 做 Route,构建 Multi Agent,术业有专攻。 此外,在初级菜鸟学习 Langchain 做简单 RAG 方面: 1. 没有用 Langchain 做 table 和 text 的 RAG: Table 表格:包括读入表格 markdown 格式嵌入 template 和直接使用 function call 两种方法。 Text 文字:包括文字相似度检索过程,涉及读入文字、清洗、切分、向量化、计算相似度等步骤。 2. 用 Langchain 做 table 和 text 的 RAG:包括运用 Agent 和 Chain 等方式。 3. 使用 Agent 把文本多种文档组合起来。 相关代码和示例可参考相应的链接。
2025-03-11
适合企业的AI AGENT
以下是一些适合企业的 AI Agent 相关信息: 影刀 RPA + AI Power: 功能亮点:集成丰富的 AI 组件及技能组件,如搜索引擎组件可让 AI 接入互联网获取实时信息,RPA 组件可直接调用影刀 RPA 客户端应用实现自动化操作,突破大模型的限制。 无缝多样的使用方式:提供网页分享、对话助理、API 集成等嵌入方式,方便企业在不同业务场景下灵活选择接入方式,打通分散的系统,实现便捷交互。 贴身的企业级服务支持:提供教学培训、技术答疑、场景共创等贴身服务,帮助企业把产品用起来,实现 AI 落地。 其他 Agent 构建平台: Coze:新一代一站式 AI Bot 开发平台,集成丰富插件工具拓展 Bot 能力边界。 Microsoft 的 Copilot Studio:具备外挂数据、定义流程、调用 API 和操作等功能,并能将 Copilot 部署到各种渠道。 文心智能体:百度推出的基于文心大模型的智能体平台,支持开发者打造产品能力。 MindOS 的 Agent 平台:允许用户定义 Agent 的个性、动机、知识,以及访问第三方数据和服务或执行工作流。 斑头雁:2B 基于企业知识库构建专属 AI Agent 的平台,适用于客服、营销、销售等场景,提供多种成熟模板。 钉钉 AI 超级助理:依托钉钉优势,在处理高频工作场景如销售、客服、行程安排等方面表现出色。 在智变时代,Microsoft 也推出了 Copilot 产品的升级,如 Copilot Team 与 Studio,让 Agent 融入企业内部,自动化日常工作。软件应用范式已转移,AI Agent 成为新 SaaS。您可以根据自身需求选择适合的平台。
2025-03-11
什么是AI agent
AI Agent 是基于大型语言模型(LLM)和其他技术实现的智能实体,其核心功能在于自主理解、规划决策、执行复杂任务。 AI Agent 包括以下几个概念: 1. Chain:通常一个 AI Agent 可能由多个 Chain 组成。一个 Chain 视作是一个步骤,可以接受一些输入变量,产生一些输出变量。大部分的 Chain 是大语言模型完成的 LLM Chain。 2. Router:我们可以使用一些判定(甚至可以用 LLM 来判定),然后让 Agent 走向不同的 Chain。例如:如果这是一个图片,则 a;否则 b。 3. Tool:Agent 上可以进行的一次工具调用。例如,对互联网的一次搜索,对数据库的一次检索。 总结下来我们需要三个 Agent: 1. Responser Agent:主 agent,用于回复用户(伪多模态)。 2. Background Agent:背景 agent,用于推进角色当前状态(例如进入下一个剧本,抽检生成增长的记忆体)。 3. Daily Agent:每日 agent,用于生成剧本,配套的图片,以及每日朋友圈。 这三个 Agent 每隔一段时间运行一次(默认 3 分钟),会分析期间的历史对话,变更人物关系(亲密度,了解度等),变更反感度,如果超标则拉黑用户,抽简对话内容,提取人物和用户的信息成为“增长的记忆体”,按照时间推进人物剧本,有概率主动聊天(与亲密度正相关,跳过夜间时间)。 此外,心灵社会理论认为,智能是由许多简单的 Agent(分等级、分功能的计算单元)共同工作和相互作用的结果。这些 Agent 在不同层次上执行不同的功能,通过协作实现复杂的智能行为。心灵社会将智能划分为多个层次,从低层次的感知和反应到高层次的规划和决策,每个层次由多个 Agent 负责。每个 Agent 类似于功能模块,专门处理特定类型的信息或执行特定任务,如视觉处理、语言理解、运动控制等。智能不是集中在单一的核心处理单元,而是通过多个相互关联的 Agent 共同实现。这种分布式智能能够提高系统的灵活性和鲁棒性,应对复杂和多变的环境。同时,在《心灵社会》中,还存在专家 Agent(拥有特定领域知识和技能,负责处理复杂的任务和解决特定问题)、管理 Agent(协调和控制其他 Agent 的活动,确保整体系统协调一致地运行)、学习 Agent(通过经验和交互,不断调整和优化自身行为,提高系统在不断变化环境中的适应能力)。 从达特茅斯会议开始讨论人工智能(Artificial Intelligence),到马文·明斯基引入“Agent”概念,往后,我们都将其称之为 AI Agent。
2025-03-10
agent
智能体(Agent)在人工智能和计算机科学领域是一个重要概念,指能够感知环境并采取行动以实现特定目标的实体,既可以是软件程序,也可以是硬件设备。 在 LLM 支持的自主 Agent 系统中,LLM 充当 Agents 的大脑,并具有以下关键组成部分: 1. 规划:包括子目标和分解,将大型任务分解为更小、可管理的子目标,以有效处理复杂任务。 2. 反思和完善:能够对过去的行为进行自我批评和反思,从错误中吸取教训,完善未来步骤,提高最终结果质量。 3. 记忆:包含短期记忆,用于所有的上下文学习;长期记忆,通过利用外部向量存储和快速检索,为 Agents 提供长时间保留和回忆(无限)信息的能力。 4. 工具使用:Agents 学习调用外部 API 来获取模型权重中缺失的额外信息,包括当前信息、代码执行能力、对专有信息源的访问等。 以下是一些关于智能体 Agent 的相关目录: 1. 2. 3. 4. 5. 6. 从产品角度思考 Agent 设计: 1. Agent 可以是一个历史新闻探索向导。 身份:历史新闻探索向导 性格:知识渊博、温暖亲切、富有同情心 角色:主导新闻解析和历史背景分析 为使角色更生动,可为其设计简短背景故事,如曾是一位历史学家,对重大历史事件了如指掌,充满热情,愿意分享知识。 2. 写好角色个性的方法: 角色背景和身份:编写背景故事,明确起源、经历和动机。 性格和语气:定义性格特点,如友好、幽默、严肃或神秘;确定说话方式和风格。 角色互动方式:设计对话风格,从基本问答到深入讨论。 角色技能:明确核心功能,如提供新闻解析、历史背景分析或心理分析;增加附加功能以提高吸引力和实用性。 正如《》所写:个性化定制的“虚拟伴侣”能得到用户认可,是因为精准击中许多年轻人无处可藏的孤独和焦虑,背后是年轻人渴望被理解、沟通和交流。美国心理学家 Robert Jeffrey Sternberg 提出了“爱情三角理论”,认为爱情包含“激情”“亲密”“承诺”三个要素。激情是生理上或情绪上的唤醒,例如对某人有强烈的性或浪漫的感觉;亲密是一种相互依恋的感觉,通过相互联结带来的喜爱和相互沟通分享自己的所见所闻、喜怒哀乐来体现;承诺是决定建立长期稳定关系,融入对方生活,形成互助互惠的关系,代表着一种长相厮守的责任。
2025-03-10
agent 打通应用之间的协议?
在 AI 领域中,Agent 是连接模型与应用的关键。端侧 Agents 是在终端设备上自主运行的智能代理程序,具备感知、决策、执行的闭环能力。 Agent 之所以重要,原因包括:端侧资源约束要求最优化使用,任务具有复杂性,生态存在多样性,双系统路线更适合端侧。 Agent 创造价值的方式体现在双重价值实现:一是资源优化,包括任务分解、按需调用;二是生态连接,比如跨应用协作、UI 理解。 其发展趋势包括:技术上从单一模型到多智能体协作;生态上从封闭应用到开放服务;交互上从指令执行到场景理解。 在技术层面,AI Agent 的发展出现了两条技术路线:一是以自主决策为核心的 LLM 控制流,二是以工作流(Workflow)编排为重点的工具集成系统。 特别值得关注的是 Anthropic 提出的 MCP(Model Context Protocol),它的本质是一个通用接口协议,试图解决让 AI 模型能够以标准化、可扩展的方式与外部世界交互的问题。 此外,还有 Agent Protocol 这种用于与 AI 代理进行通信的统一接口,它提供了一种 API 规范,任何代理开发者都可以实现该协议,设计简单且不依赖特定技术栈,有助于生态系统发展和简化集成,并提供了不同语言的 SDK 供开发者使用。
2025-03-09
做一个每日收集兴趣信息的工具,如收集agent,从微信公众号上收集,应该怎么做
以下是一种通过文章链接订阅公众号,定时推送情报消息,并实现情报 CoT 问答的方式来做每日收集兴趣信息的工具: 1. 安装 Docker(假设已经装上) 浏览器打开:http://127.0.0.1:4000 或 http://wewerss 服务的 IP:端口(为上面设置的外部端口) 点开后,输入 Dash 管理页面密码 先点帐号管理,然后点“添加读书帐号”(即使用微信读书来实现公众号订阅),扫码添加帐号 然后在公众号源上,点添加 将您想订阅的公众号的一篇文章链接粘贴并点确定即可订阅公众号文章。但建议不要短时间订阅太多公众号(最好不超 40 个),然后在本地 data/目录会生成一个 SQLite 数据库文件 wewerss.db 2. 关于 Coze 工作流和 Bot 因为前面需要对多维表格操作,所以要先在 http://open.feishu.cn 上建一个飞书机器人,并添加知识库或多维表格编辑权限,具体可参考飞书文档。得到机器人的 app_id 和 app_secret 即可获得租用 token:tenant_access_token 来获取多维表格数据和编辑能力。 工作流一:通过微信文章链接进行文章解读成摘要报告。通过 LLM 能力,开源提示词如下。由于 Coze 使用 LLM 和批量执行任务延时的约束,建议不要同时处理太多文章(如 6 篇左右)。这样执行后,将多维表格的文章状态转换成“已通知”并生成简报。 消息情报官 Bot:最后可以通过 Coze,建定时任务,执行工作流二,并添加其他如分析文章和搜索文章的能力,即可变成一个消息情报官的 Agent,我们即可以获得想要的领域或行业情报,也可以深入挖掘相关情报的信息。然后发布到想要的平台,如:Coze 商店、豆包、飞书、微信、微信公众号、微信小程序等,即可使用。可以构建多个分身,就能收集整理不同领域和行业的情报信息。 如感兴趣欢迎联系交流合作。
2025-03-08
有哪些辅助输出3d模型资源的ai工具推荐一下
以下是一些辅助输出 3D 模型资源的 AI 工具推荐: 1. @CSM_ai:可以将文本、图像或草图转换为 3D 素材。体验地址:https://cube.csm.ai 。 2. Move AI 推出的 Move API:能从 2D 视频生成 3D 运动数据,支持多种 3D 文件格式导出,为 AR 应用、游戏开发等提供高质量 3D 运动数据。网址:https://move.ai/api 。 3. ComfyUI 3D Pack:可快速将图片转换为 3D 模型,支持多角度查看,使用 3D 高斯扩散技术提升模型质量,支持多种格式导出,集成先进 3D 处理算法。网址:https://github.com/MrForExample/ComfyUI3DPack/tree/main 。 4. Medivis 的 SurgicalAR 手术应用:将 2D 医疗图像转化为 3D 互动视觉,提高手术精度,支持 3D 模型的放大、缩小、旋转,精确手术计划。网址:https://t.co/3tUvxB0L4I 。 5. Media2Face:3D 面部动画创造工具,根据声音生成同步的 3D 面部动画,允许个性化调整,如情感表达,应用于对话场景、情感歌唱等多种场合。网址:https://sites.google.com/view/media2face 、https://arxiv.org/abs/2401.15687 、https://x.com/xiaohuggg/status/1752871200303480928?s=20 。 6. SIGNeRF:在 3D 场景中快速生成和编辑对象,新增或替换场景中的物体,新生成场景与原场景无缝融合。网址:https://signerf.jdihlmann.com 、https://x.com/xiaohuggg/status/1744950363667759474?s=20 。 7. Luma AI 发布的 Genie 1.0 版本:文本到 3D 模型转换工具,生成详细逼真的 3D 模型,支持多种 3D 文件格式,获得 4300 万美元 B 轮融资。网址:https://lumalabs.ai/genie?view=create 、https://x.com/xiaohuggg/status/1744892707926122515?s=20 。 8. BakedAvatar 动态 3D 头像:从视频创建逼真 3D 头部模型,实时渲染和多视角查看,兼容多种设备,交互性编辑。网址:https://buaavrcg.github.io/BakedAvatar/ 、https://x.com/xiaohuggg/status/1744591059169272058?s=20 。 此外,在 CAD 领域,也存在一些 AI 工具和插件可以辅助或自动生成 CAD 图,例如: 1. CADtools 12:Adobe Illustrator 插件,为 AI 添加 92 个绘图和编辑工具,包括图形绘制、编辑、标注、尺寸标注、转换、创建和实用工具。 2. Autodesk Fusion 360:集成了 AI 功能的云端 3D CAD/CAM 软件,能创建复杂的几何形状和优化设计。 3. nTopology:基于 AI 的设计软件,可创建复杂的 CAD 模型,包括拓扑优化、几何复杂度和轻量化设计等。 4. ParaMatters CogniCAD:基于 AI 的 CAD 软件,可根据用户输入的设计目标和约束条件自动生成 3D 模型,适用于拓扑优化、结构设计和材料分布等领域。 5. 一些主流 CAD 软件,如 Autodesk 系列、SolidWorks 等,提供了基于 AI 的生成设计工具,能根据用户输入的设计目标和约束条件自动产生多种设计方案。 但使用这些工具通常需要一定的 CAD 知识和技能,对于 CAD 初学者,建议先学习基本的 3D 建模技巧,然后尝试使用这些 AI 工具来提高设计效率。
2025-03-11
我是AI小白,应该如何浏览了解AI的最新资讯
对于 AI 小白来说,想要浏览了解 AI 的最新资讯,可以参考以下方法: 1. 持续学习和跟进:AI 是一个快速发展的领域,新的研究成果和技术不断涌现。您可以关注 AI 领域的新闻、博客、论坛和社交媒体,保持对最新发展的了解。 2. 考虑加入 AI 相关的社群和组织,参加研讨会、工作坊和会议,与其他 AI 爱好者和专业人士交流。 3. 关注腾讯研究院开发的一系列专业的 AI 资讯产品,如: AI 每日速递,一份高度凝练的日报产品,帮助您用 3 5 分钟快速掌握 AI 领域当日十大关键进展。 AI 每周 50 关键词,作为周报产品,基于 AI 速递内容构建。通过梳理一周热点关键词并制作可交互索引,为研究者提供便捷的“检索增强”工具,助力快速定位所需信息。 科技九宫格,一档短视频栏目,以 3 5 分钟视频形式解读科技热点与关键技术原理。通过可视化呈现,促进您对前沿技术的理解与讨论。 4. 您还可以通过以下友情链接获取最新资讯:
2025-03-11
aigc 教程
以下为您提供一些 AIGC 教程相关的内容: 1. 2024 AIGC 营销视频生态创新大赛: 10 月 19 日:EM7,南柒() 10 月 23 日:从构思到可视化——AI 脚本与分镜创作(),嘉宾为娜乌斯嘉,是 AI 绘画知名 UP 主、全网粉丝 20w、国内首批 AIGC 应用研究先驱者、模型师、comfyUI 工程师、动画艺术和心理学双硕士。 11 月 01 日:AIGC 制作商业片进阶教程( 11 月 7 日:AIGC 电影化叙事实战教程,嘉宾为 Joey,是莫奈丽莎工作室主理人、上影全球 AI 电影马拉松大赛最佳叙事奖导演、可灵星芒 AIGC 短剧获奖导演、资深创意广告人。 总奖金池百万元,机会就在眼前,准备好您的创意来瓜分百万奖池。 2. AIGC 电影化叙事实战教程: 第三部分:AIGC 电影化的快速技巧 分镜头脚本制作 GPTs:以 2024 AIGC 营销视频生态创新大赛的冰工厂赛道为例。 生图及生视频提示词制作 GPTs 音乐提示词制作 GPTs:参考 prompt 为请帮我制作一首短剧结尾部分转折的纯音乐背景音乐,内容是孙悟空中了圈套,被带上闪电禁锢,落入陷阱,坠入悬崖失去踪迹,希望风格新颖,带有电影感,时长 30s。参考给到的 prompt:Experimental oriental electronica, Intense suspense, Background music, BPM65, Thunderous crashes, Rapid descending synths。调整歌曲快慢技巧:修改 BPM,值越高节奏越快。 3. 上海国际 AIGC 大赛第三名—《嘉定汇龙》复盘: 由咖菲猫咪和三思完成。三思是中国做 stable diffusion 艺术字的高手,具体教程可在 WaytoAGI 查看。核心是让 AI 根据提供的框架生成对应的艺术形态,根据地名特色产业,找寻或炼制 lora,有的用即梦的通用模型生成。 用一镜到底完成全片内容和思想的浓缩,通过空中俯拍嘉定的古老街景呈现历史厚重感,转向现代都市繁荣景象,以 AI 生成的未来场景结尾。 音乐选择为开头增色,从古风音乐到现代电子乐的转换与画面切换契合。 开场部分结合应用了 comfyui 转绘、steerablemotion、runway 文生视频、图生视频等多种 AI 技术,最后通过合成剪辑拼合。 多人在线工作流:十个人的小组,素未谋面却要完成高度协同工作。
2025-03-11
我想入ai赋能科研,该如何进行?有什么软件可以利用?
如果您想将 AI 赋能科研,可以从以下几个方面入手: 1. 探索科研新境界:借助 AI 助力创新,突破传统研究框架,赋予科研无限可能。 2. 揭开 AI 神秘面纱:掌握前沿技术,提升科研效率,让研究变得更智能、更高效。 3. AI 赋能科研:从理论到实践,深入了解人工智能的无限潜力,提升科研成果。 4. 创新与效率的碰撞:探索 AI 在科研中的应用,为您打开技术与智慧的新世界。 5. 未来科研的引擎:进行 AI 技术实操,助力您迈向前沿研究的新时代。 在软件方面,以下是一些可供利用的选择: 1. 对于个人用户,小模型(1.5B/7B/8B)在个人电脑上就能运行,能听懂人话,做简单问答,也适合做翻译、总结、改写,比如学校的自动答疑机、车载语音助手。 2. 中模型(14B/32B)需要专业服务器才能运行,相当于小学霸级 AI,能写代码、解数学题、写应用文,处理复杂说明书,比如帮程序员写代码、解答物理竞赛题。 3. 超大模型(70B/671B)需要科研实验室的超级电脑,能写精彩故事、论文报告,处理海量数据,做高端研究,比如分析全球气候数据、破解基因密码。 可用的途径包括: 1. https://bot.n.cn/ 2. 腾讯元宝(手机 APP) 3. http://metaso.cn(长思考) 4. API 接入法(详见相关图示)
2025-03-11
什么是langchain
LangChain 是一个用于构建高级语言模型应用程序的框架,旨在简化开发人员使用语言模型构建端到端应用程序的过程。 它具有以下特点和优势: 1. 提供一系列工具、组件和接口,使创建由大型语言模型(LLM)和聊天模型支持的应用程序更易实现。 2. 核心概念包括组件和链,组件是模块化的构建块,链是组合在一起完成特定任务的一系列组件(或其他链)。 3. 具有模型抽象功能,提供对大型语言模型和聊天模型的抽象,便于开发人员选择合适模型并利用组件构建应用。 4. 支持创建和管理提示模板,引导语言模型生成特定输出。 5. 允许开发人员定义一系列处理步骤,按顺序执行完成复杂任务。 6. 支持构建代理,能使用语言模型做决策并根据用户输入调用工具。 7. 支持多种用例,如针对特定文档的问答、聊天机器人、代理等,可与外部数据源交互收集数据,还提供内存功能维护状态。 LangChain 是一个为简化大模型应用开发而设计的开源框架,通过提供模块化的工具和库,允许开发者轻松集成和操作多种大模型,将更多精力投入到创造应用的核心价值上。其设计注重简化开发流程,支持广泛的模型,具备良好的可扩展性,适应不断变化的业务需求。作为得到社区广泛支持的开源项目,拥有活跃的贡献者和持续更新,提供全面的文档和示例代码帮助新用户快速掌握,在设计时充分考虑应用的安全性和用户数据的隐私保护,是多语言支持的灵活框架,适用于各种规模的项目和不同背景的开发者。 LangChain 官方手册:https://python.langchain.com/docs/get_started/introduction/
2025-03-11
对于教育AI可以做什么
教育 AI 可以在以下方面发挥作用: 1. 帮助获取信息和自学:可以要求人工智能解释概念,获得良好的学习效果。 2. 辅助教师教学:使教师的生活更轻松,让课程更有效。 3. 个性化教学:根据学生的学习情况、兴趣和偏好提供定制化的学习计划和资源,实现因材施教,提高学习效率和成果,缓解教育资源不平等的问题。 4. 重构教育服务:授课教师、游戏玩家、情感伴侣等服务都可以由 AI 承担。 5. 提供历史文化教学:让历史人物亲自授课,不受时空限制,让学生更生动地了解历史和文化,拓宽视野,增强学习兴趣。 6. 作为数字陪伴:例如成为孩子的玩伴,给予社会奖励,促进儿童成长和提高学习成绩。 需要注意的是,由于人工智能可能产生幻觉,对于关键数据应根据其他来源仔细检查。同时,拜登签署的 AI 行政命令中也提到要塑造 AI 在教育方面的潜力,通过创建资源支持教育工作者部署支持 AI 的教育工具。
2025-03-11
大模型稳定输出
大模型在稳定输出方面具有以下特点和相关情况: 在翻译场景中: 突破传统翻译模型局限,大幅提升翻译质量,为广泛应用带来机遇。 能够通过深度上下文分析理解语言真正含义,适应不同语境,避免词不达意和语境脱节,精准捕捉并传达原文意图,尤其在处理隐喻、习语或文化特征文本时表现出色。 生成更流畅、自然且地道的翻译,接近母语水平,保持原文语言风格和情感色彩,更具亲和力和感染力。 具有强大适应性,能根据不同翻译场景灵活调整策略,在多场景翻译中更具灵活性和精准度。 能够深入理解文化内涵,避免因文化差异导致误解或偏差,在专业领域能提供更专业且符合行业标准的翻译结果。 在旅行青蛙智能体搭建过程中: 涉及多个意图分支,如定向旅行、投喂青蛙、在家休息等,每个分支包含多个大模型节点和相关操作。 关于大模型是否具有道德观念: 大型语言模型本身不具有真正的道德观念或意识,它们是通过大量数据训练来模拟语言统计规律的。 但可以被设计用来识别和生成包含道德观念内容的文本。 为确保其输出符合社会道德和伦理标准,采取了多种方法,如数据清洗、算法设计、制定准则、保持透明度、用户反馈、持续监控、人工干预以及教育和培训等。然而,确保 AI 模型的道德和伦理性仍是复杂且持续的挑战,相关标准也在不断演进。
2025-03-04
如何生成稳定的AI视频
以下是关于生成稳定的 AI 视频的相关信息: 工具推荐: Runway: 网址:https://app.runwayml.com/videotools/ 官方使用教程:https://academy.runwayml.com/ 知识库详细教程: 特点:支持文生视频、图生视频、视频生视频;文生视频支持正向提示词、风格选择、运镜控制、运动强度控制、运动笔刷,支持多种尺寸,可设置种子值;生成好的视频可以延长时间,默认生成 4s 的视频;使用英文提示词。 Stable video: 网址:https://www.stablevideo.com/generate 知识库详细教程: 特点:支持文生视频、图生视频,仅英文;图生视频不可写 prompt,提供多种镜头控制;文生视频先生成 4 张图片,选择其中一张图片以后再继续生成视频。 技术差异: 代表产品如 Runway,在端到端视频生成中,涉及的技术包括 GAN 生成对抗网络、VAE 变分自编码器和 Transformer 自注意力机制。 GAN 生成对抗网络:是一种无监督的生成模型框架,能生成视觉逼真度高的视频,但控制难度大、时序建模较弱。 VAE 变分自编码器:可以学习数据分布,像压缩和解压文件一样重建视频数据,能根据条件输入控制生成过程,但质量较 GAN 略低。 GAN、VAE 生成视频速度快,但存在生成质量和分辨率较低、长度短、控制能力弱的缺点。 Transformer 自注意力机制:通过学习视频帧之间的关系,理解视频的长期时间变化和动作过程,对长视频建模更好,时序建模能力强,可实现细粒度语义控制,但计算量大。 当前面临的问题及解决方案: 当前仍面临生成时间长、视频质量不稳定、生成的视频语义不连贯、帧间存在闪烁、分辨率较低等问题。解决方案包括使用渐进生成、增强时序一致性的模型等方法,上述的补帧算法、视频完善策略也可在一定程度上缓解问题。 制作技巧: 在镜头衔接上要写运镜提示词,描述多种运镜方式,否则画面会乱变。在做视频时要不断尝试参数。
2025-02-26
coze知识库是否稳定且保密
Coze 知识库目前存在一些不稳定的情况。例如,在国内版中,某些官方和第三方插件的 API 调用及返回结果不太稳定,可能导致部分信息无法完全显示。但对于以问答为主的客服场景,其表现相对稳定。同时,目前存在不稳定版本,需要不断调试完善。关于保密方面,文中未提及相关内容。
2025-02-22
在2025年2月12日这个时间点,我有哪些方式可以快速,稳定的使用 deepseek r1
在 2025 年 2 月 12 日,您可以通过以下方式快速、稳定地使用 DeepSeek R1: PPIO 派欧云(https://ppinfra.com/modelapi/product/llmapi?utm_medium=article&utm_source=WayToAGI):提供满血版全版本的 DeepSeekR1,输入价格为¥4/百万 tokens,输出价格为¥16/百万 tokens。有开发者福利,新注册立得 500 万 tokens(关注 PPIO 公众号回“deepseek”再领 1 亿),初创企业认证有 10 万算力补贴。产品服务特点为服务稳定性 99.9%,保持 0 故障,与 DeepSeek 官方同价,客户支持通道 10 分钟响应。 百度智能云:DeepSeekR1 限时免费,配额 1000RPM/10000TPM,无调用 tokens 上限。本模型将于 2025 年 2 月 19 日 00:00 起正式商用计费,输入价格 0.002 元/千 tokens,输出价格 0.008 元/千 tokens,有在线体验。 硅基流动:DeepSeekR1 输入价格为¥4/M Tokens,输出价格为¥16/M Tokens,有在线体验。2025 年 2 月 6 日起,未实名用户每日最多请求此模型 100 次。 此外,在 2 月 12 日,还有以下相关内容: 《》,来自社区伙伴 Hua 的投稿,手把手指导您在微软 Azure AI Foundry 平台上完成 DeepSeek R1(671B)模型的完整部署流程,包含环境准备、资源管理、模型测试及 API 调用说明。 《》Anthropic 正式发布 Anthropic AI Economic Index,聚焦 AI 对经济的长期影响。该指数直观展现 AI 如何融入现代经济的各类实际任务,并从职业(occupation)和具体工作任务(task)两个维度,量化 AI 对劳动力市场的影响。 《》DeepSeekR1 的火爆现象背后,企业可以获得显著提升。其强化学习和联网搜索能力,改变了信息获取方式,从“检索—阅读—摘要”转变为“提问—获得答案”,大幅提升工作效率。同时,DeepSeek 的开源策略打破了技术垄断,让国内大模型能力迅速提升。
2025-02-12
稳定使用DeepSeek的方法
以下是稳定使用 DeepSeek 的方法: 1. 访问网址:搜索 www.deepseek.com,点击“开始对话”。 2. 操作步骤: 将装有提示词的代码发给 DeepSeek。 认真阅读开场白之后,正式开始对话。 3. 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性。 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改。 用 XML 来进行更为规范的设定,而不是用 Lisp(对开发者有难度)和 Markdown(运行下来似乎不是很稳定)。 此外,DeepSeek 在一些案例中也有出色表现,比如在卫夕指北的案例中,经过细腻、严谨、自洽、深刻的思考,输出了符合要求的结果。 在获取 2048 游戏代码方面,DeepSeek 具有诸多优势,如国内能访问、网页登录方便、目前完全免费等。同时,也介绍了其他获取代码的工具和方法,如 Cursor 等。
2025-02-08
如何优化自己的prompt,提升AI结果输出的稳定性
以下是优化自己的 prompt 以提升 AI 结果输出稳定性的方法: 1. 明确具体的描述:使用更具体、细节的词语和短语来表达需求,避免过于笼统。 2. 添加视觉参考:在 prompt 中插入相关图片参考,提高 AI 理解意图和细节要求的能力。 3. 注意语气和情感:根据需求,用合适的形容词、语气词等调整 prompt 的整体语气和情感色彩,以生成期望的语境和情绪。 4. 优化关键词组合:尝试不同的关键词搭配和语序,找到最有针对性、最准确表达需求的描述方式。 5. 增加约束条件:在 prompt 中添加限制性条件,如分辨率、比例等,避免意外输出。 6. 分步骤构建 prompt:将复杂需求拆解为逐步的子 prompt,引导 AI 先生成基本结构,再逐步添加细节和完善。 7. 参考优秀案例:研究 AI 社区流行的、有效的 prompt 范例,借鉴写作技巧和模式。 8. 反复试验、迭代优化:通过多次尝试不同的 prompt 写法,并根据输出效果反馈持续优化完善,直至达到理想结果。 此外,如果提示词效果不符合预期,可以和 AI 再进行几轮对话来调整输出结果。最终通过询问 AI“怎么样修改现有的 Prompt,可以让你稳定输出当前的预期”来进行 prompt 的迭代。得到 prompt 后,可以新开一个 AI 对话,把 prompt 输入到对话中,开始验证其可用性和稳定性。例如输入 MECE 法则进行测试。
2025-01-24
角色:你是一名软件开发公司的运营经理 背景:现在要准备入局AI导航网站市场,通过AI导航网站实现布局产品流量入口,来获取AI风口的流量。 任务:请你完成AI导航网站的国内外市场调研 要求:调研内容包括AI网站导航的市场、竞品、用户分析以及产品规划、团队人员需求及资源需求、有哪些风险点
以下是对您需求的调研分析: 一、市场分析 目前,AI 领域发展迅速,AI 导航网站作为获取相关信息和资源的入口,具有较大的市场潜力。随着人们对 AI 技术的关注度不断提高,对于便捷、高效的 AI 资源导航需求也在增加。 二、竞品分析 暂未获取到直接关于 AI 导航网站的竞品详细信息。 三、用户分析 用户可能包括对 AI 技术感兴趣的个人、开发者、研究人员、企业等。他们希望通过导航网站快速找到所需的 AI 工具、资源、案例等。 四、产品规划 1. 提供全面、准确的 AI 网站分类和链接,涵盖工具、研究成果、应用案例等。 2. 设立用户评价和推荐系统,帮助用户筛选优质资源。 3. 提供个性化推荐功能,根据用户的浏览历史和偏好推送相关内容。 五、团队人员需求 1. 技术人员:负责网站的开发和维护,如前端开发、后端开发等。 2. 内容编辑:收集、整理和更新 AI 网站信息。 3. 运营人员:负责推广、用户互动和数据分析。 六、资源需求 1. 服务器和带宽资源,以保证网站的稳定运行和快速响应。 2. 数据采集和更新的工具和技术。 七、风险点 1. 市场竞争激烈,可能面临已有成熟竞品的压力。 2. AI 技术发展迅速,需要及时更新网站内容,以保持竞争力。 3. 可能存在版权和法律合规方面的风险。 4. 用户获取和留存的挑战,需要提供优质的服务和用户体验。
2025-03-11
ai制作幽默表情包系列的工作流,用dify或make实现的全流程
以下是使用 Dify 或 Make 实现 AI 制作幽默表情包系列的全流程: 1. 素材准备 平面设计稿:确定表情包的基本设计和角色形象。 2. 制作流程 转 3D:将平面设计稿转换为 3D 形式,增加立体感和丰富度。 AI 生成场景:利用相关工具生成适合的场景。 AI 图生视频:将生成的图片转换为视频。 剪辑转 gif:对视频进行剪辑,并转换为 gif 格式。 压缩:使用图像压缩工具,如 https://imageresizer.com/zh/%E5%9B%BE%E5%83%8F%E5%8E%8B%E7%BC%A9 ,对 gif 进行压缩,以满足上传要求。 上传微信表情平台审核:完成压缩后,上传至微信表情平台进行审核。 相关工具: 即梦:https://jimeng.jianying.com/aitool/image/generate Recraft: https://www.recraft.ai/
2025-03-11
总结文章内容,生成内容总结,最后输出图片、海报类的内容总结,用什么工具如何实现?
以下是对上述文章内容的总结: 文章主要介绍了三种与总结文章内容、生成相关图片和推送相关内容有关的工作流: 1. Yeadon 的 coze 扣子闪光卡片制作工作流:包括输入原文链接、提取链接内容、生成原文二维码、图片搜索、利用代码节点改变 HTML 展示信息变量、HTML 代码转图片内容、抠图提取卡片主体等步骤。具有页面自动对齐、修改方便、模板复用等优势,有待提升的方面包括自由选择显示内容和添加更多动画效果等。 2. 【拔刀刘】的自动总结公众号内容并定时推送到微信的工作流:包括使用大模型节点批量总结文章内容,选择模型和配置参数,使用代码节点汇总格式化最终输出内容,通过自建插件将格式化好的内容推送到用户微信。 3. 【买买买!💥产品买点提炼神器强化版🚀】的一站式营销内容解决方案工作流:包括卖点提炼模块,通过提问引导用户发掘卖点,或由大模型帮助生成;卖点修改模块,对大模型总结的卖点进行精细化调整;内容展示模块,将生成的内容制作成可保存的图片并输出图片链接。 关于生成图片、海报类内容总结的工具和实现方式,在 Yeadon 的工作流中,通过代码节点将 HTML 代码转成图片内容,在【买买买!💥产品买点提炼神器强化版🚀】的工作流中,利用图像流制作美观的图片模板,并传入相关信息展示在图片中。
2025-03-11
deepseek如何赋能职场应用实现工作提效?
DeepSeek 可以通过以下方式赋能职场应用实现工作提效: 1. 作为多场景 AI 工具,支持从创意到实现的全流程智能化服务,能快速将创意转化为高质量视频,具备角色一致性技术与分镜自动成片功能,并且支持美学意象风格短片创作。 2. 提供基础模型和深度思考模型两种模式,分别适用于高效便捷任务和复杂推理分析任务。 3. 可用于制作可视化图表、PPT 大纲及设计海报等,通过智能体框架实现人机高效协作。 4. 直接使用 DeepSeek 有多种方法,并且有诸多提示词技巧,在专业场景提效、教育学术赋能、商业创新与生活服务等领域用途广泛,像辅助办公、教学设计、电商运营等。 5. 可以与飞书多维表格结合,实现批量处理信息,提升工作效率,如批量转换文风、快速回复消息、利用 AI 生成文案等,让普通人无需编程知识也能轻松使用 AI。
2025-03-10
什么ai可以实现免费的ppt文档制作
以下是一些可以实现免费 PPT 文档制作的 AI 工具: 1. 歌者 PPT(gezhe.com):这是一款永久免费的智能 PPT 生成工具。具有一键生成 PPT 内容、支持多种文件格式转 PPT、多语言支持、海量模板和案例库、在线编辑和分享以及增值服务等功能。其产品优势包括免费使用、智能易用、海量案例、资料转 PPT 专业、AI 翻译等。推荐理由为完全免费、智能化程度高、模板和案例丰富、支持多语言以及几乎无需学习成本就能上手使用。 2. Gamma:在免费版本中也能生成质量较高的 PPT,随着不断优化和改进,能满足大多数用户需求。个人使用体验良好,在内容组织、设计美观度和整体专业感方面表现出色。 3. WPS AI:可以对 PPT 大纲进行优化,大纲还可以二次修改。但可能存在未来收费的情况。
2025-03-10