以下是为您整理的与化学工作者有关的 AI 相关内容:
毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家”AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。例如,雌激素和睾酮只有细微的差别,但它们对人类健康的影响截然不同。
原创xiaoming乐谷说2023-12-23 23:00文章地址:https://www.nature.com/articles/s41586-023-06792-0nature前几天发来王炸,论文标题《Autonomous chemical research with large language models》,趁着周末读了一下。图里的意思大概可以这么理解。这张图片展示了一个名为“Coscientist”的人工智能系统的工作流程图,该系统用于自动化化学研究。图中描述了从一个简单的人类提示开始,到实验结束的整个过程。具体步骤包括:文献搜索(Literature search):当被问及是否能合成某个分子A时,Coscientist首先会在互联网上搜索相关的合成路线。协议选择(Protocol selection):接着,Coscientist会根据搜索结果制定实验协议。翻译成代码(Translation into code):然后,Coscientist会将实验协议写成代码,以指导自动化实验设备。实验(Experiment):最后,机器人根据代码执行实验任务。这个过程是可迭代的,意味着Coscientist可以根据实验结果调整协议,以改进实验并实现预期目标。这个系统利用大型语言模型来规划和实施化学任务,展示了人工智能在化学研究中的应用潜力。价值在于:1.GPT在自动化化学研究方面也有极高的潜力。2.人们自然语言提需求(目标),GPT帮你读论文,生成方法,生成代码,运行程序,改变配方配比,观察实验结果,反馈实验结果,对比与目标是否一致,如果不一致该怎么微调更新,更新之后,继续循环。达到目标之后,给人类反馈结果和方法(或直接用于工业制造进入大生产)。3.未来,稀缺的不是执行,而是目标。核心观点如下:
|标题|简介|作者|分类|前往查看👉|封面|入库时间||-|-|-|-|-|-|-||书籍推荐:三本神经科学书籍|AI是多学科交叉的产物,在学习和运用具体的能力时,比如学习他人的prompt模板或设计prompt,与AI协作(对话沟通)等等,有一些基础学科作为基底,或许能打开AI的新天地||教育|[书籍推荐:三本神经科学书籍](https://waytoagi.feishu.cn/wiki/CKwHwwRvxi7LxTkpKsmc7s2PnFe?table=tblwdvsWICkId67f&view=vewm6DMY99&chunked=false)||2023/11/12||AI赋能教师全场景|来自MQ老师的投稿贡献,图中有老师的微信,欢迎交流沟通|MQ老师|教育|[AI赋能教师全场景](https://waytoagi.feishu.cn/wiki/MDxEwtzIfivcZ6kM8nEcHFPAnqe?table=tblZPbdb7NgLbxew&view=vewJuuzsne)||2023/11/29||未来教育的裂缝:如果教育跟不上AI|人工智能在教育领域的融入正不断地从理论走向实际应用,为传统的教学模式带来颠覆性的改变。在这一进程中,具体案例能够清晰地揭示AI如何实际影响教学和学习方式。|赛博禅心|教育|[未来教育的裂缝:如果教育跟不上AI](https://waytoagi.feishu.cn/wiki/ZqmpwkZA3iB5GNklO4mcirhhnKd)||2023/11/30||化学:使用大型语言模型进行自主化学研究|文章地址:[https://www.nature.com/articles/s41586-023-06792-0](https://www.nature.com/articles/s41586-023-06792-0)<br>nature前几天发来王炸,论文标题《Autonomous chemical research with large language models》,趁着周末读了一下。图里的意思大概可以这么理解。|[乐谷说](http://javascript:void(0);)|教育|[化学:使用大型语言模型进行自主化学研究](https://waytoagi.feishu.cn/wiki/JW9UwFYaEi2JhckNflecygdRnne)||2023/12/24|