Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

化学工作者有关的ai

Answer

以下是为您整理的与化学工作者有关的 AI 相关内容:

  1. 为了在医疗保健中产生真正的改变,AI 应像优秀的医生和药物开发者那样学习。成为顶尖人才通常从多年的密集信息输入和正规学校教育开始,再通过学徒实践从出色的实践者那里学习,这对于培养在复杂情况下确定最佳答案的直觉很重要。对于化学领域,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究及在经验丰富的药物设计师指导下工作。
  2. 关于使用大型语言模型进行自主化学研究:“Coscientist”人工智能系统用于自动化化学研究,其工作流程包括文献搜索、协议选择、翻译成代码、实验等步骤,且这个过程是可迭代的。该系统利用大型语言模型来规划和实施化学任务,展示了人工智能在化学研究中的应用潜力。其价值在于 GPT 在自动化化学研究方面有极高潜力,人们可通过自然语言提需求,GPT 帮助完成一系列操作,未来稀缺的是目标而非执行。
  3. 案例方面,有“化学:使用大型语言模型进行自主化学研究”的相关内容,可通过相应链接获取更详细信息。
Content generated by AI large model, please carefully verify (powered by aily)

References

为了在医疗保健中产生真正的改变,AI 需要像我们一样学习

毫无疑问,AI将不可逆转地改变我们如何预防和治疗疾病。医生将把文档工作交给AI书记员;初级医疗服务提供者将依赖聊天机器人进行分诊;几乎无穷无尽的预测蛋白结构库将极大地加速药物开发。然而,为了真正改变这些领域,我们应该投资于创建一个模型生态系统——比如说,“专家”AI——它们像我们今天最优秀的医生和药物开发者那样学习。成为某个领域顶尖人才通常以多年的密集信息输入开始,通常是通过正规的学校教育,然后是某种形式的学徒实践;数年时间都致力于从该领域最出色的实践者那里学习,大多数情况下是面对面地学习。这是一个几乎不可替代的过程:例如,医学住院医生通过聆听和观察高水平的外科医生所获取的大部分信息,是任何教科书中都没有明确写出来的。通过学校教育和经验,获得有助于在复杂情况下确定最佳答案的直觉特别具有挑战性。这一点对于人工智能和人类都是如此,但对于AI来说,这个问题因其当前的学习方式以及技术人员当前对待这个机会和挑战的方式而变得更加严重。通过研究成千上万个标记过的数据点(“正确”和“错误”的例子)——当前的先进神经网络架构能够弄清楚什么使一个选择比另一个选择更好。我们应该通过使用彼此堆叠的模型来训练AI,而不是仅仅依靠大量的数据,并期望一个生成模型解决所有问题。例如,我们首先应该训练生物学的模型,然后是化学的模型,在这些基础上添加特定于医疗保健或药物设计的数据点。预医学生的目标是成为医生,但他们的课程从化学和生物学的基础开始,而不是诊断疾病的细微差别。如果没有这些基础课程,他们未来提供高质量医疗保健的能力将受到严重限制。同样,设计新疗法的科学家需要经历数年的化学和生物学学习,然后是博士研究,再然后是在经验丰富的药物设计师的指导下工作。这种学习方式可以帮助培养如何处理涉及细微差别的决策的直觉,特别是在分子层面,这些差别真的很重要。例如,雌激素和睾酮只有细微的差别,但它们对人类健康的影响截然不同。

化学:使用大型语言模型进行自主化学研究

原创xiaoming乐谷说2023-12-23 23:00文章地址:https://www.nature.com/articles/s41586-023-06792-0nature前几天发来王炸,论文标题《Autonomous chemical research with large language models》,趁着周末读了一下。图里的意思大概可以这么理解。这张图片展示了一个名为“Coscientist”的人工智能系统的工作流程图,该系统用于自动化化学研究。图中描述了从一个简单的人类提示开始,到实验结束的整个过程。具体步骤包括:文献搜索(Literature search):当被问及是否能合成某个分子A时,Coscientist首先会在互联网上搜索相关的合成路线。协议选择(Protocol selection):接着,Coscientist会根据搜索结果制定实验协议。翻译成代码(Translation into code):然后,Coscientist会将实验协议写成代码,以指导自动化实验设备。实验(Experiment):最后,机器人根据代码执行实验任务。这个过程是可迭代的,意味着Coscientist可以根据实验结果调整协议,以改进实验并实现预期目标。这个系统利用大型语言模型来规划和实施化学任务,展示了人工智能在化学研究中的应用潜力。价值在于:1.GPT在自动化化学研究方面也有极高的潜力。2.人们自然语言提需求(目标),GPT帮你读论文,生成方法,生成代码,运行程序,改变配方配比,观察实验结果,反馈实验结果,对比与目标是否一致,如果不一致该怎么微调更新,更新之后,继续循环。达到目标之后,给人类反馈结果和方法(或直接用于工业制造进入大生产)。3.未来,稀缺的不是执行,而是目标。核心观点如下:

AI 产品案例严选

|标题|简介|作者|分类|前往查看👉|封面|入库时间||-|-|-|-|-|-|-||书籍推荐:三本神经科学书籍|AI是多学科交叉的产物,在学习和运用具体的能力时,比如学习他人的prompt模板或设计prompt,与AI协作(对话沟通)等等,有一些基础学科作为基底,或许能打开AI的新天地||教育|[书籍推荐:三本神经科学书籍](https://waytoagi.feishu.cn/wiki/CKwHwwRvxi7LxTkpKsmc7s2PnFe?table=tblwdvsWICkId67f&view=vewm6DMY99&chunked=false)||2023/11/12||AI赋能教师全场景|来自MQ老师的投稿贡献,图中有老师的微信,欢迎交流沟通|MQ老师|教育|[AI赋能教师全场景](https://waytoagi.feishu.cn/wiki/MDxEwtzIfivcZ6kM8nEcHFPAnqe?table=tblZPbdb7NgLbxew&view=vewJuuzsne)||2023/11/29||未来教育的裂缝:如果教育跟不上AI|人工智能在教育领域的融入正不断地从理论走向实际应用,为传统的教学模式带来颠覆性的改变。在这一进程中,具体案例能够清晰地揭示AI如何实际影响教学和学习方式。|赛博禅心|教育|[未来教育的裂缝:如果教育跟不上AI](https://waytoagi.feishu.cn/wiki/ZqmpwkZA3iB5GNklO4mcirhhnKd)||2023/11/30||化学:使用大型语言模型进行自主化学研究|文章地址:[https://www.nature.com/articles/s41586-023-06792-0](https://www.nature.com/articles/s41586-023-06792-0)<br>nature前几天发来王炸,论文标题《Autonomous chemical research with large language models》,趁着周末读了一下。图里的意思大概可以这么理解。|[乐谷说](http://javascript:void(0);)|教育|[化学:使用大型语言模型进行自主化学研究](https://waytoagi.feishu.cn/wiki/JW9UwFYaEi2JhckNflecygdRnne)||2023/12/24|

Others are asking
ai编程
以下是关于 AI 编程的相关信息: Trae 国内版 是国内首个 AI IDE,自带豆包 1.5pro 和满血版 DeepSeek R1、V3 模型。 具有国内用户友好、使用完全免费、内置预览插件等特性。 网址:Trae.com.cn 或点击文末【阅读原文】直接访问。 借助 AI 学习编程的关键 打通学习与反馈循环,包括验证环境、建立信心、理解基本概念,实现“理解→实践→问题解决→加深理解”的循环。 使用流行语言和框架,先运行再优化,小步迭代,借助 AI 生成代码后请求注释或解释,遇到问题三步走:复现、精确描述、回滚。 用好 AI 编程工具(如 Cursor)的关键技能 准确描述需求,清晰表达目标和问题。 具备架构能力,将复杂系统拆解为松耦合的模块。 拥有专业编程能力,能够判断 AI 生成代码的优劣。 具备调试能力,快速定位问题并解决,可独立或借助 AI 完成调试。
2025-03-09
AI分析直播数据
使用 AI 分析直播数据可以参考以下方法和步骤: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,处理大量数据以获取关键信息,如受欢迎的产品、价格区间、销量等。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具根据市场趋势和用户偏好自动生成吸引人的产品页面布局。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,提高转化率。 5. 图像识别和优化:通过 AI 图像识别技术选择或生成高质量的产品图片,展示产品特点。 6. 价格策略:依靠 AI 分析不同价格点对销量的影响,制定有竞争力的价格策略。 7. 客户反馈分析:利用 AI 分析客户评价和反馈,了解客户需求,优化产品和服务。 8. 个性化推荐:借助 AI 根据用户的购买历史和偏好提供个性化的产品推荐,增加销售额。 9. 聊天机器人:使用 AI 驱动的聊天机器人提供 24/7 的客户服务,解答疑问,提高客户满意度。 10. 营销活动分析:依靠 AI 分析不同营销活动的效果,了解哪些活动更能吸引顾客并产生销售。 11. 库存管理:利用 AI 帮助预测需求,优化库存管理,减少积压和缺货情况。 12. 支付和交易优化:通过 AI 分析不同的支付方式对交易成功率的影响,优化支付流程。 13. 社交媒体营销:借助 AI 在社交媒体上找到目标客户群体,通过精准营销提高品牌知名度。 14. 直播和视频营销:利用 AI 分析观众行为,优化直播和视频内容,提高观众参与度和转化率。 罗文在直播数据分析方面的分享包括: 1. 演示了利用工作流进行直播数据处理及智能体创建参赛的过程,包括利用插件识别图片内容获取直播数据,将数据传入大模型得到优化建议,通过不断添加节点提升数据质量,最后将工作流封装成智能体。 2. 讨论了利用 AI 优化模板并提交的直播数据分析流程,包括模板内容的编写与注意事项,还介绍了飞书的功能如共学小组和其智能 AI 功能,分享了直播数据分析模板的制作过程,最后提及了模板大赛相关问题、专业版好用之处等。 3. 提到了直播数据分析工作流的搭建与应用,包括插件测试与选择、工作流搭建步骤、工作流效果提升、工作流封装与应用、相关问题探讨等。 4. 介绍了直播数据分析与报名流程,包括工作流运行与问题排查、报名流程介绍、AI 辅助文档生成、加入共学小组等内容。
2025-03-09
AI在财务的运用
AI 在财务领域有以下运用: 1. 更动态的预测和报告: 帮助编写 Excel、SQL 和 BI 工具中的公式和查询,实现分析自动化。 从更广泛、更复杂的数据集中发现模式,为预测建议输入,并适应模型为公司决策提供依据。 自动创建文本、图表、图形等内容,并根据不同示例调整报告,无需手动整合数据和分析。 帮助综合、总结税法和潜在扣除项,并提出可能答案。 自动生成和调整合同、采购订单和发票以及提醒。 2. 具有成本效益的运营: 使从多个位置获取数据的劳动密集型功能效率提高 1000 倍。 有助于理解非结构化的个性化情境和非结构化的合规法律。 此外,截至 2024 年 10 月 15 日,美国融资金额超过 1 亿美元的 AI 公司(部分)有: |项目名称|融资时间|融资金额(亿美元)|轮次|估值(亿美元)|主营|产业链标签|话题标签|投资方|其他信息| ||||||||||| |Augment|20240424|2.27|B|10|AI 编码辅助|应用|编程|Lightspeed Venture Partners,Index Ventures,Sutter Hill Ventures|| |Cognition|20240424|1.75||20|端到端软件 Agents|应用|编程|Founders Fund,Ramp 联合创始人 Eric Glyman,Stripe 联合创始人 Patrick 和 John Collison,DoorDash 联合创始人 Tony Xu|| |Xaira Therapeutics|20240423|10|A||AI 药物研发|应用|医学|Foresite Capital,ARCH Venture Partners|| |Cyera|20240409|3|C|14|AI 数据安全平台|应用|数据|Coatue,Sequoia,Redpoint,Accel|| |Celestial AI|20240327|1.75|C||用于 AI 存储和计算的光互连技术平台|基础设施|芯片、硬件和云平台|Thomas Tull 美国创新技术基金,M Ventures,淡马锡,Tyche Partners|| |FundGuard|20240325|1|C|4|AI 投资会计系统|应用|金融|Key1Capital,Hamilton Lane,Blumberg Capital,Team8|| 信息来源:Techcrunch
2025-03-09
AI应该如何学习
以下是关于 AI 学习的全面指导: 对于新手学习 AI: 1. 了解 AI 基本概念:建议阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 2. 开始 AI 学习之旅:在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛,比如图像、音乐、视频等,可根据兴趣选择特定模块深入学习,同时掌握提示词技巧。 4. 实践和尝试:理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品,知识库也提供了很多实践后的作品和文章分享。 5. 体验 AI 产品:与现有的 AI 产品如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人互动,了解其工作原理和交互方式。 对于中学生学习 AI: 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台:使用 ChatGPT、Midjourney 等 AI 生成工具体验应用场景,探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等),学习其在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解最新进展,思考其对未来社会的影响,培养思考和判断能力。 在医疗保健领域,为了让 AI 产生真正的改变,应投资创建像优秀医生和药物开发者那样学习的模型生态系统。成为顶尖人才通常从多年密集信息输入和正规学校教育开始,再通过学徒实践,面对面从出色实践者那里学习。对于 AI,应通过堆叠模型训练,而不仅依靠大量数据和生成模型。例如先训练生物学、化学模型,再添加特定于医疗保健或药物设计的数据点。就像医学生从基础课程开始,科学家也需多年化学和生物学学习及博士研究,这种学习方式有助于培养处理细微差别决策的直觉。
2025-03-09
AI学习资料
以下是为您提供的 AI 学习资料: 入门指南:强化学习 原文地址:https://mp.weixin.qq.com/s/pOO0llKRKL1HKG8uz_Nm0A 学习计划:以搞懂 DQN 算法作为入门目标。 新手学习 AI 了解 AI 基本概念:阅读「」熟悉术语和基础概念,了解其主要分支及联系。 浏览入门文章,了解历史、应用和发展趋势。 开始学习之旅:在「」中找到初学者课程,推荐李宏毅老师课程。通过在线教育平台(如 Coursera、edX、Udacity)按节奏学习,有机会获证书。 选择感兴趣模块深入学习:如掌握提示词技巧。 实践和尝试:理论学习后实践巩固知识,在知识库分享实践作品和文章。 体验 AI 产品:如 ChatGPT、Kimi Chat、智谱、文心一言等聊天机器人。 支线剧情共创 AI 出图教学及资料 MJ 官方手册:https://docs.midjourney.com/ Prompt 魔法书:https://aituts.ck.page/promptsbook eSheep: 如何在 MJ 中保持角色一致性: AI 视频教学及资料 什么是相似形转场:
2025-03-09
最近比较好的微信ai小程序
以下是为您找到的一些微信 AI 小程序相关信息: 妙刷:是一款微信 AI 小程序,有很多基于“多模态应用”方向的探索。已经运行上线了一段时间,积累了多种风格主题,新出的“魔法物品搜集手册”曾小火。 目前暂未获取到更多其他微信 AI 小程序的详细信息。如果您想了解更多关于微信 AI 小程序的内容,建议您通过相关的科技资讯网站或公众号进一步搜索。
2025-03-09
我是一名电商工作者,主要负责产品图的图片设计,我该怎么学习AI,能给我带来效率和品质上的提高?
以下是为您提供的学习 AI 以提高电商产品图设计效率和品质的建议: 1. 市场分析:利用 AI 分析工具研究市场趋势、消费者行为和竞争对手情况,快速获取关键信息,如受欢迎的产品、价格区间和销量等,以便在设计中更好地把握方向。 2. 关键词优化:借助 AI 分析和推荐高流量、高转化的关键词,优化产品图的标题和描述,提高搜索排名和可见度。 3. 产品页面设计:使用 AI 设计工具,根据市场趋势和用户偏好自动生成吸引人的产品页面布局,为产品图的展示提供良好的框架。 4. 内容生成:利用 AI 文案工具撰写有说服力的产品描述和营销文案,与产品图相互配合,提高转化率。 5. 图像识别和优化:运用 AI 图像识别技术选择或生成高质量的产品图片,更好地展示产品特点,吸引顾客。 6. 价格策略:通过 AI 分析不同价格点对销量的影响,制定合理的价格策略,在产品图中体现价格优势。 7. 客户反馈分析:借助 AI 分析客户评价和反馈,了解客户需求,优化产品图和服务。 8. 个性化推荐:利用 AI 根据用户的购买历史和偏好提供个性化的产品推荐,在产品图设计中突出个性化元素。 9. 工具能力提升:对现有 AI 工具进行严格评估和选型,确保其能提供标准化输出和一致性体验,提升设计质量和速度。 10. 工作流程优化:将 AI 深入到日常设计流程中,形成新的工作方式与流程,针对 AI 的特性优化每一个环节,实现效率和创意品质的最大化。 同时,您还可以参考以下成功案例: 1. Show Me 扣子 AI 挑战赛大消费行业专场的三等奖作品,为电商卖家提供全面的图片处理服务,包括 AI 商品图、AI 场景图、AI 模特、AI 素材、AI 海报等。利用先进 AI 技术,帮助卖家无需专业设计经验即可创作出独特且充满想象力的优质素材,且创作素材可商用,有助于提升商品出单率。 2. 大淘宝设计部 2023 年度 AI 设计实践报告中提到,未来设计师要具备持续的学习习惯,将 AI 深入日常设计流程,设计团队要制定并执行明确的 AI 融合策略等。 总之,随着技术的不断进步,AI 在视觉设计领域将扮演更重要的角色,为您创造更多的可能性。
2025-03-07
目前做设计的工作者怎么用ai赋能
对于目前做设计工作的人员,可以通过以下方式利用 AI 赋能: 1. 建立针对性的 AI 工作流:构建有效的设计工作流,提高工作效率。 2. 进行实用的模型训练:例如使用 lora 模型训练方式,生成特定形象及 KV 风格,建立包含品牌形象、风格视觉 DNA 的模型,并根据实用场景进行分类。同时,根据市场环境和消费者偏好的变化迅速调整模型,使营销内容更符合目标用户喜好。 3. 储备 AI 设计资产:包括建立和管理 AI 设计资产,沉淀相关知识、技能、工具,促进团队内部的知识积累和提升。团队成员分享设计经验和学习心得,利用参数库快速启动新项目,确保设计准确性并减少重复工作,借助工具、模版、元素提高设计效率和质量。 4. 利用 AI 整合工具平台:如“桃花源|淘宝设计 AIGC”,引入实用功能,增强设计工作的专业性和效率。 随着二次元绘画 AI 的发展和优化,对二次元设计行业影响显著: 1. 降低设计成本和提高效率,更多公司和个人能轻松创作高质量作品。 2. 为设计师提供创作灵感,但市场对大量二次元美术设计师的需求可能降低,从业者需关注行业动态,提升技能和创新能力,注重作品原创性和创新性,学会有效利用工具,提高沟通和协作能力。 在数字营销趋势中,AI 加持的创意与设计方面: 1. 现状:AI 驱动的创意工具已融入设计流程,如素材生成和高级图像编辑,设计师使用 Adobe Firefly 和 Midjourney 等工具加速视觉创作和创建符合品牌的素材。 2. 风险与挑战: 过度依赖 AI 可能导致设计同质化,失去独特创意表达,需平衡 AI 效率与原创创意输入。 设计师要不断适应新的 AI 工具和技术,持续学习保持竞争力并发挥 AI 潜力。 AI 生成的内容可能引发版权问题,需要明确法律框架解决所有权和权利问题。 3. 展望:随着 AI 技术发展,预计在实时、按需设计中发挥更大作用,未来的 AI 工具可能支持更复杂的创意任务,进一步融入创意流程的核心。
2025-02-18
如何凭借comfyUI,成为自由职业工作者
ComfyUI 是一种具有独特特点和优势的工具,以下是关于如何凭借它成为自由职业工作者的相关内容: ComfyUI 的概念和重要性: ComfyUI 的 UI 界面相较于 SD WebUI 更为复杂,除输入框外还有很多块状元素和复杂连线。 虽然学习成本较高,但连线并不复杂,小方块与 SD WebUI 的输入框和按钮作用相同,都是对参数进行配置,连线类似搭建自动化工作流,从左到右依次运行。 ComfyUI 的功能和优势: 从功能角度看,它与 SD WebUI 提供的功能相同,但以连线方式呈现。 通过改变节点可实现不同功能,如一个是直接加载图片,一个是通过画板绘制图片,从而实现导入图片生图或绘图生图等不同功能。 选择 ComfyUI 的核心原因在于其自由和拓展性,可根据自身需求搭建适合自己的工作流,无需依赖开发者,还能开发并改造节点。 ComfyUI 的基础界面和操作: 熟悉基本界面,如创建第一个工作流时,要进行加载 Latent(设置图片宽高和批次)、加载 VAE 等操作。 节点分为起始节点、最终输出节点和过程执行节点,将各节点按规则串联,如 checkpoint 加载器、CLIP 对应链接正向和负向提示词等,最终得到工作流。 要成为凭借 ComfyUI 的自由职业工作者,需要多练习和使用,尝试通过变现图片获取收益。
2025-02-10
我是一个法律工作者,需要经常回答客户的一些法律问题,哪个AI适合我这种场景的工作需求
对于您这种经常回答客户法律问题的法律工作者,以下几种场景中适合使用法律行业垂类的 AI 产品: 1. 法规研究与解读:使用 Prompt 指令词,如“根据最新修订的《数据安全法》,解析企业在处理个人信息时应遵循的主要原则,并给出具体操作建议”,AI 助手将依据最新条款解析原则并提出操作指南或合规建议。 2. 法律意见书撰写或非诉交易文件材料:例如“针对我方当事人涉及的版权纠纷案,输入【已有的证据材料】+【相关法律条文】,撰写一份初步法律意见书,论证我方主张的合理性和胜诉的可能性”,AI 将根据提供的材料撰写法律意见书。 3. 案例检索:如“请搜索近五年内关于商标侵权案件中‘混淆可能性’标准的具体判例,并提供相似度最高的三个案例的关键要点摘要”,AI 系统将检索并提炼关键判决理由和结果。 4. 类案检索:同样最好使用法律行业垂类的 AI 产品。 5. 法律文本阅读:选择某一份或者若干份文档上传,AI 完成解析,然后根据需要了解的内容进行提问。 在使用 Prompt 时,要注意结构提示,如“【需求或目的+根据具体法条或者根据某部法律+具体需要研究或则具体的研究细节内容】”。
2024-12-19
强化学习
强化学习是机器学习领域的一个重要分支,能在多个领域发挥作用: 1. 游戏方面:如 DeepMind 的 AlphaGo 在围棋比赛中战胜世界冠军,以及 OpenAI 的 Dota 2 AI 在电子竞技比赛中战胜职业选手,能帮助智能体学习复杂策略和行为,超越人类表现。 2. 机器人学领域:应用于机器人控制、导航和自主学习,使机器人能在复杂环境中自主执行搬运物品、避障导航、飞行控制等任务。 3. 自动驾驶领域:用于自动驾驶汽车的控制和决策,使其能在复杂道路环境中保持安全驾驶,规避障碍物,遵守交通规则。 4. 推荐系统方面:用于个性化推荐,通过学习用户行为和喜好,智能推荐合适内容,提高用户满意度和留存率。 5. 自然语言处理领域:应用于对话系统、机器翻译、文本摘要等,使模型生成更符合人类语言习惯的文本,提高语言理解和生成质量。 6. 资源管理领域:用于优化资源管理问题,如数据中心的能源管理、通信网络的流量调度等,实现资源高效利用,降低成本,提高性能。 7. 金融领域:用于股票交易、投资组合优化等,帮助智能体根据市场变化调整投资策略,实现收益最大化。 神经网络流行起来后,人们设计了利用神经网络进行强化学习的办法,如解决平衡运动着的平台上的棍子等经典问题。 为简化强化学习问题和解决方案,通常会简化环境,使智能体只了解对决策重要的细节。整个学习问题是探索环境和经过一个又一个的状态来尝试最大化智能体所得到的奖励,直到达到目标状态,比如从 A 驾驶到 B、赢得国际象棋比赛、通过聊天解决客户问题等。
2025-02-25
我想系统化学习ai该怎么做
如果您想系统化学习 AI,可以参考以下步骤: 1. 迈出第一步,看书听课进社区: 系统性学习,避免碎片化输入。一开始可以系统地看相关书籍、听优质课程,了解 AI 的底层原理和发展历程,打好基础。 例如,可以在 B 站寻找一些介绍 ChatGPT 原理的分享,但如果要系统学习,应选择质量更高的内容。 2. 加入 AI 社区: 例如“通往 AGI 之路”这样的开源知识库,参考新手指引,直接走进当前最流行的 AI 腹地。 3. 对于中学生来说: 从编程语言入手学习,如 Python、JavaScript 等,掌握编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台,如 ChatGPT、Midjourney 等,体验其应用场景,也可以探索面向中学生的教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 学习 AI 基础知识,包括基本概念、发展历程、主要技术(如机器学习、深度学习等),以及在各领域的应用案例。 参与 AI 相关的实践项目,如参加学校或社区组织的编程竞赛、创意设计大赛等,尝试用 AI 技术解决实际问题,培养动手能力。 关注 AI 发展的前沿动态,关注权威媒体和学者,思考其对未来社会的影响。 总之,要全面系统地学习 AI 知识和技能,可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,为未来的发展做好准备。
2025-01-26
那深度学习是监督学习、无监督学习还是强化学习呢?又或者他们四个是并列的?
深度学习是一种方法,参照人脑有神经网络和神经元(因为有很多层所以叫深度)。神经网络可以用于监督学习、无监督学习和强化学习。监督学习是使用有标签的训练数据,算法目标是学习输入和输出之间的映射关系,包括分类和回归。无监督学习是学习没有标签的数据,算法自主发现规律,经典任务如聚类。强化学习是从反馈中学习,以最大化奖励或最小化损失,类似训小狗。所以深度学习与监督学习、无监督学习、强化学习不是并列关系,而是其应用的一种方式。
2025-01-21
机器学习的子领域包括: 监督学习,常用算法如线性回归、决策树、支持向量机(SVM)。 无监督学习,如聚类、降维等算法。 强化学习,那深度学习是哪一种啊
深度学习是机器学习的一个子领域。 在机器学习中,深度学习是一种利用深度神经网络来学习数据特征和模式的方法。 深度学习的特点包括: 1. 具有复杂的网络结构,如前馈网络、卷积神经网络(CNN)、循环神经网络(RNN)等。 2. 能够自动从大量数据中提取高级特征。 深度学习在图像识别、语音识别、自然语言处理等领域取得了显著的成果。
2025-01-21
深度强化学习
深度强化学习是强化学习与深度学习技术相结合的领域。 其起源于 20 世纪 90 年代,特点是通过试错学习最优行为策略,以最大化累积奖励。 技术方面,起初基于策略搜索和价值函数优化等算法,如 Qlearning 和 SARSA 是典型代表。随着深度学习兴起,深度神经网络与强化学习融合,产生了深度强化学习,如 AlphaGo 和 DQN 等就是显著成果。 深度强化学习的优势在于允许 Agent 在未知环境中自主探索和学习,无需人工明确指导,能够处理高维状态空间和连续动作空间,在游戏、机器人控制等领域有广泛应用潜力。 然而,深度强化学习也面临诸多挑战,包括漫长的训练周期、低下的采样效率以及稳定性问题,尤其在应用于复杂多变的真实世界环境时。 在实现上,如 DQN 是通过将神经网络和 Qlearning 结合,用函数而不是 Q 表来表示动作价值,利用均方误差设计 Loss Function,像 Qlearning 一样利用四元组进行训练。
2024-11-30
ai如何促进化学教学
以下是关于 AI 如何促进化学教学的一些观点和案例: 从学习方式的角度看,如同人类成为医疗领域顶尖人才需要多年的密集信息输入和实践学习,AI 也应通过分层训练模型,如先训练生物学和化学的模型,再添加特定数据点,来促进化学教学。 在教育领域,有相关的案例,如“化学:使用大型语言模型进行自主化学研究”,但具体内容需进一步查看相关文章。 不同学科对于 AI 的应用方式有所不同,例如在艺术课可能不希望使用 AI 生成的图像,而在历史课制作信息图表展示对宏观经济学原理的理解时可能会接受。在科学课中,AI 生成的跳切能让学生快速制作视频,从而专注于科学内容。 需要注意的是,以上信息仅为部分相关内容,可能不够全面和详尽。
2024-11-29