Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如果让提示词变成模板, 每次输入需要的参数就好。

Answer

要将提示词变成模板,每次输入需要的参数即可。以下是一些相关的方法和要点:

  • 在 Stable Diffusion 中,下次作图时先选择模板,点击倒数第二个按钮可快速输入标准提示词。描述逻辑通常包括人物及主体特征(如服饰、发型发色、五官、表情、动作)、场景特征(室内室外、大场景、小细节)、环境光照(白天黑夜、特定时段、光、天空)、画幅视角(距离、人物比例、观察视角、镜头类型)、画质(高画质、高分辨率)、画风(插画、二次元、写实)等,通过这些详细提示词能更精确控制绘图。新手可借助功能型辅助网站书写提示词,如 http://www.atoolbox.net/ (通过选项卡快速填写关键词信息)、https://ai.dawnmark.cn/ (每种参数有缩略图参考),还可去 C 站(https://civitai.com/)抄作业,复制每张图的详细参数粘贴到正向提示词栏,注意图像作者使用的大模型和 LORA,也可选取部分好的描述词使用。
  • 简单的提示词模板最终目标是把需求说清楚,如 GPTs 提示词模板:Act like a [Specify a role](你应该像[指定角色]一样操作)、I need a [What do you need?](我需要一个[你需要什么?])、you will [Enter a task](您将[输入任务])、in the process,you should [Enter details](在此过程中,你应该[输入详细信息])、Please [Enter exclusion](请[输入排除项])、input the final result in a [Select a format](以[选择格式]输入最终结果),并给出了示例。
  • 提示词母体系列(2)中,在掌握人物设计整体框架后编写提示词,可借鉴替换方式替换模板。模板构成包括:先看约束部分,规则放顶部加强约束,底部也有相应约束,整个约束包裹具体提示词以提示模型专注性;模板结构有基本信息(姓名、性别、年龄、职业)、外貌特征、背景和经历、性格和价值观、爱好特长和语言风格、人际关系和社交活动、未来规划和目标。
Content generated by AI large model, please carefully verify (powered by aily)

References

【SD】文生图怎么写提示词

下次作图的时候,只需要先选择你的模板,然后点击倒数第二个按钮,就能将这些标准提示词快速输入了。我们来看一下加入标准提示词后的效果,是不是好了很多。我们通常的描述逻辑是这样的:人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)。通过这些详细的提示词,我们就能更精确的控制Stable Diffusion的绘图了。对于新手而言,我们还有一些功能型辅助网站来帮我们书写提示词。比如:http://www.atoolbox.net/。它可以通过选项卡的方式快速地填写关键词信息。还有:https://ai.dawnmark.cn/。它的每种参数都有缩略图可以参考,可以方便我们更加直观的选择提示词。还有一个方法就是去C站(https://civitai.com/)里面抄作业,每一张图都有详细的参数,我们可以点击下面的复制数据按钮。然后直接粘贴到正向提示词栏里,然后点击生成按钮下的第一个按键,Stable Diffusion就可以将所有的参数自动匹配了。不过,还要注意图像作者使用的大模型和LORA,不然即使参数一样,生成的图也会截然不同。我们也可以只取其中比较好的一些描述词使用,比如人物描写、背景描述、一些小元素或者是画面质感之类的。好了,我们讲到这里,大家应该已经基本了解了文生图的使用方法和逻辑了,采用正确的语法规则和思路能让我们得到更好效果的AI绘图,快练习起来吧。-END-白马与少年Stable Diffusion、Blender等学习心得分享139篇原创内容(持续更新中)公众号

简单的提示词模板

其实最终目标是:把需求说清楚GPTs提示词模板...往进去套就行哈哈哈Act like a[Specify a role]你应该像[指定角色]一样操作I need a[What do you need?]我需要一个[你需要什么?]you will[Enter a task]您将[输入任务]in the process,you should[Enter details]在此过程中,你应该[输入详细信息]Please[Enter exclusion]请[输入排除项]input the final result in a[Select a format]以[选择格式]输入最终结果here is an example:[Enter an example]下面是一个示例:[输入示例]案例:Act like a SEO Professional Writer,你是一个SEO专家I need a optimized blog post,我需要一篇优化的博客文章you will research keywords and incorporate them naturally into the content,你将研究关键字并将它们自然地融入内容中in the process,you should focus on readability,relevance and proper keyword placement,在这个过程中,你应该关注可读性、相关性和正确的关键词位置please avoid keyword stuffing or over-optimisation请避免关键字堆砌或过度优化input the final result in a well structured format,以结构良好的格式输入最终结果here is an example:title"Top 10 Tips for Effective SEO Writing:Boost Your Content's Visibility"这里有一个例子:标题“有效SEO写作的10大技巧:提高你的内容的知名度”完整prompt:Act like a SEO Professional Writer,I need a optimized blog post,you will research keywords and incorporate them naturally into the content,in the process,you should focus on readability,relevance and proper keyword placement,please avoid keyword stuffing or over-optimisation,input the final result in a well structured format,here is an example:title"Top 10 Tips for Effective SEO Writing:Boost Your Content's Visibility"

提示词母体系列(2):再进阶,一分钟创建你的拟人化小助理

在掌握了人物设计的整体框架后,我们就可以着手编写提示词了。值得注意的是,我们可以借鉴上一篇文章中提到的替换方式来替换提示词模板。这意味着我们无需对模板的整体结构进行大幅度修改,只需要替换相应的生成模板内容即可。先看约束部分,这次我把规则放到了顶部,加强约束。相呼应的,底部同样有个的约束。整个约束包裹具体提示词,用来提示模型的专注性。接下来,让我们详细看一下截图中展示的模板结构:1.基本信息:这是模板的首要部分,包含了角色的姓名、性别、年龄和职业。这些信息为角色奠定了基础,是其他所有特征的起点。2.外貌特征:紧随基本信息之后,这部分描述了角色的物理外观,有助于创造一个视觉上可识别的形象。3.背景和经历:这一部分与前面的基本信息密切相关,详细阐述了角色的成长环境和重要人生经历。这些信息为理解角色的行为和思维方式提供了重要背景。4.性格和价值观:这个关键部分包括了性格特征、核心价值观念以及个人习惯。这些元素共同塑造了角色的内在世界,决定了他们如何看待和互动这个世界。1.爱好、特长和语言风格:这一部分巧妙地将角色的兴趣爱好、特殊才能以及独特的表达方式融合在一起,展现了角色的多面性。2.人际关系和社交活动:这里描述了角色的社交圈,包括朋友、潜在对手,以及他们倾向于与什么类型的人交往。这一部分揭示了角色在社会中的定位和互动方式。3.未来规划和目标:作为模板的收尾部分,这里勾勒出角色的梦想和未来计划,为角色赋予了前进的动力和方向。

Others are asking
提示词模板
以下是一些关于提示词模板的相关信息: 以下网站提供了提示词模板: 在 PromptLayer 网站(https://promptlayer.com/createaccount)创建账号,新账号默认是 Free 方案,有 1000 次免费请求用于测试。创建提示词模板的步骤如下: 登录账号后跳转到“Registry”菜单开始创建流程。 点击“Create Templates”按钮出现编写界面。 该页面主要功能包括: Title:为提示词设定的名称。 System 提示词:用于指导和规范模型行为,是主要编辑区域。 User 提示词:属于用户先行动作设定提示词,常用于表述用户的交互动作。 Assistant 提示词:一般是模型输出的内容,也可人工编写模拟模型回复。合理使用 User&Assistant 提示词可模拟多轮对话效果,帮助调试提示词。 Parameters:可选择和设置使用何种模型进行调试,提供一些模型的基本参数来调教模型回复。
2025-03-03
如何基于模板填入词汇生成Prompt
基于模板填入词汇生成 Prompt 的方法如下: 在 GPT 相关工具中,如 EasyFill,选中页面上任意一段文字,点击按钮,工具会将选中的内容填入模板中的占位符位置并发送。若需编辑,可点击右侧铅笔图标。设置选项可用于修改菜单项。 对于 SD 文生图,先选择模板,点击倒数第二个按钮快速输入标准提示词。描述逻辑通常包括人物及主体特征(服饰、发型发色、五官、表情、动作),场景特征(室内室外、大场景、小细节),环境光照(白天黑夜、特定时段、光、天空),画幅视角(距离、人物比例、观察视角、镜头类型),画质(高画质、高分辨率),画风(插画、二次元、写实)等。可借助功能型辅助网站如 http://www.atoolbox.net/ 、https://ai.dawnmark.cn/ 填写关键词信息,也可在 C 站(https://civitai.com/)抄作业,复制数据粘贴到正向提示词栏。 对于 AI 视频生成,有具体案例模板,如史诗灾难场景、赛博朋克未来都市、奇幻神话场景等,每个场景都有详细的提示词,包括镜头、主体、细节、背景、光影、氛围、技术参数等方面的描述。
2025-02-28
我想用deepseek生成文献综述,请给我提供指令模板
以下是为您提供的 DeepSeek 生成文献综述的指令模板: 一、基础指令框架 1. 四要素模板:示例 2. 格式控制语法 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 二、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 三、高级调试策略 1. 模糊指令优化 宽泛需求:添加维度约束,例如原句“写小说”→修正“创作以 AI 觉醒为背景的悬疑短篇,采用多视角叙事结构” 主观表述:量化标准,例如原句“写得专业些”→修正“符合 IEEE 论文格式,包含 5 项以上行业数据引用” 2. 迭代优化法 首轮生成:获取基础内容 特征强化:请加强第三段的技术细节描述 风格调整:改用学术会议报告语气,添加结论部分 最终校验:检查时间逻辑一致性,列出可能的事实性错误 希望这些指令模板对您生成文献综述有所帮助。
2025-02-28
有没有输入点子可以生成视频文案的多维表格模板
以下是关于输入点子生成视频文案的多维表格模板的相关信息: 概述: 基于其他博主开源的视频生成工作流进行功能优化,实现视频全自动创建。感谢开源,现提供教程参考。 先看效果: 功能: 通过表单输入主题观点,提交后自动创建文案短视频,创建完成后推送视频链接到飞书消息。 涉及工具: 1. Coze 平台(工作流、DeepSeek R1、文生图、画板、文生音频、图+音频合成视频、多视频合成) 2. 飞书(消息) 3. 飞书多维表格(字段捷径、自动化流程) 大体路径: 1. 通过 coze 创建智能体,创建工作流,使用 DeepSeek R1 根据用户观点创建文案,再创建视频。 2. 发布 coze 智能体到飞书多维表格。 3. 在多维表格中使用字段捷径,引用该智能体。 4. 在多维表格中创建自动化流程,推送消息给指定飞书用户。 获取字节火山 DeepSeek 系列 API 完整教程及使用方法: 邀请可拿 3000 万 tokens,附上宝藏飞书多维表格模板,包括营销类、投资和电商、工具论文效率类、有趣类等,如: 智能体发布到飞书多维表格: 1. 工作流调试完成后,加入到智能体中。可以选择工作流绑定卡片数据,智能体通过卡片回复。 2. 发布时选择需要的发布渠道,重点讲飞书多维表格。记得智能体提示词的 4 个变量,发布时会自动出现,目的是为了在多维表格中选择关联字段。填写上架信息(为快速审核,选择仅自己可用),确认发布等待审核,审核通过后即可在多维表格中使用。 多维表格的字段捷径使用: 1. 创建飞书多维表格,添加相关字段,配置后使用字段捷径功能,使用自己创建的 Coze 智能体。选择“自动更新”,输入 4 个字段后,“文案视频自动化”字段捷径会自动调用工作流,生成视频。 2. 表单分享,实现填写表单自动创建文案短视频。 自动化推送: 点击多维表格右上角的“自动化”,创建想要的自动化流程。
2025-02-24
prompt模板
以下是关于 prompt 模板的相关内容: 一、什么是 Prompt 简单来说,Prompt 是一套与大模型交互的语言模板。通过它可以输出对大模型响应的指令,明确大模型应做的任务、处理方式及期望的结果。大模型虽有基础文字能力,但为提升回答准确性,需借助 Prompt。在大模型时代,人机交互的主要方式之一就是 Prompt。 二、用更加专业的方式定义 大模型的本质是基于语言的概率模型,返回其认为概率最大的内容。若直接询问大模型且未提供 Prompt,相当于模型随机给出答案。有了 Prompt 则提供了模板,包括对模型的要求、输入和输出的限制,使模型在限制下得出概率最大的答案。 三、Ask Claude for rewrites 要求 Claude 进行重写 通过 API 发送请求(包括 Claude for Sheets 中的功能)时,必须在提示中包括先前生成的文本。示例提示模板为: |Role|Prompt| ||| |User|Here's a paragraph: 这是一个段落:<br><paragraph><段落><br>{{PARAGRAPH}}{{段落}}<br></paragraph></段落><br><br>I'd like you to rewrite it using the following instructions:<br>我希望您按照以下说明重新撰写它:<br><instructions><指示><br>{{INSTRUCTIONS}}{{说明}}<br></instructions></指示><br><br>Please put your rewrite in<rewrite></rewrite>tags.<br>请将您的重写放在<rewrite></rewrite>标记中。| |Assistant助手(预先填充)|<rewrite>| 对于较低使用量的情况,可将待重写的段落粘贴到{{PARAGRAPH}}的位置。要自动化此过程,可考虑设置提示链,使 Claude 对先前提示的响应替换为{{PARAGRAPH}}占位符。 四、Claude 官方提示词,中文版(含 API Prompt) 作者为金色传说大聪明赛博禅心,链接:https://mp.weixin.qq.com/s/rdKcT76ayfVH9wkfLVaJQ 。Claude 官方发布了提示词模板,涵盖工作和娱乐各方面,共 63 组,有英文版和中文版。例如“宇宙打字”,简介为:生成一个单 HTML 文件的互动打字游戏,宇宙打字,侧滚玩法,Tailwind CSS 风格。Prompt 为:编写一个完整的网络应用程序作为单个 HTML 文件,该应用程序应包含一个简单的横向滚动游戏,使用 WASD 来移动。在移动世界时,偶尔角色/精灵会遇到单词,当遇到单词时,玩家必须尽快正确输入该单词,输入单词越快,玩家获得的分数就越高,应在右上角有一个计数器来跟踪分数,单词应随机且高度可变以保持游戏有趣,应使网站美观,并使用 Tailwind。
2025-02-22
给我提供一份标准的 DeepSeek R1大模型的 prompt 提示词模板
以下是一份关于 DeepSeek R1 大模型的 prompt 提示词模板: 一、核心原理认知 1. AI 特性定位 多模态理解:支持文本/代码/数学公式混合输入 动态上下文:对话式连续记忆(约 4K tokens 上下文窗口,换算成汉字是 8000 字左右) 任务适应性:可切换创意生成/逻辑推理/数据分析模式 2. 系统响应机制 采用意图识别+内容生成双通道 自动检测 prompt 中的:任务类型/输出格式/知识范围 反馈敏感度:对位置权重(开头/结尾)、符号强调敏感 二、基础指令框架 1. 四要素模板 2. 格式控制语法 强制结构:使用```包裹格式要求 占位符标记:用{{}}标注需填充内容 优先级符号:>表示关键要求,!表示禁止项 三、进阶控制技巧 1. 思维链引导 分步标记法:请逐步思考:1.问题分析→2.方案设计→3.风险评估 苏格拉底式追问:在得出最终结论前,请先列举三个可能存在的认知偏差 2. 知识库调用 领域限定指令:基于 2023 版中国药典,说明头孢类药物的配伍禁忌 文献引用模式:以 Nature 2022 年发表的论文为参考,解释 CRISPRCas9 最新突破 3. 多模态输出 此外,还有关于创建 DeepSeek 联网版工作流的相关内容: 1. 创建工作流 创建一个对话流,命名为 r1_with_net 开始节点,直接使用默认的 大模型分析关键词设置 模型:豆包通用模型lite 输入:直接使用开始节点的 USER_INPUT 作为大模型的输入 系统提示词:你是关键词提炼专家 用户提示词:根据用户输入`{{input}}`提炼出用户问题的关键词用于相关内容的搜索 bingWebSearch搜索 插件:BingWebSearch 参数:使用上一个节点,大模型分析输出的关键词作为 query 的参数 结果:data 下的 webPages 是网页搜索结果,将在下一个节点使用 大模型R1 参考搜索结果回答 这里需要在输入区域开启“对话历史” 模型:韦恩 AI 专用 DeepSeek 输入:搜索结果,选择搜索节点 data 下的 webPages;选择开始节点的 USER_INPUT;开启对话历史,设置 10 轮,默认不开启对话历史,开启后默认是 3 轮 系统提示词:这里不需要输入 用户提示词: 结束节点设置 输出变量选择大模型R1 参考搜索结果回答的输出 回答内容里直接输出:{{output}} 测试并发布工作流 输入你的测试问题,测试完成后,直接发布工作流 关于 HiDeepSeek 的相关内容: 1. 效果对比 用 Coze 做了个小测试,大家可以对比看看 2. 如何使用? Step1:搜索 www.deepseek.com,点击“开始对话” Step2:将装有提示词的代码发给 Deepseek Step3:认真阅读开场白之后,正式开始对话 3. 设计思路 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用的同时,减轻自己的调试负担 通过提示词文件,让 DeepSeek 实现:同时使用联网功能和深度思考功能 在模型默认能力的基础上优化输出质量,并通过思考减轻 AI 味,增加可读性 照猫画虎参考大模型的 temperature 设计了阈值系统,但是可能形式大于实质,之后根据反馈可能会修改 用 XML 来进行更为规范的设定,而不是用 Lisp(对我来说有难度)和 Markdown(运行下来似乎不是很稳定) 4. 完整提示词 v 1.3 5. 特别鸣谢 李继刚:【思考的七把武器】在前期为我提供了很多思考方向 Thinking Claude:这个项目是我现在最喜欢使用的 Claude 提示词,也是我设计 HiDeepSeek 的灵感来源 Claude 3.5 Sonnet:最得力的助手
2025-02-16
有没有输入PPT生成指令,帮我生成PPT的
以下是一些关于输入指令生成 PPT 的信息: 增强版 Bot 是基于 AI 驱动的智能创作平台,可实现一站式内容生成,包括图片、PPT、PDF 等。在对话框输入诉求,如“帮我生成一篇包含以上架构风格的完整 PPT”,即可生成幻灯片内容及相关模板选择。 一枚扣子的 COZE 应用中,教案 PPT 内容基于前面生成的教学大纲,可手动进行少许内容修正。若对大纲内容不满意,可重新生成大纲和 PPT。具体操作是复制大纲内容,打开 kimi,选择 PPT,然后复制教案,在对话框粘贴,KIMI 会优化大纲,再选择喜欢的模版生成。但需注意,PPT 预览与下载可能需要充值。 在【workshop】一起写 Prompts 中,小组 1 的夙愿提出的 prompt 主要是输入一个主题帮老师生成一个 PPT(场景不定),使用者为教师(生成)和学生(阅读)。目前较好的解决方案包括提炼教学内容的核心概念确定主题、增加提纲、对提纲进行关键词描述、书写提纲下的摘要,并让用户确认生成的课件提纲和内容是否需要修改。同时,有成熟的案例参考,如 step 1(根据 PPT 大纲助手 GPTs 生成 PPT 大纲):https://chat.openai.com/g/gOKorMBxxUpptdagangzhushou ;step 2(根据输入文本生成 PPT 内容 GPTs 生成 PPT 内容):https://chat.openai.com/g/gYJs9jxVBHshuruwenbenshengchengpptneirong ;step 3(将生成的内容复制到 Marp Web 渲染简洁的 PPT):https://web.marp.app/
2025-03-02
想要一个AI LOGO生成利器,能够输入中文字,修改
以下为您推荐一些能够输入中文字并修改的 AI LOGO 生成利器: 1. Stable Diffusion(SD): 制作思路: 将中文字做成白底黑字,存成图片样式。 使用文生图的方式,使用大模型真实系,如 realistVisionV20_v20.safetensorsControlNet 预设置。 输入关键词,如奶油的英文单词“Cream+Cake”(加强质感),反关键词“Easynegative”(负能量),反复刷机,得到满意的效果即可。 同理可输出 C4D 模型,可自由贴图材质效果,如 3d、blender、oc rendering。 如果希望有景深效果,也可以打开 depth(增加阴影和质感)。 打开高清修复,分辨率联系 1024 以上,步数:29 60。 相关教程:Nenly 同学的视频教程,链接:https://b23.tv/c33gTIQ 。 2. Looka:是一个在线 Logo 设计平台,它使用 AI 来理解用户的品牌信息和设计偏好,然后生成多个 Logo 设计方案供用户选择和定制。 3. Tailor Brands:是一个 AI 驱动的品牌创建工具,它提供 Logo 设计服务,通过用户回答一系列关于品牌和设计风格的问题来生成 Logo 选项。 4. Designhill:其 Logo 制作器使用 AI 技术来创建个性化的 Logo 设计。用户可以选择不同的设计元素和风格,AI 将基于这些输入生成设计方案。 5. LogoMakr:提供一个简单易用的 Logo 设计工具,用户可以通过拖放的方式来设计 Logo,并且可以利用 AI 建议的设计元素和颜色方案。 6. Canva:是一个广受欢迎的在线设计工具,它提供了 Logo 设计的模板和元素,用户可以利用 AI 辅助的设计建议来创建自己的品牌标识。 7. LogoAI by Tailor Brands:是 Tailor Brands 推出的一个 AI Logo 设计工具,它可以根据用户输入的品牌名称和行业类别快速生成 Logo 设计方案。 8. 标小智:是一个中文 AI Logo 设计工具,它利用人工智能技术帮助用户创建个性化的 Logo。 此外,您还可以访问网站的 AI 生成 Logo 工具版块,获取更多好用的工具:https://waytoagi.com/category/20 。 一泽 Eze 也提供了相关服务,流程如下: 1. 输入 Prompt。 2. 输入要用的 Logo。 这样,AI 就会根据 Logo 对应的品牌特征,分析名片设计方案,输出最终结果。 使用这些工具时的注意事项: 1. 对于 Stable Diffusion,要按照上述步骤操作,注意图片格式和参数设置。 2. 对于一泽 Eze: 提示词的主要目的是“设计符合品牌调性的创意名片”。 「创意名片生成」已支持在 Artifacts 中正确回显上传的 Logo,为了更好的直出效果,Logo 建议使用清晰、底图透明的 PNG 格式。 如果生成结果不符合预期,可以尝试让模型重新生成,也可以和 AI 对话,提出修改意见。
2025-03-01
有没有这样的产品,能够通过输入X主页,获取这个人的历史所有推特的信息分析与总结
目前没有这样合法合规且普遍可用的产品。获取他人的推特信息需要遵循相关平台的规定和法律法规,未经授权获取他人的信息是不被允许的。
2025-02-28
如何将大量记录的文本内容输入知识库,并且形成有效问答问答
要将大量记录的文本内容输入知识库并形成有效问答,可参考以下方法: 1. 使用 embeddings 技术: 将文本转换成向量(一串数字),可理解为索引。 把大文本拆分成若干小文本块(chunk),通过 embeddings API 将小文本块转换成 embeddings 向量,这些向量与文本块的语义相关。 在向量储存库中保存 embeddings 向量和文本块。 当用户提出问题时,将问题转换成向量,与向量储存库的向量比对,查找距离最小的几个向量,提取对应的文本块,与问题组合成新的 prompt 发送给 GPT API。 2. 创建知识库并上传文本内容: 在线数据: 自动采集:适用于内容量大、需批量快速导入的场景。 在文本格式页签选择在线数据,单击下一步。 单击自动采集。 单击新增 URL,输入网站地址,选择是否定期同步及周期,单击确认。 上传完成后单击下一步,系统自动分片。 手动采集:适用于精准采集网页指定内容的场景。 安装扩展程序,参考。 在文本格式页签选择在线数据,单击下一步。 点击手动采集,完成授权。 输入采集内容网址,标注提取内容,查看数据确认后完成采集。 本地文档: 在文本格式页签选择本地文档,单击下一步。 拖拽或选择要上传的文档,支持.txt、.pdf、.docx 格式,每个文件不大于 20M,一次最多上传 10 个文件。 上传完成后单击下一步,选择内容分段方式,包括自动分段与清洗(系统自动处理)和自定义(手动设置分段规则和预处理规则)。
2025-02-28
AI大模型本地化部署的逻辑是什么?输入的数据不会外泄吗?
AI 大模型本地化部署的逻辑主要包括以下步骤: 1. 选择合适的部署方式,如本地环境部署、云计算平台部署、分布式部署、模型压缩和量化、公共云服务商部署等,要根据自身的资源、安全和性能需求来决定。 2. 准备训练所需的数据和计算资源,确保有足够的训练数据覆盖目标应用场景,并准备足够的计算资源,如 GPU 服务器或云计算资源。 3. 选择合适的预训练模型作为基础,可以使用开源的预训练模型如 BERT、GPT 等,也可以自行训练一个基础模型。 4. 针对目标任务进行模型微调训练,根据具体应用场景对预训练模型进行微调训练,并优化模型结构和训练过程以提高性能。 5. 部署和调试模型,将训练好的模型部署到生产环境,并对部署的模型进行在线调试和性能优化。 6. 注意安全性和隐私保护,大模型涉及大量数据和隐私信息,需要重视安全性和合规性。 关于输入数据是否会外泄,这取决于本地化部署的安全性措施和配置。如果采取了严格的安全措施,如数据加密、访问控制、网络隔离等,输入的数据外泄的风险可以大大降低。但如果安全措施不到位,就存在数据外泄的可能。例如,赞成把一个训练好就不动的模型部署在端侧(如手机或家庭计算中心),记录所有知识和记忆的相关数据就不会跑到云端,能更好地保障数据安全。
2025-02-28
我想通过在sciencedirect上输入关键词后,让AI帮助我整理该词条下文献的内容,输出当今的研究现状、现存问题、解决方法
目前在 ScienceDirect 上,还没有直接通过输入关键词让 AI 为您整理文献内容并输出研究现状、现存问题及解决方法的成熟功能。但您可以利用一些 AI 工具,如文献分析类的软件,先将从 ScienceDirect 下载的文献导入其中,然后让其协助您进行分析和总结。不过,在使用任何工具时,都需要您自己对结果进行评估和筛选,以确保准确性和可靠性。
2025-02-25
ai大模型有哪些常用参数
以下是关于 AI 大模型常用参数的相关内容: 1. 架构方面: Encoderonly:适用于自然语言理解任务,如分类和情感分析,代表模型是 BERT。 Encoderdecoder:结合 Transformer 架构的 encoder 和 decoder 来理解和生成内容,用例包括翻译和摘要,代表是谷歌的 T5。 Decoderonly:更擅长自然语言生成任务,众多 AI 助手采用此结构,如 ChatGPT。 2. 规模方面: 预训练数据量大,往往来自互联网上的论文、代码、公开网页等,一般用 TB 级别数据进行预训练。 参数众多,如 Open 在 2020 年发布的 GPT3 就已达到 170B 的参数。参数指的是神经网络的输入权重和输出阈值的总和。假定一个神经元有 9 个输入权重和 1 个输出阈值,就有 10 个参数。当有 100 亿个这样的神经元时,就形成千亿级参数的大模型。 3. 模型部署方面: 在 LLM 中,Token 是输入的基本单元。由于大模型参数多,如 GPT2 有 1.5B 参数,每个参数用 float32 表示需 6GB 内存,更先进的模型如 LLAMA 有 65B 参数则需 260G 内存(还不考虑词汇表)。因此实际部署时会进行模型压缩。 在训练 LLM 中,CPU 与内存之间的传输速度往往是系统瓶颈,核心数反而不是大问题,减小内存使用是首要优化点。使用内存占用更小的数据类型是直接方式,如 16 位浮点数可将内存使用减倍。目前有几种相互竞争的 16 位标准,英伟达在其最新一代硬件中引入了对 bfloat16 的支持。
2025-03-03
大模型中的参数是什么
大模型中的参数主要指模型中的权重(weight)与偏置(bias)。例如,GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级,而词汇表 token 数只有 5 万左右。在 LLM 中,由于模型参数非常多,如 GPT2 有 1.5B 参数,每个参数用 float32 表示,所需内存大小为 4 bytes1,500,000,000 = 6GB,更先进的模型如 LLAMA 有 65B 参数,所需内存就需要 260G(这还是在不考虑词汇表的情况下)。因此在进行模型实际部署时,会进行模型的压缩。
2025-03-03
炼丹需要了解的参数
炼丹需要了解的参数主要包括以下方面: 1. 学习步数:指 AI 对每张图片的学习次数。二次元图片的 repeat 一般在 10 15,写实人物图片的 repeat 一般在 30 50,真实世界的景观场景可能要达到 100。repeat 值越高,AI 对图片的理解越好,但图片精细度越高,学习步数也要越高。 2. 循环次数:AI 将所有图片按照学习步数学习一轮即为一次循环,循环次数指将这个过程重复的遍数。一般数值在 10 20 之间,次数并非越多越好,过多可能导致过拟合,即训练结果过于僵化。 3. 训练总步数:通过图片张数×学习步数×循环次数计算得出。例如 5 张图片,学习步数 50,循环次数 10,训练总步数为 2500 步。
2025-02-21
大模型相关术语中,参数和Token分别指什么?
在大模型相关术语中: 参数:主要指模型中的权重(weight)与偏置(bias),大模型的“大”通常体现在用于表达 token 之间关系的参数数量众多,例如 GPT3 拥有 1750 亿参数,其中权重数量达到了这一量级。 Token:大模型有着自己的语言体系,Token 是其语言体系中的最小单元。人类语言发送给大模型时,会先被转换为大模型的语言,这种转换的基本单位就是 Token。不同厂商的大模型对 Token 的定义可能不同,以中文为例,通常 1 Token 约等于 1 2 个汉字。大模型的收费计算方法以及对输入输出长度的限制,通常都是以 Token 为单位计量的。Token 可以代表单个字符、单词、子单词,甚至更大的语言单位,具体取决于所使用的分词方法(Tokenization),在将输入进行分词时,会对其进行数字化,形成一个词汇表。
2025-02-13
我的工作需要根据元数据表在本地查询大量数据,并把匹配的数据参数复制到元数据表,有没有智能体可以做这个工作
智能体可以帮助您完成根据元数据表在本地查询大量数据,并把匹配的数据参数复制到元数据表的工作。 智能体可以根据其复杂性和功能分为以下几种类型: 1. 简单反应型智能体:根据当前的感知输入直接采取行动,不维护内部状态,也不考虑历史信息。例如温控器,它根据温度传感器的输入直接打开或关闭加热器。 2. 基于模型的智能体:维护内部状态,对当前和历史感知输入进行建模,能够推理未来的状态变化,并根据推理结果采取行动。比如自动驾驶汽车,它不仅感知当前环境,还维护和更新周围环境的模型。 3. 目标导向型智能体:除了感知和行动外,还具有明确的目标,能够根据目标评估不同的行动方案,并选择最优的行动。例如机器人导航系统,它有明确的目的地,并计划路线以避免障碍。 4. 效用型智能体:不仅有目标,还能量化不同状态的效用值,选择效用最大化的行动,评估行动的优劣,权衡利弊。比如金融交易智能体,根据不同市场条件选择最优的交易策略。 5. 学习型智能体:能够通过与环境的交互不断改进其性能,学习模型、行为策略以及目标函数。例如强化学习智能体,通过与环境互动不断学习最优策略。 在实际应用中,多智能体 AI 搜索引擎的方案如下: 1. 第一步,快速搜索补充参考信息:根据用户的任务,使用搜索工具补充更多的信息,例如使用工具 API WebSearchPro。 2. 第二步,用模型规划和分解子任务:使用大模型把用户问题拆分成若干子搜索任务,并转换为 JSON 格式。 3. 第三步,用搜索智能体完成子任务:AI 搜索智能体具备联网搜索的能力,还能够自主分析并进行多轮搜索任务。 4. 第四步,总结子任务生成思维导图:智能体能调用各种插件,如思维导图、流程图、PPT 工具等。 此外,生物医药小助手智能体是由 1 个工作流和 6 个数据库实现的。工作流相对简单,而数据库包括公众号文章、执业药师教材、执业医师讲义、药监局新药审评报告、中国医药企业融资动态、药物对外授权动态、全球药物销售额等。在医疗领域,为保证回答的准确性,提示词约定回答只能来自于知识库。其商业化场景包括医药企业研发立项、科研机构临床转化评估、投资机构评估标的公司等。
2025-02-07
Roo Code 的API Provider 参数哪里设置
要设置 Roo Code 的 API Provider 参数,您可以按照以下步骤进行操作: 1. 首先,进入 deepseek 的官网(https://www.deepseek.com/)。 2. 进入右上角的 API 开放平台。早期 deepseek 是有赠送额度,如果没有赠送的余额,可以选择去充值,支持美元和人民币两种结算方式,以及各种个性化的充值方式,并创建一个 API key。注意,API key 只会出现一次,请及时保存下来。 3. 接下来,以 cursor 作为代码编辑器为例,下载安装 cursor(https://www.cursor.com/),在插件页面搜索并安装 Roocline。安装完后,打开三角箭头,就可以看到 RooCline,选中 RooCline,并点击齿轮,进入设置。 4. 依次设置配置基本参数: API Provider:选择 DeepSeek。 API Key:填入已创建的 key。 模型:选择 DeepSeekreasoner。 5. 进行语言偏好设置。 6. 小贴士:记得把 HighRisk 选项都打开,这样 AI 才能帮您自动生成文件。最后做完所有不要忘记点击 Done 保存修改。在聊天框输入产品需求,输入需求后点击这个 blingbling 的星星,优化提示词。最终,在 deepseekr1 的加持下基本上是一遍过,各种特效效果交互逻辑也都正确。画面也算优雅,交互效果也不错,是您想要的。
2025-01-26
deepseek提示词
以下是关于 deepseek 提示词的相关内容: 1. 生成小红书爆款单词视频: 开始时输入单词主题、图片风格、单词数量。 选择 deepseekr1 模型生成单词数组,以数组方式输出,包括单词、中文、美式音标、英文句子及其中文翻译。 提示词中角色设定为专业的单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容,且以特定数组形式呈现。 2. Deepseek 时代提示词之关键诉求: 完整的长提示词可能不如片段有效,甚至干扰模型思考流程,带来 Token 浪费和上下文污染,特别是在多轮对话中。 新一代 LLM 的正确打开方式是“关键诉求直通车”模式,如像对聪明助理打暗号,让模型自主发挥。 3. 让 DeepSeek 生成相机运动轨迹的提示词: 以往的提示词包括场景、构图、尺寸、位置、形态、半身全身、环境等组合。 现在要求以“相机运动轨迹”的方式描写,如“相机向上飞升至上空轨道视角,拍摄站在泳池旁的女子”。 对空间理解和对语义的遵循能让相关元素自然生成,如生成有光影变化的泳池,为主角匹配场景的拖鞋。
2025-03-03
DeepSeek提示词
以下是关于 DeepSeek 提示词的相关内容: 1. 生成小红书爆款单词视频: 开始:输入单词主题、图片风格、单词数量,如非洲动物、真实风格、2。 生成单词数组:选择 deepseekr1 模型,输入单词主题、单词数量,为用户输出指定数量的单词,并以数组方式输出,包括单词、中文、美式音标、英文句子及其中文翻译。提示词中角色设定为专业的单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容,且输出必须为符合要求的数组形式。 2. Deepseek 时代提示词之关键诉求: 观察发现完整的提示词可能不如片段有效,甚至可能干扰模型的思考流程,过长提示会带来大量的 Token 浪费和上下文污染,特别是在多轮对话中。在 deepseek 时代,用户只需要在关键点进行引导,让模型自主发挥,“关键诉求直通车”模式是新一代 LLM 的正确打开方式。新旧提示法对比,传统方法像唠叨家长,新型技巧像对聪明助理打暗号。 3. 让 DeepSeek 生成相机运动轨迹的提示词:以往的提示词是场景、构图、尺寸、位置、形态、半身全身、环境的组合,现在把这些提示词喂给 DeepSeek,要求以“相机运动轨迹”的方式来描写,可以得到新提示词,如“相机向上飞升至上空轨道视角,拍摄站在泳池旁的女子”。对空间理解和对语义的遵循能让有光影变化的泳池自然地生成出来,海螺 AI 甚至还知道给主角穿上与场景匹配的拖鞋。
2025-03-03
如何写适配多个llm的提示词
以下是关于如何写适配多个 LLM 的提示词的详细内容: 实现原理: 提示词工程主要由两部分代码组成,即提示词注入和工具结果回传。提示词注入用于将工具信息及使用工具的提示词添加到系统提示中,它包含 TOOL_EAXMPLE、tools_instructions、REUTRN_FORMAT 三个部分。TOOL_EAXMPLE 用于提示 LLM 如何理解和使用工具,编写时应注意用无关紧要的工具作示例以免 LLM 混淆。tools_instructions 是将通用工具字典转换成 LLM 可读的工具列表,实际使用时可动态调整以让 LLM 知晓可用工具及使用方法。REUTRN_FORMAT 定义了调用 API 的格式。工具结果回传则是解析 tool calling 的输出,并将工具返回的内容再次嵌入 LLM,利用正则表达式抓取输出中的“tool”和“parameters”参数,对于 interpreter 工具使用另一种正则表达式提取 LLM 输出的代码,以提高成功率。对于不接受某些角色的 LLM 接口,可改为回传给 user 角色。 相关成果: 目前绝大多数小型本地开源大语言模型以及部分商用大模型接口不支持稳定的 tool calling 功能,现有的微调 LLM 解决方案会浪费大量时间和算力。本文提出仅使用提示词工程和精巧的代码设计,让 LLM 获得稳定的 tool calling 能力。使用多个不具备该能力的 LLM 作为测试模型,在多个工具调用任务上实验成功率达 100%,且基于 comfyui 开发,适合无代码基础的人员复现和修改。
2025-03-03
如何给deepseek写提示词
以下是关于给 DeepSeek 写提示词的相关内容: 1. 效果对比:用 Coze 做了小测试,可对比查看。 2. 使用方法: 搜索 www.deepseek.com,点击“开始对话”。 将装有提示词的代码发给 DeepSeek。 认真阅读开场白后正式开始对话。 3. 设计思路: 将 Agent 封装成 Prompt,将 Prompt 储存在文件,保证最低成本的人人可用,减轻调试负担。 通过提示词文件,让 DeepSeek 实现同时使用联网功能和深度思考功能。 在模型默认能力基础上优化输出质量,减轻 AI 味,增加可读性。 设计阈值系统,可能会根据反馈修改。 用 XML 进行更规范设定,而非 Lisp 和 Markdown。 4. 完整提示词:版本 v1.3。 5. 特别鸣谢:李继刚的【思考的七把武器】提供思考方向,Thinking Claude 是设计灵感来源,Claude 3.5 Sonnet 是得力助手。 6. 生成单词方面: 输入单词主题、图片风格、单词数量。 选择 deepseekr1 模型,输入单词主题、单词数量,DeepSeek 为用户输出指定数量单词,以数组方式输出。 提示词中,角色为专业单词生成助手,技能是输出关联英语单词,限制为仅围绕用户输入主题输出相关内容,以符合要求的数组形式呈现。 7. 生成相机运动轨迹的提示词:以往提示词是场景、构图、尺寸等的组合,现在把这些喂给 DeepSeek,要求以“相机运动轨迹”方式描写,如“相机向上飞升至上空轨道视角,拍摄站在泳池旁的女子”。
2025-03-03
提示词图书馆
以下是一些与提示词相关的资源: Majinai: 词图: Black Lily: Danbooru 标签超市: 魔咒百科词典: AI 词汇加速器: NovelAI 魔导书: 鳖哲法典: Danbooru tag: AIBooru: 此外,还有以下相关内容: 画小二:如何写好提示词是创建智能体第一步,相关资源如,以及提示词网站分享,如: Learn Prompting https://learnprompting.org/docs/intro AI Short https://www.aishort.top/en/ AIPRM https://www.aiprm.com/prompts/ Prompt Library https://promptlibrary.org/ Prompt 网站精选,图像类 Prompt 网站: Public Prompts:免费的 prompt 合集,收集高质量的提示词, OPS 可视化提示词:这个网站有 Mid Journey 的图片风格、镜头等写好的词典库,方便你快速可视化生成自己的绘画提示词, MidJourney 提示词工具:专门为 MidJourney 做的提示词工具,界面直观易用, OpenArt:AI 人工智能图像生成器, AiTuts Prompt:AiTuts Prompt 是一个精心策划的高质量 Midjourney 提示数据库,提供了广泛的不同风格供你选择, AcceleratorI Prompt:AI 词汇加速器,加速 Prompt 书写,通过按钮帮助优化和填充提示词, MidLibrary:Midjourney 最全面的流派、艺术技巧和艺术家风格库,
2025-03-02