Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

如何学习AI

Answer

以下是新手学习 AI 的方法和建议:

  1. 了解 AI 基本概念:
    • 阅读「从这里启程」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。
    • 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。
  2. 开始 AI 学习之旅:
    • 在「入门:AI 学习路径」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。
    • 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。
  3. 选择感兴趣的模块深入学习:
    • AI 领域广泛,如图像、音乐、视频等,可根据兴趣选择特定模块深入学习。
    • 掌握提示词的技巧,它上手容易且很有用。
  4. 实践和尝试:
    • 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。
    • 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。
  5. 体验 AI 产品:
    • 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。

对于中学生学习 AI,建议如下:

  1. 从编程语言入手学习:
    • 可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。
  2. 尝试使用 AI 工具和平台:
    • 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。
    • 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。
  3. 学习 AI 基础知识:
    • 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。
    • 学习 AI 在教育、医疗、金融等领域的应用案例。
  4. 参与 AI 相关的实践项目:
    • 参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。
    • 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。
  5. 关注 AI 发展的前沿动态:
    • 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。
    • 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。

记住,学习 AI 是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,您将逐渐建立起自己的 AI 知识体系,并能够在这一领域取得成就。完整的学习路径建议参考「通往 AGI 之路」知识库首页的布鲁姆分类法,设计自己的学习路径。

Content generated by AI large model, please carefully verify (powered by aily)

References

问:新手如何学习 AI?

了解AI基本概念:首先,建议阅读「[从这里启程](https://waytoagi.feishu.cn/wiki/PFXnwBTsEiGwGGk2QQFcdTWrnlb?table=blkjooAlLFNtvKJ2)」部分,熟悉AI的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍AI的历史、当前的应用和未来的发展趋势。开始AI学习之旅:在「[入门:AI学习路径](https://waytoagi.feishu.cn/wiki/ZYtkwJQSJiLa5rkMF5scEN4Onhd?table=tblWqPFOvA24Jv6X&view=veweFm2l9w)」中,你将找到一系列为初学者设计的课程。这些课程将引导你了解生成式AI等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如Coursera、edX、Udacity)上的课程,你可以按照自己的节奏学习,并有机会获得证书。选择感兴趣的模块深入学习:AI领域广泛(比如图像、音乐、视频等),你可以根据自己的兴趣选择特定的模块进行深入学习。我建议你一定要掌握提示词的技巧,它上手容易且很有用。实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出你的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎你实践后的分享。体验AI产品:与现有的AI产品进行互动是学习AI的另一种有效方式。尝试使用如ChatGPT、Kimi Chat、智谱、文心一言等AI聊天机器人,了解它们的工作原理和交互方式。通过与这些AI产品的对话,你可以获得对AI在实际应用中表现的第一手体验,并激发你对AI潜力的认识。

问:中学生如何开始学习 AI,有哪些好用的工具或者平台?

我总结了以下中学生学习AI的建议:1.从编程语言入手学习可以从Python、JavaScript等编程语言开始学习,这些是AI和机器学习的基础。学习编程语法、数据结构、算法等基础知识,为后续的AI学习打下基础。2.尝试使用AI工具和平台可以使用ChatGPT、Midjourney等AI生成工具,体验AI的应用场景。探索一些面向中学生的AI教育平台,如百度的"文心智能体平台"、Coze智能体平台等。3.学习AI基础知识了解AI的基本概念、发展历程、主要技术如机器学习、深度学习等。学习AI在教育、医疗、金融等领域的应用案例。4.参与AI相关的实践项目可以参加学校或社区组织的AI编程竞赛、创意设计大赛等活动。尝试利用AI技术解决生活中的实际问题,培养动手能力。5.关注AI发展的前沿动态关注AI领域的权威媒体和学者,了解AI技术的最新进展。思考AI技术对未来社会的影响,培养对AI的思考和判断能力。总之,中学生可以从编程基础、工具体验、知识学习、实践项目等多个方面入手,全面系统地学习AI知识和技能,为未来的AI发展做好准备。内容由AI大模型生成,请仔细甄别

问:新手如何学习 AI?

记住,学习AI是一个长期的过程,需要耐心和持续的努力。不要害怕犯错,每个挑战都是成长的机会。随着时间的推移,你将逐渐建立起自己的AI知识体系,并能够在这一领域取得自己的成就。完整的学习路径建议参考「通往AGI之路」[知识库首页](https://waytoagi.feishu.cn/wiki/QPe5w5g7UisbEkkow8XcDmOpn8e)的布鲁姆分类法,设计自己的学习路径。类似问题:我是新人,怎么学习AI?新手学习AI学习AI,我应该从哪里开始如何从头开始学习AI?

Others are asking
我想学会使用ai,该学习哪些方面的知识
如果您想学会使用 AI ,以下是一些您需要学习的方面: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支如机器学习、深度学习、自然语言处理等以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您可以找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 对于中学生学习 AI ,建议如下: 1. 从编程语言入手学习: 可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识。 2. 尝试使用 AI 工具和平台: 可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。 探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识: 了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目: 可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。 尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态: 关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。 思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 AI 的技术历史和发展方向,目前最前沿的技术点包括: 1. 学习路径偏向技术研究方向: 数学基础:线性代数、概率论、优化理论等。 机器学习基础:监督学习、无监督学习、强化学习等。 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 自然语言处理:语言模型、文本分类、机器翻译等。 计算机视觉:图像分类、目标检测、语义分割等。 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 科研实践:论文阅读、模型实现、实验设计等。 2. 学习路径偏向应用方向: 编程基础:Python、C++等。 机器学习基础:监督学习、无监督学习等。 深度学习框架:TensorFlow、PyTorch 等。 应用领域:自然语言处理、计算机视觉、推荐系统等。 数据处理:数据采集、清洗、特征工程等。 模型部署:模型优化、模型服务等。 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。
2025-01-27
大学生学习ai的哪个方面更好
对于大学生学习 AI,以下几个方面是不错的选择: 1. 编程语言:从 Python、JavaScript 等编程语言入手,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下坚实基础。 2. 工具和平台:尝试使用 ChatGPT、Midjourney 等 AI 生成工具,体验其应用场景。也可以探索一些面向大学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等,学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目:参与学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题,培养动手能力。 5. 前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响,培养对 AI 的思考和判断能力。 在教育领域,AI 带来了很多新的可能性: 个性化学习:可以大规模部署个性化的学习计划,为每个学生提供“口袋里的老师”,理解其独特需求,回答问题或测试技能。 学科学习:有像 Speak、Quazel、Lingostar 这样的应用帮助学习语言,Photomath、Mathly 指导数学学习,PeopleAI、Historical Figures 辅助历史学习。 作业辅助:Grammarly、Orchard、Lex 等工具帮助学生解决写作难题,提升写作水平。还有 Tome、Beautiful.ai 协助创建演示文稿。
2025-01-27
我该如何学习使用ai
以下是关于如何学习使用 AI 的全面指导: 一、了解 AI 基本概念 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,了解 AI 的历史、当前应用和未来发展趋势。 二、开始 AI 学习之旅 在「」中,能找到为初学者设计的课程,特别推荐李宏毅老师的课程。还可以通过在线教育平台(如 Coursera、edX、Udacity)按照自己的节奏学习,并争取获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,涵盖图像、音乐、视频等,您可以根据自身兴趣选择特定模块深入学习。同时,掌握提示词的技巧,因其上手容易且实用。 四、实践和尝试 理论学习后,实践是巩固知识的关键。尝试使用各种产品做出作品,知识库中有很多实践后的作品和文章分享,欢迎您实践后也进行分享。 五、体验 AI 产品 与现有的 AI 产品互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解其工作原理和交互方式,获得对 AI 实际应用表现的第一手体验,激发对 AI 潜力的认识。 六、针对不同群体的学习建议 1. 对于想要用 AI 学习一门外语的: 设定目标:明确学习目标和时间表,分阶段完成学习任务。 多样化练习:结合听、说、读、写多种方式进行练习,全面提升语言技能。 模拟真实环境:尽量多与母语者交流,或使用 AI 对话助手模拟真实对话场景。 定期复习:使用 AI 工具的复习功能,根据记忆曲线定期复习已学内容,巩固记忆。 2. 对于中学生: 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始,学习编程语法、数据结构、算法等基础知识。 尝试使用 AI 工具和平台:如 ChatGPT、Midjourney 等生成工具,以及百度的“文心智能体平台”、Coze 智能体平台等面向中学生的教育平台。 学习 AI 基础知识:了解 AI 基本概念、发展历程、主要技术及在各领域的应用案例。 参与 AI 相关的实践项目:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决实际问题。 关注 AI 发展的前沿动态:关注权威媒体和学者,了解最新进展,思考对未来社会的影响。 总之,无论您是何种身份,都可以通过以上多种方式全面系统地学习 AI 知识和技能。
2025-01-27
ai音乐的教程
以下是为您提供的 AI 音乐相关的教程资源: 1. Suno 教程:https://waytoagi.feishu.cn/wiki/KA1GwEi8yifRmMkOM9icr8EjnAd 2. Udio 教程:https://waytoagi.feishu.cn/wiki/DSktw8uBniPOdtkt3eeccmdcnct?from=from_copylink 3. 音乐资讯:https://waytoagi.feishu.cn/wiki/UD4uw9qmYiKW9kkxNeXcUDCbnog 4. 创作案例:https://waytoagi.feishu.cn/wiki/AahewcMOBiIQ9vks1XzcVaNange 5. 风格流派:https://waytoagi.feishu.cn/wiki/NSKGwclQNig6INkGWkKcsLQNnRb 此外,7 月 20 日的 AI 音乐共学中,嘉宾 igoo2u 分享了以下内容: 1. 00:06 开始,AI 音乐制作分享,包括曲风分类、制作逻辑与软件使用,并通过实际案例详细讲解。 2. 31:58 开始,FL studio 软件介绍及基础操作演示,该软件可对 AI 生成的曲子进行二次优化,擅长电子乐,介绍了软件主要界面和基础操作。 3. 52:33 开始,FL Studio 基础教程,包括大小调及和弦构架讲解,介绍了在 SUB 层的 base 中编写曲子的方法和操作技巧,以及基础阅历。 4. 01:18:10 开始,AI 做歌的优势、弊端及二次编辑方法。
2025-01-27
企业AI开发
企业 AI 开发包括以下重要内容: 企业级 AI 应用类型: 智能体应用(Assistant):基于上下文对话,自主决策并调用工具完成复杂任务的对话式 AI 应用。通过简单配置可快速上手实现基本功能,适用于客户服务、个人助理、技术支持等场景。详情参见。 工作流应用(Workflow):将复杂任务拆解为若干子任务,以提高工作流程可控性的流程式 AI 应用。用户可通过拖拽节点创建自定义任务流程,适用于 AI 翻译等场景。详情参见。 智能体编排应用:支持多智能体协作的流程式 AI 应用,能编排多个智能体的执行逻辑,适用于综合调研报告、软件开发团队等场景。详情参见。 应避免的人工智能陷阱: 不要以为 AI 可以做任何事,要考虑技术、数据和工程资源的限制,有许多 AI 做不到的事情。 不要以为只雇佣 2 3 个机器学习工程师就可以满足公司的使用场景。机器学习人才很重要,也应让工程师与业务人才交流,寻找可行、有价值的项目。 不要以为 AI 项目一次就能成功,AI 开发通常需要多次尝试。 不要期待直接使用传统的计划流程而不用改变,实际需要和 AI 团队测算时间节点、里程碑与 KPI。 不需要极其优秀的 AI 人才后才启动项目,持续构建团队,普通工程师也能提供有价值和可行的项目。 阿里云百炼: 是基于通义系列大模型和开源大模型打造的一站式大模型服务平台,提供「生成式大模型的应用编排搭建能力」和「企业大模型的全链路训练部署能力」,是企业 AI 时代的首选。 核心能力和优势包括大模型 API 服务(高可用、高性能、高性价比),提供通义闭源和开源系列大模型,以及图片、语音等多模态大模型和国内优质三方大语言模型;AI 应用搭建(可观测、可干预、可追踪),提供 RAG 智能体应用、工作流编排和智能体编排三类使用场景的应用构建能力,以及包含插件能力、运营工具箱等适配工具,实现 10 分钟拖拉拽快速搭建 AI Agent。 提供很多行业级的解决方案,如短剧剧本创作、企业线索挖掘、泛企业 VOC 挖掘等。 体验入口:https://bailian.console.aliyun.com//home (需要登陆阿里云账号,也可以使用支付宝、钉钉、手机号快速注册登陆),建议注册后先进行实名认证,以方便后续体验工作及领取免费学习云资源。
2025-01-27
企业落地AI的怎么开展,有哪些团队,场景一般是哪些
企业落地 AI 可以按照以下步骤开展: 1. 启动试点项目来获得动能:选择几个小项目,在 6 12 个月内展示成效,项目可以内部进行或外包。尽量选择能够成功而非最有价值的项目。 2. 建立公司内部的人工智能团队:搭建集中统一的 AI 团队,再从中挑选人员协助不同业务部门,便于统一管理。同时建立全公司范围内的平台,如软件平台、工具或数据基础设施。 3. 提供广泛的人工智能培训:高层了解 AI 能为企业做什么,进行策略制定和资源分配;部门领导了解如何设置项目方向、资源分配与监控进度;培养内部工程师,开展相关项目。 4. 制定人工智能策略:深度了解 AI 并结合自身业务制定策略,设置与 AI 良性循环相一致的公司策略,如网络搜索或农业公司的案例。同时考虑创建数据策略,如战略数据采集,建造统一的数据仓库。 企业落地 AI 常见的场景包括: 1. 智能扬声器:包括探测触发词或唤醒词、语音识别、意图识别、执行相关程序等环节。 2. 自动驾驶汽车:涉及汽车检测、行人检测、运动规划等方面,需要多种传感器和技术。 人工智能团队的角色通常有: 1. 软件工程师:负责软件编程工作,在团队中占比 50%以上。 2. 机器学习工程师:创建映射或算法,搜集和处理数据。 3. 机器学习研究员:开发机器学习前沿技术,可能需要发表论文或专注研究。 4. 应用机器学习科学家:从学术文献中寻找技术解决问题。 5. 数据科学家:检测和分析数据。 6. 数据工程师:整理数据,确保其安全、易保存和读取。 7. AI 产品经理:决定用 AI 做什么,判断其可行性和价值。
2025-01-27
职场人士想学习AI应该怎么上手?
对于职场人士学习 AI ,可以按照以下步骤上手: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出自己的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 如果您偏向技术研究方向,学习路径包括: 1. 数学基础:线性代数、概率论、优化理论等。 2. 机器学习基础:监督学习、无监督学习、强化学习等。 3. 深度学习:神经网络、卷积网络、递归网络、注意力机制等。 4. 自然语言处理:语言模型、文本分类、机器翻译等。 5. 计算机视觉:图像分类、目标检测、语义分割等。 6. 前沿领域:大模型、多模态 AI、自监督学习、小样本学习等。 7. 科研实践:论文阅读、模型实现、实验设计等。 如果您偏向应用方向,学习路径包括: 1. 编程基础:Python、C++等。 2. 机器学习基础:监督学习、无监督学习等。 3. 深度学习框架:TensorFlow、PyTorch 等。 4. 应用领域:自然语言处理、计算机视觉、推荐系统等。 5. 数据处理:数据采集、清洗、特征工程等。 6. 模型部署:模型优化、模型服务等。 7. 行业实践:项目实战、案例分析等。 无论是技术研究还是应用实践,数学和编程基础都是必不可少的。同时需要紧跟前沿技术发展动态,并结合实际问题进行实践锻炼。 对于不会代码的职场人士,还可以参考“写给不会代码的你:20 分钟上手 Python+AI”,在接下来的 20 分钟内,循序渐进地完成以下任务: 1. 完成一个简单程序。 2. 完成一个爬虫应用,抓取公众号文章。 3. 完成一个 AI 应用,为公众号文章生成概述。
2025-01-27
如何系统学习AI
以下是系统学习 AI 的方法: 1. 编程语言基础:从 Python、JavaScript 等编程语言开始学习,掌握编程语法、数据结构、算法等基础知识。 2. 工具和平台体验:使用 ChatGPT、Midjourney 等 AI 生成工具,体验其应用场景。探索面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 基础知识学习: 了解 AI 的基本概念、发展历程、主要技术(如机器学习、深度学习等)。 学习 AI 在教育、医疗、金融等领域的应用案例。 4. 实践项目参与:参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动,尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展,思考其对未来社会的影响,培养思考和判断能力。 对于新手学习 AI: 1. 了解基本概念: 阅读「」部分,熟悉术语和基础概念。 浏览入门文章,了解 AI 的历史、应用和发展趋势。 2. 开始学习之旅: 参考「」中的课程,推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)按自己节奏学习,争取获得证书。 3. 选择感兴趣模块深入:根据自身兴趣选择特定模块(如图像、音乐、视频等)深入学习,掌握提示词技巧。 4. 实践和尝试:实践巩固知识,尝试使用各种产品创作作品,并在知识库分享实践成果。 5. 体验 AI 产品:与 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人互动,了解工作原理和交互方式,获得实际应用体验。
2025-01-27
如何学习对抗神经网络
以下是关于学习对抗神经网络的相关内容: 图像生成方面:Google 有一个 AI 入门课程,介绍扩散模型,课程地址为 https://www.cloudskillsboost.google/course_templates/541,相关视频学习可参考 https://youtu.be/J0AuVBxzui0 。扩散模型是 Google Cloud 上许多先进图像生成模型和工具的基础,课程会介绍其背后理论及在 Vertex AI 上的训练和部署。图像生成领域有多种方法,如变分自动编码器将图像编码为压缩形式再解码回原始大小;生成对抗模型(GAN)让两个神经网络相互对抗,一个生成图像,一个鉴别真伪;自回归模型将图像视为一系列像素来生成。 主要人工智能技术概览:生成对抗网络是一种深度学习模型,由生成器和判别器构成。生成器生成虚拟数据,判别器判断数据真假,二者不断训练竞争以提高生成器生成真实数据的能力,广泛应用于图像、声音、文本等领域。 进化史:生成对抗网络(GAN)是深度学习领域的重要里程碑,诞生于 2014 年,可帮助神经网络用更少数据学习,生成更多合成图像,用于识别和创建更好的神经网络。GAN 由两个神经网络玩猫捉老鼠的游戏,一个创造假图像,一个判断真假。它有助于创建图像和现实世界的软件模拟。
2025-01-26