直达「 通往AGI之路 」飞书知识库 →
首页/问答列表/问答详情

GenAI视频原理

回答

根据搜索结果,生成式 AI(GenAI)在视频生成方面的原理主要包括以下几点:

  1. 利用深度学习技术模拟人类大脑的工作方式 GenAI 系统使用人工神经网络(ANN)来处理数据,模拟人类大脑中神经元之间的信号传递。通过深度学习,GenAI 可以从大量数据中学习提取特征,并建立复杂的内部表征,从而生成新的视频内容。

  2. 结合注意力机制提高生成效率 Transformer 模型引入了"注意力"概念,使 GenAI 系统能够更好地理解单词或图像元素之间的关系,从而提高生成视频的质量和效率。注意力机制可以帮助 GenAI 系统聚焦于最相关的信息,生成更加连贯和自然的视频。

  3. 利用 GAN 等对抗式生成网络 一些 GenAI 系统采用生成对抗网络(GAN)的架构,包括一个生成器网络和一个判别器网络。生成器负责生成新的视频内容,判别器则负责评估生成内容的真实性。通过两个网络的对抗训练,GenAI 可以不断提高生成视频的逼真度。

  4. 结合其他技术实现多模态生成 除了单一的视频生成,GenAI 还可以结合自然语言处理、计算机视觉等技术,实现从文本到视频、从图像到视频等多模态的内容生成。这种跨模态的生成能力大大拓展了 GenAI 在视频创作领域的应用。

总的来说,GenAI 在视频生成方面的核心原理是利用深度学习、注意力机制、对抗式生成等技术,从大量数据中学习提取特征,并生成逼真自然的视频内容。这些技术的结合使 GenAI 在视频创作领域展现出了强大的潜力。

内容由 AI 大模型生成,请仔细甄别(powered by aily)

参考资料

其他人在问
genAI是什么
Gen AI(Generative AI)即生成式人工智能,是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。 生成式 AI 是人工智能的一个细分流派,在 80 年的 AI 发展史中,它相较之前的所有 AI 实现方法有了根本性、跨时代的进步。在某些细分场景应用中,甚至给人通过了图灵测试的感受。 生成式 AI 和 AIGC 密切相关,利用 Gen AI 创建的内容即 AIGC(AIGenerated Content)。 生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前我国对 AIGC 的监管框架由多部法律法规构成,并形成了共同监管的形势。 AIGC 主要分为语言文本生成、图像生成和音视频生成等,在多个领域展现出广泛的应用前景。
2024-11-04
genAI的gen是什么意思?所谓“生成式”有啥特别的
GenAI 全称 Generative AI,即生成式 AI。它是一种基于深度学习技术,利用机器学习算法从已有数据中学习并生成新的数据或内容的 AI 应用。其工作原理是通过大规模的数据集训练深度神经网络模型,学习各种数据的规律和特征,从而实现对输入数据的分析、理解和生成。 生成式 AI 为游戏、娱乐和产品设计等应用提供了新颖且有创意的解决方案,如自动写作、虚拟现实、音乐创作等,甚至协助科学研究开辟了新的可能性。目前典型的 GenAI 包括 OpenAI 推出的语言模型 ChatGPT、GPT4、图像模型 DALLE 以及百度推出的文心一言、阿里云推出的通义千问等。 虽然生成式 AI 是一种非常强大的技术,能够应用于诸多专业领域,但在数据处理过程中存在多重潜在合规风险,如未经授权收集信息、提供虚假信息、侵害个人隐私等。 利用 GenAI 创建的内容即 AIGC(全称 AIGenerated Content),AIGC 主要分为语言文本生成、图像生成和音视频生成,可应用于音乐生成、游戏开发和医疗保健等领域。在公众传播层面,GenAI 是相对科学的表述,涵盖了 LLM 和 AIGC 等概念。
2024-09-03
现在有哪些GenAI原生应用验证了PMF?
目前,一些 GenAI 原生应用已展现出产品市场契合度(PMF)的早期成功迹象。例如,ChatGPT 成为增长最快的应用,在学生和开发者中具有很强的产品市场契合度;Midjourney 成为集体创意的灵感来源,据报道仅 11 人的团队就实现了数亿美元的收入;Character 推动了 AI 娱乐和伴侣领域的发展,创造了用户平均在应用中花费两小时的消费者“社交”应用。然而,尽管有这些成功案例,仍有许多 AI 公司尚未实现产品市场契合度(PMF)或拥有可持续的竞争优势,整个 AI 生态系统的繁荣也并非完全可持续。
2024-08-30
可灵和即梦哪个生成视频的能力更强
目前难以直接明确可灵和即梦哪个生成视频的能力更强。 Google DeepMind 和 OpenAI 展示了强大的文本到视频扩散模型预览,但访问受限且技术细节披露不多。Meta 更进一步,将音频加入其 Movie Gen 模型。 在 2024 年,国内涌现出一系列 AI 生成视频工具,如可灵、即梦、智谱清影等,生成结果甚至远超国外。 即梦是剪映旗下的,生成 3 秒视频,动作幅度有很大升级,有最新的 S 模型和 P 模型。可灵支持运动笔刷,1.5 模型可以直出 1080P30 帧视频。 在图生视频方面,市面上主要的工具包括可灵、即梦、Luma,核心方法是穷举和不断调整 prompt 来设计人物动作、辅助镜头运镜等。
2024-12-21
文字生成视频有哪些好的应用
以下是一些文字生成视频的好的应用: 1. Pika:是一款出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以安装这款最新插件,在图片基础上直接生成视频,它是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要注意的是,Runway 是收费的。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 6. Genmo:相较于 Pika 和 Runway,生成视频的清晰度大幅提高,人像的稳定性和美观度强很多,支持镜头控制且控制粒度更细,但还没开放图片生成视频,只能用文字提示词。 7. VIGGLE:能直接通过文字描述让任何静态图动起来,能做各种动作,还能直接文字生成视频,进行各种角色混合和动作替换。其核心技术基于 JST1 模型,该模型是首个具有实际物理理解能力的视频3D 基础模型,能够根据用户需求,让任何角色按照指定方式进行运动。 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 。内容由 AI 大模型生成,请仔细甄别。
2024-12-21
监控视频算法
很抱歉,目前知识库中没有关于监控视频算法的相关内容。但一般来说,监控视频算法涵盖了目标检测、跟踪、行为分析等多个方面。常见的算法包括基于深度学习的目标检测算法,如 YOLO 和 SSD 等,用于识别视频中的人物、车辆等目标;还有基于光流的目标跟踪算法,用于持续跟踪目标的运动轨迹;在行为分析方面,会运用模式识别和机器学习算法来判断异常行为等。如果您能提供更具体的需求,我可以为您提供更有针对性的信息。
2024-12-21
🚀接着上期SOP+AI:打造职场高效能人士的秘密武器的分享,今天继续聊聊SOP+AI的应用,🎯今天的主题是“怎样利用AI节约10倍内容创作时间?”📚最近跟团队有开始运营小红书账号,就想着先给自己打造点顺手的工具,于是乎「小红书文案专家」就出生啦~🎉[heading1]一、先介绍下我们小Bot[content]🛺BOT名称:小红书文案专家功能价值:见过多个爆款文案长啥样,只需输入一个网页链接或视频链接,就能生成对应的小红书文案,可以辅助创作者生成可以一键复制发布的初稿,提供创意和内容,1
以下是关于“SOP+AI”的相关内容: 怎样利用 AI 节约 10 倍内容创作时间? 最近团队开始运营小红书账号,于是打造了“小红书文案专家”。 BOT 名称:小红书文案专家 功能价值:见过多个爆款文案,输入网页或视频链接就能生成对应的小红书文案,辅助创作者生成可一键复制发布的初稿,提供创意和内容,节约 10 倍文字内容创作时间。 应用链接:https://www.coze.cn/s/ij5C6LWd/ 设计思路: 痛点:个人时间有限,希望有人写初稿并生成配图。 实现思路:为自己和团队设计工作流,让 AI 按运营思路和流程工作。 一期产品功能: 1. 提取任何链接中的标题和内容。 2. 按小红书平台文案风格重新整理内容。 3. 加入 emoji 表情包,使文案更有活力。 4. 为文案配图片。 二期计划功能:持续优化升级,增加全网搜索热点功能,提炼热点新闻或事件关键信息,结合用户想要生成的内容方向输出文案和配图。 SOP+AI:打造职场高效能人士的秘密武器 案例分享:X 公司客服团队引入 SOP 和 AI 助手后,工作效率显著提升。引入 SOP 前,客服工作流程混乱,效率低下,客户满意度不高。引入 SOP 标准化操作后,效率提高。进一步引入 AI 助手,自动回复常见问题、处理简单请求,减少客服工作量,还能及时发现问题帮助优化。结果客服团队工作效率提升 30%以上,客户满意度显著提高。SOP 能提升效率、减少失误、促进协作,借助 AI 助手,SOP 制定和优化更高效智能。
2024-12-20
视频生成哪一个ai最强
目前在视频生成领域,以下几个 AI 表现较为突出: Luma AI: Dream Machine 功能包括 txt2vid 文生视频和 img2vid 图生视频,还支持 Extend 延长 4s、循环动画、首尾帧动画能力。 8 月底最新发布的 Dream Machine 1.5 增强了提示词理解能力和视频生成能力,对视频内文字的表现很强。 在 img2vid 图生视频方面,生成效果在多方面远超其他产品,如生成时长较长(5s)、24 帧/s 非常丝滑、运动幅度大且能产生相机的多角度位移、提示词中可增加无人机控制的视角变化、运动过程中一致性保持较好、分辨率高且有效改善了运动幅度大带来的模糊感。 Runway:推出了实力强劲的 Gen3 模型。 此外,以下是其他视频生成的 Top10 产品及相关数据: |排行|产品名|分类|4 月访问量(万 Visit)|相对 3 月变化| |||||| |1|InVideo|其他视频生成|736|0.118| |2|Fliki|其他视频生成|237|0.165| |3|Animaker ai|其他视频生成|207|0.076| |4|Pictory|其他视频生成|122|0.17| |5|Steve AI|其他视频生成|76|0.119| |6|decohere|其他视频生成|57.5|0.017| |7|MagicHour|其他视频生成|53.7|0.071| |8|Lumen5|其他视频生成|51|0.149| |9|democreator|其他视频生成|41.9|0.136| |10|腾讯智影|其他视频生成|35.4|0.131|
2024-12-20
在国内可以免费用的图生视频的ai工具
以下是在国内可以免费用的图生视频的 AI 工具: 1. Hidreamai(国内,有免费额度):https://hidreamai.com//AiVideo 。支持文生视频、图生视频,提示词使用中文、英文都可以,文生视频支持正向提示词、反向提示词、运镜控制、运动强度控制,支持多尺寸,可以生成 5s 和 15s 的视频。 2. ETNA(国内):https://etna.7volcanoes.com/ 。Etna 是一款由七火山科技开发的文生视频 AI 模型,它可以根据用户简短的文本描述生成相应的视频内容。生成的视频长度在 8 15 秒,画质可达到 4K,最高 38402160,画面细腻逼真,帧率 60fps,文生视频,支持中文,时空理解。 3. Dreamina(国内内测,有免费额度):https://jimeng.jianying.com/aitool/video/generate 。支持文生视频、图生视频,视频生视频,支持图生视频首尾帧功能,提示词使用中文、英文都可以,文生视频支持正向提示词、运镜控制、运动强度控制、帧数选择,支持 16:9、9:16、1:1、3:4、4:3 尺寸,图生视频、视频生视频除了尺寸不可选以外,其他跟文生视频基本相同,默认生成 3s 的视频。 4. 可灵(免费):https://klingai.kuaishou.com/ 。支持文生视频、图生视频,支持图生视频首尾帧功能,提示词可使用中文,文生视频支持正向提示词、反向提示词、运镜控制、时长选择(5s、10s),支持 16:9、9:16、1:1 尺寸,图生视频除了不可运镜控制以外,其他跟文生视频基本相同,默认生成 5s 的视频。 此外,还有一些国内外提供文生视频功能的产品推荐: 1. Pika:非常出色的文本生成视频 AI 工具,擅长动画制作,并支持视频编辑。 2. SVD:如果熟悉 Stable Diffusion,可以直接安装这款最新的插件,在图片基础上直接生成视频。这是由 Stability AI 开源的 video model。 3. Runway:老牌 AI 视频生成工具,提供实时涂抹修改视频的功能,但需要收费。 4. Kaiber:视频转视频 AI,能够将原视频转换成各种风格的视频。 5. Sora:由 OpenAI 开发,可以生成长达 1 分钟以上的视频。 更多的文生视频的网站可以查看这里:https://www.waytoagi.com/category/38 。请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-12-20
卷积神经网络模型原理
卷积神经网络(CNN)通常由卷积层、池化层和全连接层叠加构成。在卷积过程中,卷积层中的卷积核依次与输入图像的像素做卷积运算来自动提取图像中的特征。卷积核尺寸一般小于图像,并以一定的步长在图像上移动得到特征图。步长设置越大,特征图尺寸越小,但过大步长会损失部分图像特征。此外,池化层作用于产生的特征图上,能保证 CNN 模型在不同形式的图像中识别出相同物体,同时减少模型对图像的内存需求,其最大特点是为 CNN 模型引入了空间不变性。
2024-12-19
ai原理
AI 的原理包括以下几个方面: 1. 概念:生成式 AI 生成的内容称为 AIGC。 2. 概念与关系: AI 即人工智能。 机器学习是电脑找规律学习,包括监督学习、无监督学习、强化学习。 监督学习使用有标签的训练数据,目标是学习输入和输出之间的映射关系,包括分类和回归。 无监督学习的数据没有标签,算法自主发现规律,经典任务如聚类。 强化学习从反馈中学习,以最大化奖励或最小化损失,类似训小狗。 深度学习是一种参照人脑的方法,具有神经网络和神经元,因层数多被称为深度,神经网络可用于监督学习、无监督学习、强化学习。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 是大语言模型,对于生成式 AI,生成图像的扩散模型不是大语言模型;对于大语言模型,生成只是其中一个处理任务,如谷歌的 BERT 模型可用于语义理解(不擅长文本生成),像上下文理解、情感分析、文本分类。 3. 技术里程碑:2017 年 6 月,谷歌团队发表论文《Attention is All You Need》,首次提出 Transformer 模型,它完全基于自注意力机制处理序列数据,无需依赖循环神经网络(RNN)或卷积神经网络(CNN),Transformer 比 RNN 更适合处理文本的长距离依赖性。
2024-12-19
deepfake的技术原理是什么?
深度伪造技术(deepfakes)是一种利用 AI 程序和深度学习算法实现音视频模拟和伪造的技术。其原理在于投入深度学习的内容库越大,合成的视音频真实性越高,甚至可以达到以假乱真的程度。例如,粉丝们会通过 Stems 音轨分离工具将人声与原始歌曲分离,再使用人声转换模型将人声转换成另一位明星的风格,然后将新的人声轨道与原始作品重新拼接在一起。DiffSVC 就是一种特别流行的用于此目的的语音传输模型。 目前,深度赝品的创建需要大量的计算技能,但现在几乎任何人都可以创建它们。生成式人工智能系统迅速导致了许多法律和道德问题,比如由人工智能创建的图像和视频声称是真实的,但实际上并非如此,已经出现在媒体、娱乐和政治领域。
2024-12-14
ChatGPT的底层原理是什么
ChatGPT 的底层原理主要包括以下几个方面: 1. 数据获取与训练:从网络、书籍等来源获取大量人类创作的文本样本,然后训练神经网络生成“类似”的文本。 2. 神经网络结构:由非常简单的元素组成,尽管数量庞大。基本操作是为每个新单词(或单词部分)生成“输入”,然后将其“通过其元素”(没有任何循环等)。 3. 生成文本方式:通过自回归生成,即把自己生成的下一个词和之前的上文组合成新的上文,再生成下一个词,不断重复生成任意长的下文。 4. 训练目的:不是记忆,而是学习以单字接龙的方式训练模型,学习提问和回答的通用规律,实现泛化,以便在遇到没记忆过的提问时,能利用所学规律生成用户想要的回答。 5. 与搜索引擎的区别:搜索引擎无法给出没被数据库记忆的信息,而ChatGPT作为生成模型,可以创造不存在的文本。 其结果表明人类语言(以及背后的思维模式)的结构比我们想象的要简单和更具有“法律属性”,ChatGPT已经隐含地发现了它。同时,当人类生成语言时,许多方面的工作与ChatGPT似乎相当相似。此外,GPT的核心是单字接龙,在翻译等场合应用时,先直译再改写能使Transform机制更好地起作用。
2024-12-03
transformer的原理
Transformer 模型是一种基于注意力机制的深度学习模型,由 Vaswani 等人在论文《Attention is All You Need》中提出,用于处理序列到序列的任务,如机器翻译、文本摘要等。其原理主要包括以下几个关键点: 1. 自注意力机制:能够同时考虑输入序列中所有位置的信息,而不是像循环神经网络或卷积神经网络一样逐个位置处理。通过自注意力机制,模型可以根据输入序列中不同位置的重要程度,动态地分配注意力权重,从而更好地捕捉序列中的关系和依赖。 2. 位置编码:由于自注意力机制不考虑输入序列的位置信息,为了使模型能够区分不同位置的词语,Transformer 模型引入了位置编码。位置编码是一种特殊的向量,与输入词向量相加,用于表示词语在序列中的位置信息。位置编码通常是基于正弦和余弦函数计算得到的固定向量,可以帮助模型学习到位置信息的表示。 3. 多头注意力机制:通过引入多头注意力机制,可以并行地学习多个注意力表示,从不同的子空间中学习不同的特征表示。每个注意力头都是通过将输入序列线性变换成查询、键和值向量,并计算注意力分数,然后将多个头的输出拼接在一起得到最终的注意力表示。 4. 残差连接和层归一化:在每个子层(SelfAttention 层和前馈神经网络层)的输入和输出之间都引入了残差连接,并对输出进行层归一化。残差连接可以缓解梯度消失和梯度爆炸问题,使得模型更容易训练和优化;层归一化可以加速训练过程,并提高模型的泛化能力。 5. 位置感知前馈网络:在每个注意力子层之后,Transformer 模型还包含了位置感知前馈网络,它是一个两层的全连接前馈神经网络,用于对注意力表示进行非线性转换和映射。位置感知前馈网络在每个位置独立地进行计算,提高了模型的并行性和计算效率。 通过以上关键点,Transformer 模型能够有效地捕捉输入序列中的长距离依赖关系,并在各种序列到序列的任务中取得了优异的性能。 请注意,以上内容由 AI 大模型生成,请仔细甄别。
2024-11-22
PIKA和pixverse的特效玩法,原理是什么
PIKA 推出了特效工具 PIKAFFECT,它能够提供崩塌、溶解、瘪掉、魔术等特效处理,有助于创意视频的制作。关于 Pixverse 的特效玩法原理,目前所提供的内容中未给出明确的相关信息。
2024-11-20