Gen AI(Generative AI)即生成式人工智能,是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。
生成式 AI 是人工智能的一个细分流派,在 80 年的 AI 发展史中,它相较之前的所有 AI 实现方法有了根本性、跨时代的进步。在某些细分场景应用中,甚至给人通过了图灵测试的感受。
生成式 AI 和 AIGC 密切相关,利用 Gen AI 创建的内容即 AIGC(AI-Generated Content)。
生成式 AI 能够赋能诸多领域,但也存在多重潜在的合规风险。目前我国对 AIGC 的监管框架由多部法律法规构成,并形成了共同监管的形势。
AIGC 主要分为语言文本生成、图像生成和音视频生成等,在多个领域展现出广泛的应用前景。
Gen AI/Generative AI是“生成式人工智能”正式称呼。Generative AI是一种能够生成新内容的人工智能技术,比如文本、图像、音乐等。而AIGC指的是由人工智能生成的内容的创作方式,实际上是Generative AI的应用结果。[heading1]问题四、ChatGPT是什么?[content]从OpenAI的官网中可以查询到,在2022年宣发时,OpenAI称ChatGPT是一种模型。但是同样是在官网中查询帮助页面,发现这里称ChatGPT是一种服务。而我们使用的ChatGPT目前是依赖GPT系列模型来运转的。不做任何怀疑论上的揣摩,从公开收集的资料中可以看出,早些年OpenAI推出了一个叫ChatGPT的模型,但目前我们所熟知的ChatGPT逐渐演变成了一种可以兼容多种GPT模型的聊天应用(服务)。
[title]走入AI的世界[heading2]1智能起源:极简AI发展史和生成式AI的革命性突破[heading4]*补充阅读资料(加餐内容,可折叠略过):如果要将图1中那条起起落落的黄色曲线做更详细的说明,就是图2中展示的信息,这部分内容大家可以根据兴趣选择性阅读了解,要点我已列出,在此不做更多赘述。图2 AI发展经历的三个阶段2022年开始掀起的这一轮AI大模型革命,更准确的来说是生成式AI的革命(生成式AI,Generative artificial intelligence,简称GenAI),图3给出了关于生成式AI的更多技术解释,图片左边的文字可选择性阅读了解,我们更需要将注意力集中在图的右侧,理解这些概念之间的包含关系,即:人工智能是一个大而泛的概念,其中有一个流派叫做“机器学习”,而机器学习中涌现出一个分支,即应用了深度神经网络的机器学习,我们称之为“深度学习”,深度学习中又涌现出一个细分流派,就是这一轮大热的生成式AI。图3什么是生成式AI-1从结果(质量/效果)上看,生成式AI相较之前的所有AI实现方法,有了根本性的,跨时代的进步,做为AI应用的学习者,我建议你在理解这些概念的时候可以粗暴的做这样的划分:生成式AI和其他AI。因为在80年的AI发展史中,AI从未有一刻像现在如此像人,在某些细分场景应用中,我深刻的感受了“他”已经通过了图灵测试,激发起我内心深深的惊叹和敬畏!
1.4本章小结GenAI(即生成式AI)是一种能够从已有数据中学习并生成新的数据或内容的AI应用,利用GenAI创建的内容即AIGC(全称AI-Generated Content)。作为一种强大的技术,生成式AI能够赋能诸多领域,但也存在多重潜在的合规风险。目前,我国对AIGC的监管框架由《网络安全法》《数据安全法》及《个人信息保护法》构成,并与《互联网信息服务算法推荐管理规定》、《互联网信息服务深度合成管理规定》、《生成式人工智能服务管理暂行办法》、《科技伦理审查办法(试行)》等形成了共同监管的形势。AIGC主要分为语言文本生成、图像生成和音视频生成。语言文本生成利用马尔科夫链、RNN、LSTMs和Transformer等模型生成文本,如GPT-4和GeminiUltra。图像生成依赖于GANs、VAEs和Stable Diffusion等技术,应用于数据增强和艺术创作,代表项目有Stable Diffusion和StyleGAN 2。音视频生成利用扩散模型、GANs和Video Diffusion等,广泛应用于娱乐和语音生成,代表项目有Sora和WaveNet。此外,AIGC还可应用于音乐生成、游戏开发和医疗保健等领域,展现出广泛的应用前景。