Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

个人知识库与大模型如何结合

Answer

个人知识库与大模型的结合是一个关键问题。目前大模型在通用知识方面表现出色,但对专业领域知识了解有限。将两者结合有以下 5 种方法:

  1. 重新训练:使用私域数据重新训练大模型。
  2. 微调:利用私有数据对大模型进行 fine-tuning。
  3. RAG:将知识库里的知识搜索送进大模型。
  4. 关键词工程:写好提示词。
  5. 加长 Context:当 Context 能无限长时,理论上可将个人知识和记忆都 prefill 到 Context 里。

对于哪种方法最有希望,学术界存在分歧。做深度学习的人偏向于用 RAG,而以前做过搜索的人则偏向于用 Long Context。有人认为最终会采用仿生的方法,即拥有一个足够长的 Context,例如谷歌的一篇论文 infinite context transform 提到,不需要把 Context 做得太长,可以将以前可能需要被扔掉的 token 深度压缩后依然保存在 Context 里。

此外,运行一个几百亿个参数的大模型,存算一体的架构是最佳选择,因为能避免所有数据的搬运。使用存算一体的方式也是未来 AI 硬件的发展趋势。

Content generated by AI large model, please carefully verify (powered by aily)

References

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

说明——对比人脑,我们用一碗米饭或者用一顿饭就可以支撑我们半天的工作或者大量的脑力消耗,不需要去花几千度电或者是上大量的能耗才能完成,所以使用存算一体的方式是未来AI硬件下一步的发展趋势。运行一个几百亿个参数的大模型最好的架构一定是存算一体的架构,因为它避免了所有的数据的搬运。4、现在大模型在通用知识方面很强,但对专业领域知识一无所知。怎么把领域知识结合进大模型里面去——这个是阻碍大模型更大规模应用的最关键的问题。5、把大模型和你的私域知识结合的5种方法:按对模型改造侵入性划分,可以从左到右分为:重新训练——微调——RAG——关键词工程1.重新训练(拿私域数据重新训练大模型)2.微调(拿私有数据fine-tuning大模型)3.RAG(将知识库里的知识搜索送进大模型)4.关键词工程(写好提示词)5.加长Context——当Context能无限长的时候,理论上讲可以把关于你的知识和记忆都prefill到Context里边去;好,我们今天看到了5种解法,下面就问哪一种是最有希望的?留在桌子上的只有长Context和RAG两个选项。学术界有两派人,很有意思的是,做深度学习的人,大家好像偏向于用RAG;以前做过搜索的人(了解搜索有哪些坑),大家会偏向于用Long Context~我(阳萌)认为最后还是走一个仿生的方法——有一个足够长的Context(举了谷歌的一篇论文infinite context transform,不需要把Context做太长,可以把以前可能需要被扔掉的token深度压缩后依然保存在Context里)

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

说明——对比人脑,我们用一碗米饭或者用一顿饭就可以支撑我们半天的工作或者大量的脑力消耗,不需要去花几千度电或者是上大量的能耗才能完成,所以使用存算一体的方式是未来AI硬件下一步的发展趋势。运行一个几百亿个参数的大模型最好的架构一定是存算一体的架构,因为它避免了所有的数据的搬运。4、现在大模型在通用知识方面很强,但对专业领域知识一无所知。怎么把领域知识结合进大模型里面去——这个是阻碍大模型更大规模应用的最关键的问题。5、把大模型和你的私域知识结合的5种方法:按对模型改造侵入性划分,可以从左到右分为:重新训练——微调——RAG——关键词工程1.重新训练(拿私域数据重新训练大模型)2.微调(拿私有数据fine-tuning大模型)3.RAG(将知识库里的知识搜索送进大模型)4.关键词工程(写好提示词)5.加长Context——当Context能无限长的时候,理论上讲可以把关于你的知识和记忆都prefill到Context里边去;好,我们今天看到了5种解法,下面就问哪一种是最有希望的?留在桌子上的只有长Context和RAG两个选项。学术界有两派人,很有意思的是,做深度学习的人,大家好像偏向于用RAG;以前做过搜索的人(了解搜索有哪些坑),大家会偏向于用Long Context~我(阳萌)认为最后还是走一个仿生的方法——有一个足够长的Context(举了谷歌的一篇论文infinite context transform,不需要把Context做太长,可以把以前可能需要被扔掉的token深度压缩后依然保存在Context里)

【AI学习笔记】小白如何理解技术原理与建立框架(通俗易懂内容推荐)

说明——对比人脑,我们用一碗米饭或者用一顿饭就可以支撑我们半天的工作或者大量的脑力消耗,不需要去花几千度电或者是上大量的能耗才能完成,所以使用存算一体的方式是未来AI硬件下一步的发展趋势。运行一个几百亿个参数的大模型最好的架构一定是存算一体的架构,因为它避免了所有的数据的搬运。4、现在大模型在通用知识方面很强,但对专业领域知识一无所知。怎么把领域知识结合进大模型里面去——这个是阻碍大模型更大规模应用的最关键的问题。5、把大模型和你的私域知识结合的5种方法:按对模型改造侵入性划分,可以从左到右分为:重新训练——微调——RAG——关键词工程1.重新训练(拿私域数据重新训练大模型)2.微调(拿私有数据fine-tuning大模型)3.RAG(将知识库里的知识搜索送进大模型)4.关键词工程(写好提示词)5.加长Context——当Context能无限长的时候,理论上讲可以把关于你的知识和记忆都prefill到Context里边去;好,我们今天看到了5种解法,下面就问哪一种是最有希望的?留在桌子上的只有长Context和RAG两个选项。学术界有两派人,很有意思的是,做深度学习的人,大家好像偏向于用RAG;以前做过搜索的人(了解搜索有哪些坑),大家会偏向于用Long Context~我(阳萌)认为最后还是走一个仿生的方法——有一个足够长的Context(举了谷歌的一篇论文infinite context transform,不需要把Context做太长,可以把以前可能需要被扔掉的token深度压缩后依然保存在Context里)

Others are asking
如果想购建一个自己的知识库,最好的方案是什么?
要构建自己的知识库,以下是一些可行的方案: 1. 基于 GPT API 打造: 给 GPT 输入定制化知识,但需注意 GPT3.5(免费版 ChatGPT)一次交互的 Token 限制。 OpenAI 提供了 embedding API 解决方案,embeddings 是浮点数字的向量,向量间距离衡量关联性,小距离表示高关联度。 可将大文本拆分成小文本块,转换为 embeddings 向量并保存,用户提问时将问题转换为向量与储存库比对,提取关联度高的文本块与问题组合成新 prompt 发送给 GPT API。 2. 本地部署大模型及搭建: 访问特定网址,使用邮箱注册账号。 Open WebUI 一般有聊天对话和 RAG 能力(让模型根据文档内容回答问题)两种使用方式,RAG 能力是构建知识库的基础之一。 若要求不高,已可实现本地大模型通过 Web UI 对话功能。但 ChatGPT 访问速度快、回答效果好,原因在于服务器配置高、训练参数多、数据更优及训练算法更好。若想更灵活掌握知识库,可进一步操作。
2025-01-16
搭建个人知识库
搭建个人知识库主要包括以下内容: 1. 了解 RAG 技术: 利用大模型的能力搭建知识库是 RAG 技术的应用。 大模型训练数据有截止日期,当需要依靠不在训练集中的数据时,可通过检索增强生成 RAG 实现。 RAG 应用包括文档加载、文本分割、存储、检索和输出 5 个过程。 文档加载:从多种来源加载文档,LangChain 提供 100 多种文档加载器,包括非结构化、结构化数据和代码等。 文本分割:把文档切分为指定大小的块。 存储:包括将切分好的文档块嵌入转换成向量形式,并将向量数据存储到向量数据库。 检索:通过检索算法找到与输入问题相似的嵌入片。 输出:把问题及检索出来的嵌入片提交给 LLM 生成答案。 2. 基于 GPT API 搭建: 涉及给 GPT 输入定制化知识,但 GPT3.5 一次交互容量有限,可使用 OpenAI 的 embedding API 解决方案。 embeddings 是浮点数字的向量,向量之间的距离衡量关联性,小距离表示高关联度。 3. 本地知识库进阶: 若要更灵活掌控,需额外软件 AnythingLLM,其包含 Open WebUI 能力,并支持选择文本嵌入模型和向量数据库。 安装地址:https://useanything.com/download 。 安装完成后进入配置页面,主要分为三步:选择大模型、选择文本嵌入模型、选择向量数据库。 AnythingLLM 中有 Workspace 概念,可创建独有 Workspace 与其他项目数据隔离。 构建本地知识库包括创建工作空间、上传文档并嵌入、选择对话模式(Chat 模式综合给出答案,Query 模式仅依靠文档数据给出答案)、测试对话。 最后,“看十遍不如实操一遍,实操十遍不如分享一遍”。如果对 AI Agent 技术感兴趣,可联系或加入免费知识星球(备注 AGI 知识库)。
2025-01-15
这个通往AGI知识库有什么用?
“通往 AGI 之路”知识库具有以下重要作用: 1. 它是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库,在这里,用户既是知识的消费者,也是知识的创作者。 2. 以“无弯路,全速前进”为目标,助力每一个怀揣 AI 梦想的人疾速前行。 3. 其生长得益于每一位用户的支持,通过大家的努力不断探寻 AGI 领域的无限可能。 4. 不仅是知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。 5. 提供了一系列开箱即用的工具,如文生图、文生视频、文生语音等详尽的教程,将文字化为视觉与听觉的现实。 6. 追踪 AI 领域最新的进展,时刻更新,让用户紧跟 AI 领域的步伐,每次访问都能有新的收获。 7. 无论用户是 AI 初学者还是行业专家,都可以在这里发掘有价值的内容,让更多的人因 AI 而强大。 相关链接: https://waytoagi.com/(通往 AGI 之路) 即刻体验:https://waytoagi.com/
2025-01-13
我想建立一个知识库,有什么工具可以使用吗
以下是一些可用于建立知识库的工具及相关步骤: 使用 Dify 构建知识库的步骤: 1. 准备数据:收集需要纳入知识库的文本数据,包括文档、表格等格式。对数据进行清洗、分段等预处理,确保数据质量。 2. 创建数据集:在 Dify 中创建一个新的数据集,并将准备好的文档上传至该数据集。为数据集编写良好的描述,描述清楚数据集包含的内容和特点。 3. 配置索引方式:Dify 提供了三种索引方式供选择,包括高质量模式、经济模式和 Q&A 分段模式。根据实际需求选择合适的索引方式,如需要更高准确度可选高质量模式。 4. 集成至应用:将创建好的数据集集成到 Dify 的对话型应用中,作为应用的上下文知识库使用。在应用设置中,可以配置数据集的使用方式,如是否允许跨数据集搜索等。 5. 持续优化:收集用户反馈,对知识库内容和索引方式进行持续优化和迭代。定期更新知识库,增加新的内容以保持知识库的时效性。 使用扣子创建并上传文本内容到知识库的方式: 1. 在线数据: 自动采集方式:适用于内容量大,需要批量快速导入的场景。 在文本格式页签下,选择在线数据,然后单击下一步。 单击自动采集。 单击新增 URL。在弹出的页面完成以下操作: 输入要上传的网站地址。 选择是否需要定期同步网站内容,如果需要选择内容同步周期。 单击确认。 当上传完成后单击下一步。系统会自动根据网站的内容进行内容分片。 手动采集:适用于需要精准采集网页上指定内容的场景 安装扩展程序,详情请参考。 在文本格式页签下,选择在线数据,然后单击下一步。 点击手动采集,然后在弹出的页面点击权限授予完成授权。 在弹出的页面输入要采集内容的网址,然后单击确认。 在弹出的页面上,点击页面下方文本标注按钮,开始标注要提取的内容,然后单击文本框上方的文本或链接按钮。 单击查看数据查看已采集的内容,确认无误后再点击完成并采集。 使用 Coze 智能体创建知识库: 1. 手动清洗数据: 在线知识库:点击创建知识库,创建一个画小二课程的 FAQ 知识库。知识库的飞书在线文档,其中每个问题和答案以分割。选择飞书文档、自定义的自定义,输入,然后可编辑修改和删除。点击添加 Bot,添加好可以在调试区测试效果。 本地文档:本地 word 文件,注意拆分内容以提高训练数据准确度。将海报的内容训练的知识库里面。画小二这个课程 80 节课程,分为了 11 个章节,不能一股脑全部放进去训练。正确的方法是首先将 11 章的大的章节名称内容放进来,章节内详细内容依次类推细化下去。每个章节都按照这种固定的方式进行人工标注和处理,然后选择创建知识库自定义清洗数据。 2. 发布应用:点击发布,确保在 Bot 商店中能够搜到。
2025-01-13
给大模型喂养的知识库哪里有
以下是一些获取给大模型喂养的知识库的途径和相关信息: 1. 在 Coze 中,大模型存在不准确和数据限制的问题,因此知识库的出现是为解决数据准确性。典型应用如客服系统,公司可将用户问题及答案记录在文档中作为知识库投喂给大模型,以实现更准确的回答。 2. 在阿里云百炼中,为 AI 助手增加私有知识的步骤包括:上传文件,在百炼控制台的中设置,打开知识检索增强开关、选择目标知识库并发布。 3. 在探讨大模型的 Brain 模块时,知识分为两大类,其中内置知识又可细分为常识知识、专业知识和语言知识。常识知识涵盖日常生活的事实和逻辑规则,专业知识涉及特定领域的详细信息,语言知识包括语法规则、句型结构、语境含义等。
2025-01-12
给ai的知识库哪里有?
以下是一些关于 AI 的知识库: 通往 AGI 之路(WaytoAGI)是一个由开发者、学者和有志人士等参与的学习社区和开源的 AI 知识库。在这里,您既是知识的消费者,也是知识的创作者。它不仅是一个知识库,还是连接学习者、实践者和创新者的社区,让大家在这里碰撞思想,相互鼓舞,一同成长。 特点:由一群热爱 AI 的专家和爱好者共同建设,大家贡献并整合各种 AI 资源,使得大家都可以轻松学习各种 AI 知识,应用各类 AI 工具和实战案例等。提供了一系列开箱即用的工具,文生图、文生视频、文生语音等详尽的教程。追踪 AI 领域最新的进展,时刻更新,让您紧跟 AI 领域的步伐,每次访问都能有新的收获。 网址:https://waytoagi.com/ 即刻体验:https://waytoagi.com/ 相关渠道:公众号“通往 AGI 之路”、内置知识库 AI 助手、B 站(https://space.bilibili.com/259768893)、小红书(https://www.xiaohongshu.com/user/profile/6457d2e4000000001f030dbe)、X(https://twitter.com/WaytoAGI),知识库精选内容同步。
2025-01-12
可以改变视频人物说话内容 的模型
以下是一些可以改变视频人物说话内容的模型及相关信息: 解梦新出的 p 模型支持人物多动作和变焦,易改变画风;s 模型生成速度快、积分消耗少,能保持原始画风但语义理解有限。 吉梦的对口型技术支持文本朗诵和本地配音,能根据输入生成人物开口讲话的视频,但有上传人物长相等限制。 Runway 的 GN3 模型支持上传视频并转换风格,可用于实现多元宇宙等风格穿梭的片子,也能将简单场景转换为难以拍摄的场景。 在角色生视频方面: 角色生视频突破关键帧限制,不再依赖关键帧输入,而是直接传入角色本身,可更灵活生成视频。 支持多角色参考生成创意视频,可上传多张图,最多三张,将人物、衣服、背景等元素融合生成视频。 不同工具的角色生视频效果有所不同,如 Runway 的 x one 在身体、头部、眼神动态上表现更好。 角色生视频的应用场景包括规避机器人念台词的尴尬瞬间,让机器人有更丰富的表情和神态。未来视频生成将摆脱纯关键帧方式,采用多模态信息输入,如定义角色和场景的三视图等。 此外,谷歌 Gemini 模型在处理视频相关问题时,可通过修改提示来改变模型的行为。
2025-01-16
2024大模型典型应用案例集
以下是 2024 大模型的一些典型应用案例及相关信息: 《2024 大模型典型示范应用案例集》汇集了 97 个优秀案例,展示了大模型技术在教育、医疗、金融、政务等多个行业和领域的应用。案例由阿里云、百度、华为等领先企业实施,上海成为应用落地的热点地区,大中型企业是主要试验场。AI 智能体和知识库成为提升大模型落地实效的关键手段。 在智能终端行业,中国超半数手机厂商都在使用文心大模型,包括三星、荣耀、vivo、OPPO、小米等主流手机品牌;上汽大众、吉利汽车、蔚来汽车、长安汽车等十余家车企已接入百度文心大模型。 整体来看,在主流大模型厂商中,百度表现突出,拿下最关键的中标项目数量、中标金额两项第一。截至 11 月,其文心大模型日均调用量超过 15 亿次,千帆平台帮助客户精调了 3.3 万个模型、开发了 77 万个企业应用。今年三季度财报披露,百度智能云营收达 49 亿元,同比增长 11%,其增长主要由互联网、教育、金融等行业对模型训练和推理的高需求带动。 企业想要真正将大模型在自身场景落地,需要具备构建算力、数据治理、模型训练、场景落实、应用搭建、持续运营、安全合规等整套能力。 相关报告: 《信达证券:AI 行业设计领域专题报告:Adobe AI 功能覆盖全面,Canva、美图等力争上游》 《中国信通院:大模型基准测试体系研究报告(2024 年)》 《埃森哲:人工智能行业:2024 在生成式人工智能时代重塑工作、劳动力和员工》 此外,还有一些相关活动,如: 2024 年是国内大模型技术加速落地的关键年份,各大厂商如百度、阿里、字节等在 AI 大模型领域展开激烈竞争。百度凭借 40 个中标项目和 2.74 亿元中标金额在行业中处于领先地位。尤其在金融、智能终端等行业,百度文心大模型的应用广泛,表现亮眼。 🏮「非遗贺春」魔多蛇年春节 AI 模型创作大赛,大赛时间 2024 年 12 月 24 日2025 年 1 月 15 日。大赛奖池【¥12000】现金奖励+官方高含金量荣誉证书+会员与算力激励+流量激励。双赛道同时开启,赛道一【春节】+赛道二【爱非遗 AI 传承】。本次活动由浙江省非遗保护中心(浙江省非遗馆)指导×浙江省非遗保护基金会主办×魔多 AI 联合承办,由提供社区传播支持。
2025-01-16
总结一下大模型数据发展的最新趋势,基于历史的事实和数据总结23年以来发生了什么,25年可能发生什么
以下是关于大模型数据发展趋势的总结: 2023 年以来: 大量创新大模型架构涌现,尝试在保留 Transformer 优势的同时解决其算力开销太高的问题,对 Transformer 的绝对统治地位形成有力挑战。 多种有代表性的技术路径出现,如类循环神经网络模型(以 RWKV 为代表)、状态空间模型(以 Mamba 为代表)、层次化卷积模型(以 UniRepLKNet 为代表)、多尺度保持机制模型(以 RetNet 为代表)、液体神经网络模型(以 LFM 为代表)等。这些模型在不同程度保留 Transformer 架构优势的基础上,结合 RNN、CNN 等思想做出创新发展,使得大模型架构呈现出日益明显的混合趋势,更多创新架构具备“博采众家之长”的特点。 对于 2025 年的预测,由于目前的信息有限,难以给出确切的预测。但可能会在现有创新架构的基础上进一步优化和融合,出现更高效、更强大且更具通用性的大模型架构,同时可能在技术应用和行业落地方面取得更显著的成果。
2025-01-16
人机交互模型
目前大模型在人机交互方面可能存在以下三种模式: 1. 以人为主导,大模型提供建议(copilot 阶段):如同副驾驶,在人做决策时提供建议,决定权在人手中。 2. 人和大模型协同工作,合作完成同一个工作(embedding 阶段):在实际工作场景中,部分小环节可由大模型完成,能提高工作效率。 3. 人指挥大模型工作(数字员工阶段):此阶段较为少见,大模型目前还不能完全独立完成具体工作,可能是工程问题或自身能力欠缺所致。 个人观点认为,当下应努力将大模型从简单提供建议转变为深度融入工作流,而数字员工阶段尚不成熟,可由其他大厂和学界先行尝试。 此外,每一次平台型技术的出现都会催生新的人机交互方式。如在智能时代,我们曾认为 ChatGPT 的 LUI(自然语言对话式界面)是交互终点,但并非如此。知名科幻电影 HER 中人类与 AI 全感知无障碍的对话形式才是我们所期望的。 OpenAI 发布的 GPT4o 是其之前所有技术的集大成者,采用新的全模态模型Omnimoda Model。通过端到端的神经网络,将视觉、语音和文本数据混合训练,而非常见的先转换为文本再处理的工程手段。GPT4o 对音频输入的平均反应时间为 300 毫秒,与人类相似,且能从音频数据中感悟人类的情绪、语调、风格等,甚至还原训练时的环境声音。但 OpenAI 未公开 GPT4o 的技术细节,唯一线索来自内部模型炼丹师的一篇博客,项目名是 AudioLM,2023 年中启动,目标是用端到端的方式扩大语音模型的能力。
2025-01-15
模型下载
以下是关于模型下载的相关信息: ComfyUI BrushNet 模型下载: 原项目:https://tencentarc.github.io/BrushNet/ 插件地址:https://github.com/kijai/ComfyUIBrushNetWrapper 模型下载:https://huggingface.co/Kijai/BrushNetfp16/tree/main 第一次运行会自动下载需要的模型,如果使用 ComfyUIBrushNetWrapper 节点,模型将自动从此处下载:https://huggingface.co/Kijai/BrushNetfp16/tree/main 到 ComfyUI/models/brushnet。 因环境问题,也可手动下载后放在这个文件夹里面。另外,BrushNet 提供了三个模型,个人测试下来,random 这个效果比较好。 SD 模型下载: 常用的模型网站有: 下载模型后需要将之放置在指定的目录下,不同类型的模型放置目录不同: 大模型(Ckpt):放入 models\\Stablediffusion VAE 模型:一些大模型需要配合 vae 使用,对应的 vae 同样放置在 models\\Stablediffusion 或 models\\VAE 目录,然后在 webui 的设置栏目选择。 Lora/LoHA/LoCon 模型:放入 extensions\\sdwebuiadditionalnetworks\\models\\lora,也可以在 models/Lora 目录 Embedding 模型:放入 embeddings 目录
2025-01-14
Cursor什么添加模型
在 Cursor 中添加模型的方法如下: 1. 使用光标聊天、Ctrl/⌘K 和终端 Ctrl/⌘K,您可以轻松地在您选择的不同模型之间切换。 2. 在 AI 输入框下方,您将看到一个下拉列表,允许您选择要使用的模型。默认情况下,Cursor 已准备好使用以下模型: cursorsmall:cursorsmall 是 Cursor 的自定义模型,它不如 GPT4 智能,但速度更快,用户可以无限制地访问它。 3. 您可以在 Cursor Settings>Models>Model Names 下添加其他模型。 此外,有人通过接入更多模型如 Qwen2.5Coder、Llama3.3、deepseek v3、gemini2.0flash 等对 Cursor 进行配置,但接入再多的模型也无法完全填平 Cursor 免费版和 Cursor Pro 的差距。
2025-01-14
我要做讲书的自媒体,个人不出镜,书的内容讲解与AI视频完美衔接,应该用什么工具,做到完美结合
如果您想做讲书的自媒体,个人不出镜,让书的内容讲解与 AI 视频完美衔接,可以参考以下工具和流程: 工具: 1. Stable Diffusion(SD):一种 AI 图像生成模型,可基于文本描述生成图像。 网址:https://github.com/StabilityAI 2. Midjourney(MJ):适用于创建小说中的场景和角色图像的 AI 图像生成工具。 网址:https://www.midjourney.com 3. Adobe Firefly:Adobe 的 AI 创意工具,能生成图像和设计模板。 网址:https://www.adobe.com/products/firefly.html 4. Pika AI:文本生成视频的 AI 工具,适合动画制作。 网址:https://pika.art/waitlist 5. Clipfly:一站式 AI 视频生成和剪辑平台。 网址:https://www.aihub.cn/tools/video/clipfly/ 6. VEED.IO:在线视频编辑工具,具有 AI 视频生成器功能。 网址:https://www.veed.io/zhCN/tools/aivideo 7. 极虎漫剪:结合 Stable Diffusion 技术的小说推文视频创作提效工具。 网址:https://tiger.easyartx.com/landing 8. 故事 AI 绘图:小说转视频的 AI 工具。 网址:https://www.aihub.cn/tools/video/gushiai/ 流程: 1. 小说内容分析:使用 AI 工具(如 ChatGPT)分析小说内容,提取关键场景、角色和情节。 2. 生成角色与场景描述:根据小说内容,使用工具(如 Stable Diffusion 或 Midjourney)生成角色和场景的视觉描述。 3. 图像生成:使用 AI 图像生成工具根据描述创建角色和场景的图像。 4. 视频脚本制作:将提取的关键点和生成的图像组合成视频脚本。 5. 音频制作:利用 AI 配音工具(如 Adobe Firefly)将小说文本转换为语音,添加背景音乐和音效。 6. 视频编辑与合成:使用视频编辑软件(如 Clipfly 或 VEED.IO)将图像、音频和文字合成为视频。 7. 后期处理:对生成的视频进行剪辑、添加特效和转场,以提高视频质量。 8. 审阅与调整:观看生成的视频,根据需要进行调整,比如重新编辑某些场景或调整音频。 9. 输出与分享:完成所有编辑后,输出最终视频,并在所需平台上分享。 请注意,具体的操作步骤和所需工具可能会根据项目的具体需求和个人偏好有所不同。此外,AI 工具的可用性和功能也可能会随时间而变化,建议直接访问上述提供的工具网址获取最新信息和使用指南。
2025-01-16
有哪些教育和AI结合的产品
以下是一些教育和 AI 结合的产品: 语言学习方面:Speak、Quazel、Lingostar 等,它们提供实时交流并对发音或措辞给予反馈。 数学学习方面:Photomath、Mathly 等应用指导学生解决数学问题。 写作辅助方面:Grammarly、Orchard、Lex 等工具帮助学生克服写作难题,提升写作水平。 内容创作方面:Tome、Beautiful.ai 协助创建演示文稿。 播客笔记方面:有学习用 AI 做播客笔记的相关产品。 组会准备方面:有帮助学生做好组会准备的产品。 调研方面:如做调研用这条 prompt,2 小时帮同学干完了 3 篇调研报告、用 ChatGPT 做调研等。 书籍推荐方面:有推荐三本神经科学书籍的相关内容。 教师赋能方面:有 AI 赋能教师全场景的相关产品。 化学研究方面:有使用大型语言模型进行自主化学研究的相关内容。
2025-01-13
我作为一名OA软件的行业的售前,我的工作中会涉及到AI与OA结合落地的智能化场景,所以我对AI知识有简单的了解,我现在想转型AI行业的售前,我该如何系统的学习AI的相关知识,请帮我制定一个计划
以下是为您制定的从 OA 软件售前转型到 AI 行业售前的系统学习计划: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、掌握相关技能和知识 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,作为转型者,您可以从以上多个方面入手,全面系统地学习 AI 知识和技能,为未来在 AI 行业的售前工作做好准备。
2025-01-07
RAG与Agent如何结合应用
RAG 与 Agent 的结合应用可以通过以下步骤实现: 1. 数据加载:根据数据源类型选择合适的数据加载器,如网页可使用 WebBaseLoader 加载和解析,返回文档对象。 2. 文本分割:依据文本特点选择合适的文本分割器,将文档对象分割成较小的对象,如博客文章可用 RecursiveCharacterTextSplitter 分割。 3. 嵌入与存储:使用文本嵌入器和向量存储器将文档对象转换为嵌入并存储,根据质量和速度选择合适的,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 4. 创建检索器:通过向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数,创建用于根据用户输入检索相关文档对象的检索器。 5. 创建聊天模型:根据性能和成本选择合适的聊天模型,如使用 OpenAI 的 GPT3 模型,根据用户输入和检索到的文档对象生成输出消息。 以餐饮生活助手为例,基于结构化数据来 RAG 实战: 1. 定义餐饮数据源:将餐饮数据集转化为 Langchain 可识别和操作的数据源,如数据库、文件、API 等,并注册到 Langchain 中,提供统一接口和方法供 LLM 代理访问和查询。 2. 定义 LLM 的代理:通过 Langchain 的代理(Agent)实现,代理管理器可让开发者定义不同的 LLM 代理及其功能和逻辑,提供统一接口和方法供用户交互。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-01-06
RAG与Agent如何结合应用
RAG 与 Agent 的结合应用主要通过以下步骤实现: 1. 数据加载:根据数据源类型选择合适的数据加载器,如对于网页数据源可使用 WebBaseLoader 加载和解析网页,获取文档对象。 2. 文本分割:依据文本特点选用合适的文本分割器,将文档对象分割成较小的文档对象。例如,对于博客文章可用 RecursiveCharacterTextSplitter 递归分割。 3. 嵌入与存储:使用文本嵌入器将文档对象转换为嵌入,并存储到向量存储器中。可根据嵌入质量和速度选择,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 4. 创建检索器:通过向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数,创建用于根据用户输入检索相关文档对象的检索器。 5. 创建聊天模型:根据模型性能和成本选择合适的聊天模型,如 OpenAI 的 GPT3 模型,用于根据用户输入和检索到的文档对象生成输出消息。 以餐饮生活助手为例,展示基于结构化数据的 RAG 实战: 1. 定义餐饮数据源:将餐饮数据集转化为 Langchain 可识别和操作的数据源,如数据库、文件、API 等,并注册到 Langchain 中,提供统一接口和方法供 LLM 代理访问和查询。 2. 定义 LLM 的代理:通过 Langchain 的代理(Agent)实现,提取用户问题的核心信息和条件,形成标准查询语句,检索餐饮数据源并生成合适答案输出给用户。代理管理器可定义不同的 LLM 代理及其功能逻辑,提供统一接口和方法方便用户交互。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-01-06
旅行怎么和AI结合
旅行与 AI 可以通过以下方式结合: 1. 行程规划:利用车内定位和多模态技术提供个性化的导航引导、行程规划,使出行体验更加便捷和个性化。 2. 智能服务:对于有关旅行中的交通操作、状态查询或故障诊断等问题,利用 AI 提供专业解答。 3. 娱乐体验:在旅行中,通过 AI 实现音乐的个性化推荐,并根据歌词内容生成壁纸,以及音乐续写、音乐创作等;利用 AI 进行观影推荐,采用 AI 降噪、AI 声场等模式,营造最佳观影氛围;提供个性化新闻/阅读/听书纯体验。 4. 老年服务:开发针对老年人群体的旅行 AI 服务,满足他们的特殊需求。 在一些活动和讨论中,也有关于旅行与 AI 结合的思考和探索。例如杭州站的活动中,探讨了不局限于 AI 在教育、娱乐和旅游服务等方面的应用,如“旅行 AI 老年服务”。但目前对于旅行与 AI 具体的结合方式和内容,仍在持续的思考和探索中。
2025-01-06
新手小白没学过编程,想用AI制作小程序,个人网站和APP
对于新手小白想用 AI 制作小程序、个人网站和 APP,目前有以下相关信息: 「Agent 共学」提供了一系列针对 0 基础小白的课程,包括用 AI 打造个人网站等,具体日程安排为:月日 20:00 开始,由大雨授课。 白九龄在 0 基础的情况下用 cursor 做微信小程序的经历,过程中遇到了诸多问题,如添加背景元素、自适应调整、意图分析页面的信息展示和排版、生成海报时的限制等,还面临大模型理解困难、token 费用和变现等问题。 需要注意的是,虽然有相关的探索和尝试,但使用 AI 制作这些项目仍存在一定的难度和限制。
2025-01-15
推荐可以做以时间轴的个人成长历程长页的工具
目前在 AI 领域中,暂时没有专门用于制作以时间轴呈现个人成长历程长页的特定工具。但您可以考虑使用一些通用的设计和内容创作工具来实现这一需求,例如 Adobe InDesign、Canva 等,它们具有丰富的模板和设计功能,能够帮助您创建出具有时间轴效果的个人成长历程页面。
2025-01-15
个人AI推荐
以下是为您提供的个人 AI 推荐: 对于技术爱好者: 1. 从小项目开始,如搭建简单博客或自动化脚本,尝试用 AI 辅助编码,熟悉其能力和局限性。 2. 探索 AI 编程工具,如 GitHub Copilot 或 Cursor,从生成注释或简单函数逐步过渡到复杂任务。 3. 参与 AI 社区,如 Stack Overflow 的 AI 板块或 Reddit 的 r/artificial 子版块,与开发者交流,了解最新趋势。 4. 构建 AI 驱动的项目,如开发聊天机器人或图像识别应用,深入理解实际应用过程。 对于内容创作者: 1. 利用 AI 辅助头脑风暴,针对主题生成创意方向并选择深化。 2. 建立 AI 写作流程,从生成文章大纲开始,逐步让 AI 扩展段落或提供数据支持。 3. 探索多语言内容,用 AI 辅助翻译和本地化内容,从一篇博文开始逐步扩大。 4. 借助 AI 工具优化 SEO,根据建议调整标题、元描述和关键词使用。 私人定制类产品: 1. 允许用户对 AI 模型进行个性化选择。 2. 支持用户创建自己的 AI Agent 满足特定需求。 3. 支持设计和实现自定义工作流程。 4. 通常需要一定前端技术知识,能提供更大灵活性和创造空间,但学习成本较高,适合愿意投入时间和精力深入了解 AI 技术并适配自身需求的用户。
2025-01-13
如果自己一个人要完成一个类似游戏的虚拟世界,需要一些什么软件,并且需要多久完成
要一个人完成类似游戏的虚拟世界,可能需要以下软件: 1. 图像生成软件,如 Midjourney、Stable Diffusion 等,用于生成概念图像和美术作品。 2. 3D 建模软件,用于创建 3D 模型、添加纹理和效果等。 完成所需的时间因多种因素而异,包括个人的技能水平、项目的复杂程度、投入的时间和精力等。像《Red Dead Redemption 2》这样复杂的游戏,制作成本近 5 亿美元,花了将近 8 年的时间来建造。但如果是相对简单的虚拟世界,时间可能会短很多。不过,这需要您具备扎实的相关技能和持续的努力。
2025-01-10