Navigate to WaytoAGI Wiki →
Home/Question List/Question Detail

旅行怎么和AI结合

Answer

旅行与 AI 可以通过以下方式结合:

  1. 行程规划:利用车内定位和多模态技术提供个性化的导航引导、行程规划,使出行体验更加便捷和个性化。
  2. 智能服务:对于有关旅行中的交通操作、状态查询或故障诊断等问题,利用 AI 提供专业解答。
  3. 娱乐体验:在旅行中,通过 AI 实现音乐的个性化推荐,并根据歌词内容生成壁纸,以及音乐续写、音乐创作等;利用 AI 进行观影推荐,采用 AI 降噪、AI 声场等模式,营造最佳观影氛围;提供个性化新闻/阅读/听书纯体验。
  4. 老年服务:开发针对老年人群体的旅行 AI 服务,满足他们的特殊需求。

在一些活动和讨论中,也有关于旅行与 AI 结合的思考和探索。例如杭州站的活动中,探讨了不局限于 AI 在教育、娱乐和旅游服务等方面的应用,如“旅行 AI - 老年服务”。但目前对于旅行与 AI 具体的结合方式和内容,仍在持续的思考和探索中。

Content generated by AI large model, please carefully verify (powered by aily)

References

火山引擎AI创造者大赛 官方手册--AI创作者大赛-火山引擎

赛道说明|汽车品牌_赛题类别|领克汽车_AI座舱赛道|领克汽车_AI营销赛道|领克汽车_AI售后赛道||-|-|-|-||Bot场景<br>(示例)|1.懂车<br>1.1.对于有关车辆操作、状态查询或故障诊断等问题,都可以提供专业解答。<br>2.用车<br>2.1.利用车身硬件条件和软件生态,自定义各种高频用车场景的智能体,提升车内人员的驾驶舒适性、娱乐性、趣味性、安全性体验。<br>3.出行<br>3.1.利用车内定位和多模态技术提供导航引导、行程规划等,使出行体验更加便捷和个性化。<br>4.娱乐<br>4.1.音乐:利用车内音频硬件和内容,提供个性化音乐推荐,并根据歌词内容生成壁纸,以及音乐续写、音乐创作等场景。<br>4.2.观影:利用车内音视频硬件、座椅、氛围灯和影视内容等,提供个性化影视推荐。采用Al降噪、Al声场等模式,营造最佳观影氛围。<br>4.3.阅读:利用车内音频、灯光、空调等,提供个性化新闻/阅读/听书纯体验。<br>5.办公及其他<br>5.1|1.营销策略AI座舱赛道-吉利模拟座舱原子化能力

杭州站活动记录-1月10-14日

结果大家聊得都非常深入,有分享关于产品市场契合度(PMF)的实际案例和见解,探讨了如何将AI技术更好地融入市场需求,创造出真正有价值的应用,也有自己如何与AI更好的相处,总结自己的AI工作流。讨论不局限于AI在教育、娱乐和旅游服务等方面的应用,如“AI口语教育项目”和“旅行AI-老年服务”,还探讨了AI在情感和个人成长方面的价值。甚至有小伙伴电子酒当场正在谋划一场“AI春晚”,并且有详细的计划流程(感兴趣的可以回复“AI春晚”获取详细信息)思想和深度兼备,与优秀的小伙伴同行,原本计划4点结束,大家一起去坐摇橹船与AI一起诗画杭州。结果讨论到很晚没有赶上,也算是给杭州活动留了个小遗憾。或许是埋下了一颗羁绊种子,鼓励我们可以持续地把这个活动搞下去。AI时代最重要的是什么?或许是“亲手尝试,动手去做”,这是🌈通往AGI之路第三次线下活动的记录,主打“一起动手”,参与的小伙伴有各自的收获,并结识了志同道合的小伙伴。这个活动只是一个引子,希望没能来成的同学也可以远程感受到这个氛围,也激发出对AI新的理解和应用。WaytoAGIAI开源知识库随着这五日探索的结束,我们不仅深化了对AI的理解,也激发了共同建设更加强大社区的激情。WaytoAGI社区诚邀每一位对AI怀揣好奇与热爱的朋友加入我们,一起为技术赋能人类,为每一个生活的细节注入智慧之光。“让更多的人因为AI而更强大”最后,衷心感谢本次活动场地赞助方echoo回声空间、硅基生命、明月楼加入AI+X World Tour🌏💡组织者🚀

一个没想好的事情,先记下来

引言之前汉青老师分享的时候说过一段话,生成式AI的内容,并没有新的渠道去承载,它仍然和传统的社交媒体内容共存,小红书,抖音,微信之类。短期内大家可能因为新鲜感获得流量红利,但当潮水褪去,人们在意的仍然是高质量的内容。我们或许已经掌握了各种先进的工具,会在MJ里用各种关键词出图,会用SD做复杂的工作流,会让老照片动起来,也可以做出很炫酷的宣传片。在这件事情里面,我们不去聊任何的工具,只去聊内容,让节奏慢下来,认真去感受周围真实的世界,感受身边每一个我们通常会一扫而过,关注不到的普通人。我们不会为了AI而生活,但AI让我们更热爱生活。具体怎么做还没想好,也没完全想明白怎么和AI结合,先放着慢慢想偶然在朋友的朋友圈刷到的题材:“这两张照片其实是在同一条街道上拍下的,只不过年轻的女孩在街上,孤独的老人在围墙里。”“这张照片传递两种关系、一种爱意,年轻人手牵着怀孕的爱人,老母亲扶着女儿坐上电动车,这应该是这个世界最稳固的两种关系,而现在他们相遇在一张照片当中。”“很多人把生活当中的便利,比如电商快递外卖速度快便宜看着是我们的移动互联网优势,其实唯一的优势是我们的劳动力,无数个在深夜独自啃着馒头的年轻人支撑着美团阿里的市值...放大镜头看你会发现这其实是一个非常年轻的女孩子(为了不把自己晒黑穿了防晒服),她瘦小,即使戴了头盔也比后面的箱子高不了多少,她进食的时候甚至都没玩手机——我骑车路上看到过很多快递小哥都是边骑车边刷短视频,这至少说明他们对生活中的乐子还充满期待,而图中的女孩看着让人垂头丧气,不仅是她,也包括我。”

Others are asking
如何入门ai
以下是新手入门 AI 的建议: 1. 了解 AI 基本概念: 阅读「」部分,熟悉 AI 的术语和基础概念,包括其主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,找到为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,比如图像、音乐、视频等,可根据自己的兴趣选择特定模块深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习后,实践是巩固知识的关键,尝试使用各种产品做出作品。 在知识库中有很多大家实践后的作品、文章分享,欢迎实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式,获得对 AI 在实际应用中表现的第一手体验,并激发对 AI 潜力的认识。 此外,还可以参考《雪梅 May 的 AI 学习日记》中的经验,如系统性的学习,打好基础,加入 AI 社区(如)获取新手指引等。
2025-01-13
李飞飞提出的Agent AI的核心观点是什么
李飞飞提出的核心观点包括: 人工智能的下一步应从大型语言模型转向大型模型,强调视觉智能在理解和与世界互动中的重要性,计算机需要具备空间智能,能够建模、推理并在三维空间中互动。 通过空间智能,AI 将理解真实世界,能够处理视觉数据,做出预测并根据这些预测采取行动。空间智能使机器不仅能够相互交互,还能与人类以及真实或虚拟的三维世界进行交互。
2025-01-13
智能体(AI Agent)对比大模型在应用中的优势是什么
智能体(AI Agent)对比大模型在应用中的优势主要包括以下方面: 1. 能够回答私有领域问题,例如公司制度、人员信息等,而大模型存在无法回答此类问题的局限性。 2. 可以及时获取最新信息,如实时天气、比赛结果等,大模型在这方面有所不足。 3. 能准确回答专业问题,如复杂数学计算、图像生成等,大模型在这些方面表现欠佳。 4. 适用于多种客户场景,如有企业官网、钉钉、微信等渠道,期望为客户提供产品咨询服务的场景,以及缺少技术人员开发大模型问答应用的情况。 5. 基于大模型,通过集成特定的外部能力,弥补大模型的不足。例如集成实时信息获取、回答私有领域问题等外部能力。 6. 典型场景丰富,包括私有领域知识问答、个性化聊天机器人、智能助手等。如私有领域知识问答,只需准备好相关知识库文件,就可在百炼控制台快速创建应用;个性化聊天机器人可通过长期记忆保存关键历史对话信息,并集成夸克搜索和图像生成等插件扩展功能;智能助手可引入 RAG 能力、长期记忆和自定义插件等功能提升工作效率。 在基准测评方面,AI Agent 智能体正在最大程度释放 LLM 潜能,逐渐成为通向 AGI 的技术共识。现有关于 Agent 能力的测评,主要在英文场景或任务,目前还没有一个在中文任务和场景上针对中文大模型的全面测评。通过测评结果发现,在 Agent 核心基础能力上,国内模型已经较为接近或部分超过 GPT3.5 水平。 从原理上看,智能体中间的“智能体”就是 LLM 或大模型,通过为其增加工具、记忆、行动、规划四个能力来实现。行业里主要用到的是 langchain 框架,它把 LLM 之间以及 LLM 和工具之间通过代码或 prompt 的形式进行串接,在 prompt 层和工具层完成主要的设计逻辑。
2025-01-13
AI Agents的课程在哪里呢
以下是关于 AI Agents 课程的相关信息: 1. 在 AI 课程目录下新增了《》。 2. 同步更新到 1.8 版本,该图表由 E2b 团队制作。 3. 翻译了《》这篇文章,由 OpenAI 开发者关系负责人 Logan Kilpatrick 所写,介绍 Agents 是什么,这个领域的发展趋势,以及大量这种早期技术在实践中的精彩示例。 此外,如果您是新手学习 AI,还可以参考以下步骤: 1. 了解 AI 基本概念:首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅:在「」中,您将找到一系列为初学者设计的课程。这些课程将引导您了解生成式 AI 等基础知识,特别推荐李宏毅老师的课程。通过在线教育平台(如 Coursera、edX、Udacity)上的课程,您可以按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习:AI 领域广泛(比如图像、音乐、视频等),您可以根据自己的兴趣选择特定的模块进行深入学习。建议您一定要掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试:理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品:与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 在通往 AGI 之路知识库中,还有关于 AI 相关技术与应用的介绍及活动分享: 1. AI agent 的介绍:大语言模型衍生出 AI agent,治理进阶可用此方式,如 GPTS、code、千帆百炼等,建议先吃透 prompt 再学习 AI agent,cost 平台有丰富教程和比赛,社区小伙伴参与能获奖。 2. AI 会话相关内容:通过关键词学设进行 AI 会话学习,如每日选词丢入稳定扩散模型,积累了大量提示词,建有飞书群供感兴趣的同学加入练习。 3. AI 视频相关词汇:收集了通过词汇控制 AI 视频的相关词典,如环绕、过曝、缩放等,更具象的描述词汇能让模型发挥更好效果。 4. AI 相关活动:包括 prompt battle、AI 神经大赛等,如 prompt battle 在每周六和周日晚上进行,有多种玩法,还有早晨的 PB 活动。
2025-01-13
图像ai和视频ai入门
以下是图像 AI 和视频 AI 的入门建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,包括图像、音乐、视频等,您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动,如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 图像 AI 和视频 AI 产品推荐: 海螺 AI: MiniMax 视频模型不仅可以准确识别用户上传的图片,并确保所生成视频在形象保持上与原输入图像高度一致,且光影、色调完美嵌入新场景的设定,为创作者提供连贯、深度创作的空间。 在指令响应方面,还能理解超出图片内容之外的文本,解构指令框架和深层语义并在视频生成中整合,实现“所写即所见”。 不依靠特效模板就能实现顶级的影视特效,用户能够在图像基础上充分发挥想象力,创作出丰富多变的电影级视频。 人物表情控制力强,能让视频表达更能深入人心。 近期上线了提示词优化功能,对于更专业的创作者,开放 2000 字的提示词空间,让创作更加精准。 国内图像类产品: 可灵:由快手团队开发,主要用于生成高质量的图像和视频,但价格相对较高。 通义万相:在中文理解和处理方面表现出色,用户可以从多种艺术风格和图像风格中进行选择,操作界面设计简洁直观,用户友好度高,重点是现在免费,每天签到获取灵感值就可以,但存在一些局限性,如某些类型的图像可能无法生成,在处理非中文语言或国际化内容方面可能不如国际工具出色。
2025-01-13
图像ai和视频ai怎么学习
以下是关于图像 AI 和视频 AI 学习的建议: 1. 了解 AI 基本概念: 建议阅读「」部分,熟悉 AI 的术语和基础概念,包括人工智能的定义、主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。 浏览入门文章,了解 AI 的历史、当前的应用和未来的发展趋势。 2. 开始 AI 学习之旅: 在「」中,您将找到一系列为初学者设计的课程,特别推荐李宏毅老师的课程。 通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 3. 选择感兴趣的模块深入学习: AI 领域广泛,包括图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。 掌握提示词的技巧,它上手容易且很有用。 4. 实践和尝试: 理论学习之后,实践是巩固知识的关键,尝试使用各种产品做出您的作品。 在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 5. 体验 AI 产品: 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。 6. 技术原理理解: 了解相关技术名词,如: AI 即人工智能。 机器学习包括监督学习、无监督学习、强化学习。监督学习是基于有标签的训练数据,学习输入和输出之间的映射关系,包括分类和回归;无监督学习是基于无标签数据,算法自主发现规律,经典任务如聚类。 强化学习从反馈里学习,最大化奖励或最小化损失,类似训小狗。 深度学习参照人脑有神经网络和神经元,神经网络可用于多种学习方式。 生成式 AI 可以生成文本、图片、音频、视频等内容形式。 LLM 即大语言模型。 了解技术里程碑,如 2017 年 6 月谷歌团队发表的论文《Attention is All You Need》首次提出了 Transformer 模型,它完全基于自注意力机制处理序列数据,比 RNN 更适合处理文本的长距离依赖性。
2025-01-13
用扣子智能体制作一个有关热门旅游景点攻略小助手的工作流,能够根据不同用户的需求,制定个性化的旅行计划,涵盖各种热门旅游景点,提供详细的行程安排、交通指南和景点特色介绍
要使用扣子智能体制作一个有关热门旅游景点攻略小助手的工作流,以下是一些参考信息: 1. 扣子智能体通常由工作流和数据库组成。工作流的设计相对简单,一个输入对接知识库,搭载豆包 function call 大模型,最后输出。数据库的收集和整理需要一定专业知识,并进行手动二次校对。 2. 插件方面,扣子平台有多种类型的插件,如看新闻、规划旅行、提高办公效率、理解图片内容等的 API,还可根据需求自制插件。 3. 工作流就像可视化的拼图游戏,由多个节点组成,包括大语言模型、代码块等,能创造复杂稳定的业务流程。 4. 扣子预置了各种场景的 Bot,如旅游大师 Bot。在 Bot 商店可查看精选的预置 Bot,选择后会被引导至编排页面,该页面分为顶部区域(显示所用大型语言模型)、人设与回复逻辑区域、技能区域(展示配置的功能,如查询航班的插件、推荐景点的工作流等)、预览与调试区域(展示交互运行结果)。 基于以上信息,您可以尝试设计热门旅游景点攻略小助手的工作流,根据不同用户需求制定个性化旅行计划,涵盖热门景点、行程安排、交通指南和景点特色介绍。但需要注意的是,工作流的设计和数据库的整理需要精心规划和准确操作。
2024-12-16
有哪些教育和AI结合的产品
以下是一些教育和 AI 结合的产品: 语言学习方面:Speak、Quazel、Lingostar 等,它们提供实时交流并对发音或措辞给予反馈。 数学学习方面:Photomath、Mathly 等应用指导学生解决数学问题。 写作辅助方面:Grammarly、Orchard、Lex 等工具帮助学生克服写作难题,提升写作水平。 内容创作方面:Tome、Beautiful.ai 协助创建演示文稿。 播客笔记方面:有学习用 AI 做播客笔记的相关产品。 组会准备方面:有帮助学生做好组会准备的产品。 调研方面:如做调研用这条 prompt,2 小时帮同学干完了 3 篇调研报告、用 ChatGPT 做调研等。 书籍推荐方面:有推荐三本神经科学书籍的相关内容。 教师赋能方面:有 AI 赋能教师全场景的相关产品。 化学研究方面:有使用大型语言模型进行自主化学研究的相关内容。
2025-01-13
我作为一名OA软件的行业的售前,我的工作中会涉及到AI与OA结合落地的智能化场景,所以我对AI知识有简单的了解,我现在想转型AI行业的售前,我该如何系统的学习AI的相关知识,请帮我制定一个计划
以下是为您制定的从 OA 软件售前转型到 AI 行业售前的系统学习计划: 一、了解 AI 基本概念 首先,建议阅读「」部分,熟悉 AI 的术语和基础概念。了解什么是人工智能,它的主要分支(如机器学习、深度学习、自然语言处理等)以及它们之间的联系。同时,浏览入门文章,这些文章通常会介绍 AI 的历史、当前的应用和未来的发展趋势。 二、开始 AI 学习之旅 在「」中,您将找到一系列为初学者设计的课程。特别推荐李宏毅老师的课程。您还可以通过在线教育平台(如 Coursera、edX、Udacity)上的课程,按照自己的节奏学习,并有机会获得证书。 三、选择感兴趣的模块深入学习 AI 领域广泛,比如图像、音乐、视频等。您可以根据自己的兴趣选择特定的模块进行深入学习。同时,一定要掌握提示词的技巧,它上手容易且很有用。 四、实践和尝试 理论学习之后,实践是巩固知识的关键。尝试使用各种产品做出您的作品。在知识库提供了很多大家实践后的作品、文章分享,欢迎您实践后的分享。 五、体验 AI 产品 与现有的 AI 产品进行互动是学习 AI 的另一种有效方式。尝试使用如 ChatGPT、Kimi Chat、智谱、文心一言等 AI 聊天机器人,了解它们的工作原理和交互方式。通过与这些 AI 产品的对话,您可以获得对 AI 在实际应用中表现的第一手体验,并激发您对 AI 潜力的认识。 六、掌握相关技能和知识 1. 从编程语言入手学习:可以从 Python、JavaScript 等编程语言开始学习,学习编程语法、数据结构、算法等基础知识,为后续的 AI 学习打下基础。 2. 尝试使用 AI 工具和平台:可以使用 ChatGPT、Midjourney 等 AI 生成工具,体验 AI 的应用场景。探索一些面向中学生的 AI 教育平台,如百度的“文心智能体平台”、Coze 智能体平台等。 3. 学习 AI 基础知识:了解 AI 的基本概念、发展历程、主要技术如机器学习、深度学习等。学习 AI 在教育、医疗、金融等领域的应用案例。 4. 参与 AI 相关的实践项目:可以参加学校或社区组织的 AI 编程竞赛、创意设计大赛等活动。尝试利用 AI 技术解决生活中的实际问题,培养动手能力。 5. 关注 AI 发展的前沿动态:关注 AI 领域的权威媒体和学者,了解 AI 技术的最新进展。思考 AI 技术对未来社会的影响,培养对 AI 的思考和判断能力。 总之,作为转型者,您可以从以上多个方面入手,全面系统地学习 AI 知识和技能,为未来在 AI 行业的售前工作做好准备。
2025-01-07
RAG与Agent如何结合应用
RAG 与 Agent 的结合应用可以通过以下步骤实现: 1. 数据加载:根据数据源类型选择合适的数据加载器,如网页可使用 WebBaseLoader 加载和解析,返回文档对象。 2. 文本分割:依据文本特点选择合适的文本分割器,将文档对象分割成较小的对象,如博客文章可用 RecursiveCharacterTextSplitter 分割。 3. 嵌入与存储:使用文本嵌入器和向量存储器将文档对象转换为嵌入并存储,根据质量和速度选择合适的,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 4. 创建检索器:通过向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数,创建用于根据用户输入检索相关文档对象的检索器。 5. 创建聊天模型:根据性能和成本选择合适的聊天模型,如使用 OpenAI 的 GPT3 模型,根据用户输入和检索到的文档对象生成输出消息。 以餐饮生活助手为例,基于结构化数据来 RAG 实战: 1. 定义餐饮数据源:将餐饮数据集转化为 Langchain 可识别和操作的数据源,如数据库、文件、API 等,并注册到 Langchain 中,提供统一接口和方法供 LLM 代理访问和查询。 2. 定义 LLM 的代理:通过 Langchain 的代理(Agent)实现,代理管理器可让开发者定义不同的 LLM 代理及其功能和逻辑,提供统一接口和方法供用户交互。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-01-06
RAG与Agent如何结合应用
RAG 与 Agent 的结合应用主要通过以下步骤实现: 1. 数据加载:根据数据源类型选择合适的数据加载器,如对于网页数据源可使用 WebBaseLoader 加载和解析网页,获取文档对象。 2. 文本分割:依据文本特点选用合适的文本分割器,将文档对象分割成较小的文档对象。例如,对于博客文章可用 RecursiveCharacterTextSplitter 递归分割。 3. 嵌入与存储:使用文本嵌入器将文档对象转换为嵌入,并存储到向量存储器中。可根据嵌入质量和速度选择,如 OpenAI 的嵌入模型和 Chroma 的向量存储器。 4. 创建检索器:通过向量存储器检索器,传递向量存储器对象和文本嵌入器对象作为参数,创建用于根据用户输入检索相关文档对象的检索器。 5. 创建聊天模型:根据模型性能和成本选择合适的聊天模型,如 OpenAI 的 GPT3 模型,用于根据用户输入和检索到的文档对象生成输出消息。 以餐饮生活助手为例,展示基于结构化数据的 RAG 实战: 1. 定义餐饮数据源:将餐饮数据集转化为 Langchain 可识别和操作的数据源,如数据库、文件、API 等,并注册到 Langchain 中,提供统一接口和方法供 LLM 代理访问和查询。 2. 定义 LLM 的代理:通过 Langchain 的代理(Agent)实现,提取用户问题的核心信息和条件,形成标准查询语句,检索餐饮数据源并生成合适答案输出给用户。代理管理器可定义不同的 LLM 代理及其功能逻辑,提供统一接口和方法方便用户交互。 以下是使用 LangChain 构建 RAG 应用的示例代码。
2025-01-06
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国在生成式人工智能方面立法的启示。
欧盟《人工智能法案》对我国在生成式人工智能方面立法的启示主要体现在以下几个方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任作为基本落脚点,将“服务提供者”作为相关义务的履行主体。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同的责任措施和差异化监管。 2. 风险分类分级监管与算法安全评估:在我国,相关指导意见和法规已提出风险防控和算法分级分类安全管理的要求,以及对生成式人工智能服务的分类分级监管要求。欧美在这方面的路径和方法虽有争议,但总体上对我国仍具借鉴意义。
2024-12-31
结合欧盟《人工智能法案》和我国《生成式人工智能服务管理暂行办法》的对照,论述欧盟人工智能法案对我国相关立法的启示。可以举例
欧盟《人工智能法案》对我国相关立法的启示主要体现在以下方面: 1. 监管框架出发点:中国针对不同的涉及算法的互联网信息服务,以落实主体责任为基本落脚点,将“服务提供者”作为相关义务的履行主体,如《互联网信息服务算法推荐管理规定》《生成式人工智能服务管理办法》等。而欧盟《人工智能法案》首先确立以风险为基准的人工智能治理框架,通过对人工智能系统进行评估,划分为不同风险层级,并匹配不同责任措施和差异化监管。 2. 风险分级管理:我国与欧盟在立法理念上有共通之处,如风险分级管理、高风险项目的“备案”“评估”“透明”等原则,在我国相关法律法规中已有所体现。 3. 对拓展市场的影响:如果我国的AI项目有意拓展欧洲市场,由于针对不同市场重新训练特有模型的效率不高,将因“木桶原理”而不得不根据欧盟《人工智能法案》对产品进行调整。 总之,欧盟的《人工智能法案》对我国人工智能立法工作具有重要参考意义。
2024-12-31