以下是一些可以免费将低精度图片转化为高清图片的网站和相关信息:
|Service|Description|Price(credits)||-|-|-||[Creative Upscaler](https://platform.stability.ai/docs/api-reference#tag/Upscale/paths/~1v2beta~1stable-image~1upscale~1creative/post)|将任何低分辨率、低质量的图像转换为4k杰作|25||[ESRGAN](https://platform.stability.ai/docs/api-reference#tag/Image-to-Image/operation/upscaleImage)|简单、低成本的分辨率提升|0.2|编辑
整个图像修复放大的流程分为三部分:输入原始图像、修复图像、放大并重绘图像。下面将详细拆解每一部分的生成原理。[heading3]一、图像输入[content]第一部分添加Load Image节点加载图像,只需上传需要处理的图片即可。不建议上传大分辨率的图片,图片分辨率越大,处理的时间就越长。[heading3]二、图像高清修复[content]第二部分进行高清修复,把原本模糊的图片修复,并进行2倍放大。Checkpoint大模型使用Iceclear/StableSR,这是一种新颖的方法来利用封装在预先训练的文本到图像扩散模型中的先验知识来实现盲超分辨率(SR)。具体来说,就是通过时间感知编码器,在不改变预先训练的合成模型的情况下实现有希望的恢复结果,从而保留生成先验并最小化训练成本。并且需要搭配Stable SR Upscaler模型才能在最大程度上修复图像,推理图片每个噪点,以还原图像。提示词部分应包含我们想要达到的目的内容,在此场景中如正向:(masterpiece),(best quality),(realistic),(very clear),反向:3d,cartoon,anime,sketches,(worst quality),(low quality)(杰作),(最高品质),(逼真的),(非常清晰);3D,卡通,动漫,素描,(最差质量),(低质量)全程采取两次高清修复,这一次修复原始图像分辨率并且放大,已经很完美还原,但是分辨率并不够,继续进行下一步。[heading3]三、图像高清放大[content]这一步主要针对第一次放大修复后的图像,进行二次修复。这里用realisticVision底膜最合适,这个模型在重绘扩图放大等领域效果非常好。使用提示词反推node对图像进行画面提示词提取,搭配tile ControlNet提升画面细节感,然后需用合适的高清放大模型,对图像进行二次放大。